1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 //! This module implements safe wrappers for some crypto operations required by
16 //! Keystore 2.0.
17
18 mod error;
19 pub mod zvec;
20 pub use error::Error;
21 use keystore2_crypto_bindgen::{
22 extractSubjectFromCertificate, generateKeyFromPassword, hmacSha256, randomBytes,
23 AES_gcm_decrypt, AES_gcm_encrypt, ECDHComputeKey, ECKEYGenerateKey, ECKEYMarshalPrivateKey,
24 ECKEYParsePrivateKey, ECPOINTOct2Point, ECPOINTPoint2Oct, EC_KEY_free, EC_KEY_get0_public_key,
25 EC_POINT_free, HKDFExpand, HKDFExtract, EC_KEY, EC_MAX_BYTES, EC_POINT, EVP_MAX_MD_SIZE,
26 };
27 use std::convert::TryFrom;
28 use std::convert::TryInto;
29 use std::marker::PhantomData;
30 pub use zvec::ZVec;
31
32 /// Length of the expected initialization vector.
33 pub const GCM_IV_LENGTH: usize = 12;
34 /// Length of the expected AEAD TAG.
35 pub const TAG_LENGTH: usize = 16;
36 /// Length of an AES 256 key in bytes.
37 pub const AES_256_KEY_LENGTH: usize = 32;
38 /// Length of an AES 128 key in bytes.
39 pub const AES_128_KEY_LENGTH: usize = 16;
40 /// Length of the expected salt for key from password generation.
41 pub const SALT_LENGTH: usize = 16;
42 /// Length of an HMAC-SHA256 tag in bytes.
43 pub const HMAC_SHA256_LEN: usize = 32;
44
45 /// Older versions of keystore produced IVs with four extra
46 /// ignored zero bytes at the end; recognise and trim those.
47 pub const LEGACY_IV_LENGTH: usize = 16;
48
49 /// Generate an AES256 key, essentially 32 random bytes from the underlying
50 /// boringssl library discretely stuffed into a ZVec.
generate_aes256_key() -> Result<ZVec, Error>51 pub fn generate_aes256_key() -> Result<ZVec, Error> {
52 // Safety: key has the same length as the requested number of random bytes.
53 let mut key = ZVec::new(AES_256_KEY_LENGTH)?;
54 if unsafe { randomBytes(key.as_mut_ptr(), AES_256_KEY_LENGTH) } {
55 Ok(key)
56 } else {
57 Err(Error::RandomNumberGenerationFailed)
58 }
59 }
60
61 /// Generate a salt.
generate_salt() -> Result<Vec<u8>, Error>62 pub fn generate_salt() -> Result<Vec<u8>, Error> {
63 generate_random_data(SALT_LENGTH)
64 }
65
66 /// Generate random data of the given size.
generate_random_data(size: usize) -> Result<Vec<u8>, Error>67 pub fn generate_random_data(size: usize) -> Result<Vec<u8>, Error> {
68 // Safety: data has the same length as the requested number of random bytes.
69 let mut data = vec![0; size];
70 if unsafe { randomBytes(data.as_mut_ptr(), size) } {
71 Ok(data)
72 } else {
73 Err(Error::RandomNumberGenerationFailed)
74 }
75 }
76
77 /// Perform HMAC-SHA256.
hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error>78 pub fn hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error> {
79 let mut tag = vec![0; HMAC_SHA256_LEN];
80 // Safety: The first two pairs of arguments must point to const buffers with
81 // size given by the second arg of the pair. The final pair of arguments
82 // must point to an output buffer with size given by the second arg of the
83 // pair.
84 match unsafe {
85 hmacSha256(key.as_ptr(), key.len(), msg.as_ptr(), msg.len(), tag.as_mut_ptr(), tag.len())
86 } {
87 true => Ok(tag),
88 false => Err(Error::HmacSha256Failed),
89 }
90 }
91
92 /// Uses AES GCM to decipher a message given an initialization vector, aead tag, and key.
93 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based
94 /// on the key length.
95 /// This function returns the plaintext message in a ZVec because it is assumed that
96 /// it contains sensitive information that should be zeroed from memory before its buffer is
97 /// freed. Input key is taken as a slice for flexibility, but it is recommended that it is held
98 /// in a ZVec as well.
aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error>99 pub fn aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error> {
100 // Old versions of aes_gcm_encrypt produced 16 byte IVs, but the last four bytes were ignored
101 // so trim these to the correct size.
102 let iv = match iv.len() {
103 GCM_IV_LENGTH => iv,
104 LEGACY_IV_LENGTH => &iv[..GCM_IV_LENGTH],
105 _ => return Err(Error::InvalidIvLength),
106 };
107 if tag.len() != TAG_LENGTH {
108 return Err(Error::InvalidAeadTagLength);
109 }
110
111 match key.len() {
112 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
113 _ => return Err(Error::InvalidKeyLength),
114 }
115
116 let mut result = ZVec::new(data.len())?;
117
118 // Safety: The first two arguments must point to buffers with a size given by the third
119 // argument. We pass the length of the key buffer along with the key.
120 // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
121 match unsafe {
122 AES_gcm_decrypt(
123 data.as_ptr(),
124 result.as_mut_ptr(),
125 data.len(),
126 key.as_ptr(),
127 key.len(),
128 iv.as_ptr(),
129 tag.as_ptr(),
130 )
131 } {
132 true => Ok(result),
133 false => Err(Error::DecryptionFailed),
134 }
135 }
136
137 /// Uses AES GCM to encrypt a message given a key.
138 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based on
139 /// the key length. The function generates an initialization vector. The return value is a tuple
140 /// of `(ciphertext, iv, tag)`.
aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error>141 pub fn aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
142 let mut iv = vec![0; GCM_IV_LENGTH];
143 // Safety: iv is GCM_IV_LENGTH bytes long.
144 if !unsafe { randomBytes(iv.as_mut_ptr(), GCM_IV_LENGTH) } {
145 return Err(Error::RandomNumberGenerationFailed);
146 }
147
148 match key.len() {
149 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
150 _ => return Err(Error::InvalidKeyLength),
151 }
152
153 let mut ciphertext: Vec<u8> = vec![0; plaintext.len()];
154 let mut tag: Vec<u8> = vec![0; TAG_LENGTH];
155 // Safety: The first two arguments must point to buffers with a size given by the third
156 // argument. We pass the length of the key buffer along with the key.
157 // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
158 if unsafe {
159 AES_gcm_encrypt(
160 plaintext.as_ptr(),
161 ciphertext.as_mut_ptr(),
162 plaintext.len(),
163 key.as_ptr(),
164 key.len(),
165 iv.as_ptr(),
166 tag.as_mut_ptr(),
167 )
168 } {
169 Ok((ciphertext, iv, tag))
170 } else {
171 Err(Error::EncryptionFailed)
172 }
173 }
174
175 /// Represents a "password" that can be used to key the PBKDF2 algorithm.
176 pub enum Password<'a> {
177 /// Borrow an existing byte array
178 Ref(&'a [u8]),
179 /// Use an owned ZVec to store the key
180 Owned(ZVec),
181 }
182
183 impl<'a> From<&'a [u8]> for Password<'a> {
from(pw: &'a [u8]) -> Self184 fn from(pw: &'a [u8]) -> Self {
185 Self::Ref(pw)
186 }
187 }
188
189 impl<'a> Password<'a> {
get_key(&'a self) -> &'a [u8]190 fn get_key(&'a self) -> &'a [u8] {
191 match self {
192 Self::Ref(b) => b,
193 Self::Owned(z) => z,
194 }
195 }
196
197 /// Generate a key from the given password and salt.
198 /// The salt must be exactly 16 bytes long.
199 /// Two key sizes are accepted: 16 and 32 bytes.
derive_key(&self, salt: &[u8], key_length: usize) -> Result<ZVec, Error>200 pub fn derive_key(&self, salt: &[u8], key_length: usize) -> Result<ZVec, Error> {
201 if salt.len() != SALT_LENGTH {
202 return Err(Error::InvalidSaltLength);
203 }
204 match key_length {
205 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
206 _ => return Err(Error::InvalidKeyLength),
207 }
208
209 let pw = self.get_key();
210 let mut result = ZVec::new(key_length)?;
211
212 unsafe {
213 generateKeyFromPassword(
214 result.as_mut_ptr(),
215 result.len(),
216 pw.as_ptr() as *const std::os::raw::c_char,
217 pw.len(),
218 salt.as_ptr(),
219 )
220 };
221
222 Ok(result)
223 }
224
225 /// Try to make another Password object with the same data.
try_clone(&self) -> Result<Password<'static>, Error>226 pub fn try_clone(&self) -> Result<Password<'static>, Error> {
227 Ok(Password::Owned(ZVec::try_from(self.get_key())?))
228 }
229 }
230
231 /// Calls the boringssl HKDF_extract function.
hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error>232 pub fn hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error> {
233 let max_size: usize = EVP_MAX_MD_SIZE.try_into().unwrap();
234 let mut buf = ZVec::new(max_size)?;
235 let mut out_len = 0;
236 // Safety: HKDF_extract writes at most EVP_MAX_MD_SIZE bytes.
237 // Secret and salt point to valid buffers.
238 let result = unsafe {
239 HKDFExtract(
240 buf.as_mut_ptr(),
241 &mut out_len,
242 secret.as_ptr(),
243 secret.len(),
244 salt.as_ptr(),
245 salt.len(),
246 )
247 };
248 if !result {
249 return Err(Error::HKDFExtractFailed);
250 }
251 // According to the boringssl API, this should never happen.
252 if out_len > max_size {
253 return Err(Error::HKDFExtractFailed);
254 }
255 // HKDF_extract may write fewer than the maximum number of bytes, so we
256 // truncate the buffer.
257 buf.reduce_len(out_len);
258 Ok(buf)
259 }
260
261 /// Calls the boringssl HKDF_expand function.
hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error>262 pub fn hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error> {
263 let mut buf = ZVec::new(out_len)?;
264 // Safety: HKDF_expand writes out_len bytes to the buffer.
265 // prk and info are valid buffers.
266 let result = unsafe {
267 HKDFExpand(buf.as_mut_ptr(), out_len, prk.as_ptr(), prk.len(), info.as_ptr(), info.len())
268 };
269 if !result {
270 return Err(Error::HKDFExpandFailed);
271 }
272 Ok(buf)
273 }
274
275 /// A wrapper around the boringssl EC_KEY type that frees it on drop.
276 pub struct ECKey(*mut EC_KEY);
277
278 impl Drop for ECKey {
drop(&mut self)279 fn drop(&mut self) {
280 // Safety: We only create ECKey objects for valid EC_KEYs
281 // and they are the sole owners of those keys.
282 unsafe { EC_KEY_free(self.0) };
283 }
284 }
285
286 // Wrappers around the boringssl EC_POINT type.
287 // The EC_POINT can either be owned (and therefore mutable) or a pointer to an
288 // EC_POINT owned by someone else (and thus immutable). The former are freed
289 // on drop.
290
291 /// An owned EC_POINT object.
292 pub struct OwnedECPoint(*mut EC_POINT);
293
294 /// A pointer to an EC_POINT object.
295 pub struct BorrowedECPoint<'a> {
296 data: *const EC_POINT,
297 phantom: PhantomData<&'a EC_POINT>,
298 }
299
300 impl OwnedECPoint {
301 /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT302 pub fn get_point(&self) -> &EC_POINT {
303 // Safety: We only create OwnedECPoint objects for valid EC_POINTs.
304 unsafe { self.0.as_ref().unwrap() }
305 }
306 }
307
308 impl<'a> BorrowedECPoint<'a> {
309 /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT310 pub fn get_point(&self) -> &EC_POINT {
311 // Safety: We only create BorrowedECPoint objects for valid EC_POINTs.
312 unsafe { self.data.as_ref().unwrap() }
313 }
314 }
315
316 impl Drop for OwnedECPoint {
drop(&mut self)317 fn drop(&mut self) {
318 // Safety: We only create OwnedECPoint objects for valid
319 // EC_POINTs and they are the sole owners of those points.
320 unsafe { EC_POINT_free(self.0) };
321 }
322 }
323
324 /// Calls the boringssl ECDH_compute_key function.
ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error>325 pub fn ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error> {
326 let mut buf = ZVec::new(EC_MAX_BYTES)?;
327 // Safety: Our ECDHComputeKey wrapper passes EC_MAX_BYES to ECDH_compute_key, which
328 // writes at most that many bytes to the output.
329 // The two keys are valid objects.
330 let result =
331 unsafe { ECDHComputeKey(buf.as_mut_ptr() as *mut std::ffi::c_void, pub_key, priv_key.0) };
332 if result == -1 {
333 return Err(Error::ECDHComputeKeyFailed);
334 }
335 let out_len = result.try_into().unwrap();
336 // According to the boringssl API, this should never happen.
337 if out_len > buf.len() {
338 return Err(Error::ECDHComputeKeyFailed);
339 }
340 // ECDH_compute_key may write fewer than the maximum number of bytes, so we
341 // truncate the buffer.
342 buf.reduce_len(out_len);
343 Ok(buf)
344 }
345
346 /// Calls the boringssl EC_KEY_generate_key function.
ec_key_generate_key() -> Result<ECKey, Error>347 pub fn ec_key_generate_key() -> Result<ECKey, Error> {
348 // Safety: Creates a new key on its own.
349 let key = unsafe { ECKEYGenerateKey() };
350 if key.is_null() {
351 return Err(Error::ECKEYGenerateKeyFailed);
352 }
353 Ok(ECKey(key))
354 }
355
356 /// Calls the boringssl EC_KEY_marshal_private_key function.
ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error>357 pub fn ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error> {
358 let len = 73; // Empirically observed length of private key
359 let mut buf = ZVec::new(len)?;
360 // Safety: the key is valid.
361 // This will not write past the specified length of the buffer; if the
362 // len above is too short, it returns 0.
363 let written_len = unsafe { ECKEYMarshalPrivateKey(key.0, buf.as_mut_ptr(), buf.len()) };
364 if written_len == len {
365 Ok(buf)
366 } else {
367 Err(Error::ECKEYMarshalPrivateKeyFailed)
368 }
369 }
370
371 /// Calls the boringssl EC_KEY_parse_private_key function.
ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error>372 pub fn ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error> {
373 // Safety: this will not read past the specified length of the buffer.
374 // It fails if less than the whole buffer is consumed.
375 let key = unsafe { ECKEYParsePrivateKey(buf.as_ptr(), buf.len()) };
376 if key.is_null() {
377 Err(Error::ECKEYParsePrivateKeyFailed)
378 } else {
379 Ok(ECKey(key))
380 }
381 }
382
383 /// Calls the boringssl EC_KEY_get0_public_key function.
ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint384 pub fn ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint {
385 // Safety: The key is valid.
386 // This returns a pointer to a key, so we create an immutable variant.
387 BorrowedECPoint { data: unsafe { EC_KEY_get0_public_key(key.0) }, phantom: PhantomData }
388 }
389
390 /// Calls the boringssl EC_POINT_point2oct.
ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error>391 pub fn ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error> {
392 // We fix the length to 133 (1 + 2 * field_elem_size), as we get an error if it's too small.
393 let len = 133;
394 let mut buf = vec![0; len];
395 // Safety: EC_POINT_point2oct writes at most len bytes. The point is valid.
396 let result = unsafe { ECPOINTPoint2Oct(point, buf.as_mut_ptr(), len) };
397 if result == 0 {
398 return Err(Error::ECPoint2OctFailed);
399 }
400 // According to the boringssl API, this should never happen.
401 if result > len {
402 return Err(Error::ECPoint2OctFailed);
403 }
404 buf.resize(result, 0);
405 Ok(buf)
406 }
407
408 /// Calls the boringssl EC_POINT_oct2point function.
ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error>409 pub fn ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error> {
410 // Safety: The buffer is valid.
411 let result = unsafe { ECPOINTOct2Point(buf.as_ptr(), buf.len()) };
412 if result.is_null() {
413 return Err(Error::ECPoint2OctFailed);
414 }
415 // Our C wrapper creates a new EC_POINT, so we mark this mutable and free
416 // it on drop.
417 Ok(OwnedECPoint(result))
418 }
419
420 /// Uses BoringSSL to extract the DER-encoded subject from a DER-encoded X.509 certificate.
parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error>421 pub fn parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error> {
422 // Try with a 200-byte output buffer, should be enough in all but bizarre cases.
423 let mut retval = vec![0; 200];
424
425 // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf and
426 // writes at most retval.len() bytes to retval.
427 let mut size = unsafe {
428 extractSubjectFromCertificate(
429 cert_buf.as_ptr(),
430 cert_buf.len(),
431 retval.as_mut_ptr(),
432 retval.len(),
433 )
434 };
435
436 if size == 0 {
437 return Err(Error::ExtractSubjectFailed);
438 }
439
440 if size < 0 {
441 // Our buffer wasn't big enough. Make one that is just the right size and try again.
442 let negated_size = usize::try_from(-size).map_err(|_e| Error::ExtractSubjectFailed)?;
443 retval = vec![0; negated_size];
444
445 // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf
446 // and writes at most retval.len() bytes to retval.
447 size = unsafe {
448 extractSubjectFromCertificate(
449 cert_buf.as_ptr(),
450 cert_buf.len(),
451 retval.as_mut_ptr(),
452 retval.len(),
453 )
454 };
455
456 if size <= 0 {
457 return Err(Error::ExtractSubjectFailed);
458 }
459 }
460
461 // Reduce buffer size to the amount written.
462 let safe_size = usize::try_from(size).map_err(|_e| Error::ExtractSubjectFailed)?;
463 retval.truncate(safe_size);
464
465 Ok(retval)
466 }
467
468 #[cfg(test)]
469 mod tests {
470
471 use super::*;
472 use keystore2_crypto_bindgen::{
473 generateKeyFromPassword, AES_gcm_decrypt, AES_gcm_encrypt, CreateKeyId,
474 };
475
476 #[test]
test_wrapper_roundtrip()477 fn test_wrapper_roundtrip() {
478 let key = generate_aes256_key().unwrap();
479 let message = b"totally awesome message";
480 let (cipher_text, iv, tag) = aes_gcm_encrypt(message, &key).unwrap();
481 let message2 = aes_gcm_decrypt(&cipher_text, &iv, &tag, &key).unwrap();
482 assert_eq!(message[..], message2[..])
483 }
484
485 #[test]
test_encrypt_decrypt()486 fn test_encrypt_decrypt() {
487 let input = vec![0; 16];
488 let mut out = vec![0; 16];
489 let mut out2 = vec![0; 16];
490 let key = vec![0; 16];
491 let iv = vec![0; 12];
492 let mut tag = vec![0; 16];
493 unsafe {
494 let res = AES_gcm_encrypt(
495 input.as_ptr(),
496 out.as_mut_ptr(),
497 16,
498 key.as_ptr(),
499 16,
500 iv.as_ptr(),
501 tag.as_mut_ptr(),
502 );
503 assert!(res);
504 assert_ne!(out, input);
505 assert_ne!(tag, input);
506 let res = AES_gcm_decrypt(
507 out.as_ptr(),
508 out2.as_mut_ptr(),
509 16,
510 key.as_ptr(),
511 16,
512 iv.as_ptr(),
513 tag.as_ptr(),
514 );
515 assert!(res);
516 assert_eq!(out2, input);
517 }
518 }
519
520 #[test]
test_create_key_id()521 fn test_create_key_id() {
522 let blob = vec![0; 16];
523 let mut out: u64 = 0;
524 unsafe {
525 let res = CreateKeyId(blob.as_ptr(), 16, &mut out);
526 assert!(res);
527 assert_ne!(out, 0);
528 }
529 }
530
531 #[test]
test_generate_key_from_password()532 fn test_generate_key_from_password() {
533 let mut key = vec![0; 16];
534 let pw = vec![0; 16];
535 let salt = vec![0; 16];
536 unsafe {
537 generateKeyFromPassword(key.as_mut_ptr(), 16, pw.as_ptr(), 16, salt.as_ptr());
538 }
539 assert_ne!(key, vec![0; 16]);
540 }
541
542 #[test]
test_hkdf()543 fn test_hkdf() {
544 let result = hkdf_extract(&[0; 16], &[0; 16]);
545 assert!(result.is_ok());
546 for out_len in 4..=8 {
547 let result = hkdf_expand(out_len, &[0; 16], &[0; 16]);
548 assert!(result.is_ok());
549 assert_eq!(result.unwrap().len(), out_len);
550 }
551 }
552
553 #[test]
test_ec() -> Result<(), Error>554 fn test_ec() -> Result<(), Error> {
555 let priv0 = ec_key_generate_key()?;
556 assert!(!priv0.0.is_null());
557 let pub0 = ec_key_get0_public_key(&priv0);
558
559 let priv1 = ec_key_generate_key()?;
560 let pub1 = ec_key_get0_public_key(&priv1);
561
562 let priv0s = ec_key_marshal_private_key(&priv0)?;
563 let pub0s = ec_point_point_to_oct(pub0.get_point())?;
564 let pub1s = ec_point_point_to_oct(pub1.get_point())?;
565
566 let priv0 = ec_key_parse_private_key(&priv0s)?;
567 let pub0 = ec_point_oct_to_point(&pub0s)?;
568 let pub1 = ec_point_oct_to_point(&pub1s)?;
569
570 let left_key = ecdh_compute_key(pub0.get_point(), &priv1)?;
571 let right_key = ecdh_compute_key(pub1.get_point(), &priv0)?;
572
573 assert_eq!(left_key, right_key);
574 Ok(())
575 }
576
577 #[test]
test_hmac_sha256()578 fn test_hmac_sha256() {
579 let key = b"This is the key";
580 let msg1 = b"This is a message";
581 let msg2 = b"This is another message";
582 let tag1a = hmac_sha256(key, msg1).unwrap();
583 assert_eq!(tag1a.len(), HMAC_SHA256_LEN);
584 let tag1b = hmac_sha256(key, msg1).unwrap();
585 assert_eq!(tag1a, tag1b);
586 let tag2 = hmac_sha256(key, msg2).unwrap();
587 assert_eq!(tag2.len(), HMAC_SHA256_LEN);
588 assert_ne!(tag1a, tag2);
589 }
590 }
591