• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "loop_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "induction_var_range.h"
22 
23 namespace art HIDDEN {
24 
CalculateLoopBasicProperties(HLoopInformation * loop_info,LoopAnalysisInfo * analysis_results,int64_t trip_count)25 void LoopAnalysis::CalculateLoopBasicProperties(HLoopInformation* loop_info,
26                                                 LoopAnalysisInfo* analysis_results,
27                                                 int64_t trip_count) {
28   analysis_results->trip_count_ = trip_count;
29 
30   for (HBlocksInLoopIterator block_it(*loop_info);
31        !block_it.Done();
32        block_it.Advance()) {
33     HBasicBlock* block = block_it.Current();
34 
35     // Check whether one of the successor is loop exit.
36     for (HBasicBlock* successor : block->GetSuccessors()) {
37       if (!loop_info->Contains(*successor)) {
38         analysis_results->exits_num_++;
39 
40         // We track number of invariant loop exits which correspond to HIf instruction and
41         // can be eliminated by loop peeling; other control flow instruction are ignored and will
42         // not cause loop peeling to happen as they either cannot be inside a loop, or by
43         // definition cannot be loop exits (unconditional instructions), or are not beneficial for
44         // the optimization.
45         HIf* hif = block->GetLastInstruction()->AsIf();
46         if (hif != nullptr && !loop_info->Contains(*hif->InputAt(0)->GetBlock())) {
47           analysis_results->invariant_exits_num_++;
48         }
49       }
50     }
51 
52     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
53       HInstruction* instruction = it.Current();
54       if (it.Current()->GetType() == DataType::Type::kInt64) {
55         analysis_results->has_long_type_instructions_ = true;
56       }
57       if (MakesScalarPeelingUnrollingNonBeneficial(instruction)) {
58         analysis_results->has_instructions_preventing_scalar_peeling_ = true;
59         analysis_results->has_instructions_preventing_scalar_unrolling_ = true;
60       }
61       analysis_results->instr_num_++;
62     }
63     analysis_results->bb_num_++;
64   }
65 }
66 
GetLoopTripCount(HLoopInformation * loop_info,const InductionVarRange * induction_range)67 int64_t LoopAnalysis::GetLoopTripCount(HLoopInformation* loop_info,
68                                        const InductionVarRange* induction_range) {
69   int64_t trip_count;
70   if (!induction_range->HasKnownTripCount(loop_info, &trip_count)) {
71     trip_count = LoopAnalysisInfo::kUnknownTripCount;
72   }
73   return trip_count;
74 }
75 
76 // Default implementation of loop helper; used for all targets unless a custom implementation
77 // is provided. Enables scalar loop peeling and unrolling with the most conservative heuristics.
78 class ArchDefaultLoopHelper : public ArchNoOptsLoopHelper {
79  public:
ArchDefaultLoopHelper(const CodeGenerator & codegen)80   explicit ArchDefaultLoopHelper(const CodeGenerator& codegen) : ArchNoOptsLoopHelper(codegen) {}
81   // Scalar loop unrolling parameters and heuristics.
82   //
83   // Maximum possible unrolling factor.
84   static constexpr uint32_t kScalarMaxUnrollFactor = 2;
85   // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
86   static constexpr uint32_t kScalarHeuristicMaxBodySizeInstr = 17;
87   // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
88   static constexpr uint32_t kScalarHeuristicMaxBodySizeBlocks = 6;
89   // Maximum number of instructions to be created as a result of full unrolling.
90   static constexpr uint32_t kScalarHeuristicFullyUnrolledMaxInstrThreshold = 35;
91 
IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo * analysis_info) const92   bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* analysis_info) const override {
93     return analysis_info->HasLongTypeInstructions() ||
94            IsLoopTooBig(analysis_info,
95                         kScalarHeuristicMaxBodySizeInstr,
96                         kScalarHeuristicMaxBodySizeBlocks);
97   }
98 
GetScalarUnrollingFactor(const LoopAnalysisInfo * analysis_info) const99   uint32_t GetScalarUnrollingFactor(const LoopAnalysisInfo* analysis_info) const override {
100     int64_t trip_count = analysis_info->GetTripCount();
101     // Unroll only loops with known trip count.
102     if (trip_count == LoopAnalysisInfo::kUnknownTripCount) {
103       return LoopAnalysisInfo::kNoUnrollingFactor;
104     }
105     uint32_t desired_unrolling_factor = kScalarMaxUnrollFactor;
106     if (trip_count < desired_unrolling_factor || trip_count % desired_unrolling_factor != 0) {
107       return LoopAnalysisInfo::kNoUnrollingFactor;
108     }
109 
110     return desired_unrolling_factor;
111   }
112 
IsLoopPeelingEnabled() const113   bool IsLoopPeelingEnabled() const override { return true; }
114 
IsFullUnrollingBeneficial(LoopAnalysisInfo * analysis_info) const115   bool IsFullUnrollingBeneficial(LoopAnalysisInfo* analysis_info) const override {
116     int64_t trip_count = analysis_info->GetTripCount();
117     // We assume that trip count is known.
118     DCHECK_NE(trip_count, LoopAnalysisInfo::kUnknownTripCount);
119     size_t instr_num = analysis_info->GetNumberOfInstructions();
120     return (trip_count * instr_num < kScalarHeuristicFullyUnrolledMaxInstrThreshold);
121   }
122 
123  protected:
IsLoopTooBig(LoopAnalysisInfo * loop_analysis_info,size_t instr_threshold,size_t bb_threshold) const124   bool IsLoopTooBig(LoopAnalysisInfo* loop_analysis_info,
125                     size_t instr_threshold,
126                     size_t bb_threshold) const {
127     size_t instr_num = loop_analysis_info->GetNumberOfInstructions();
128     size_t bb_num = loop_analysis_info->GetNumberOfBasicBlocks();
129     return (instr_num >= instr_threshold || bb_num >= bb_threshold);
130   }
131 };
132 
133 // Custom implementation of loop helper for arm64 target. Enables heuristics for scalar loop
134 // peeling and unrolling and supports SIMD loop unrolling.
135 class Arm64LoopHelper : public ArchDefaultLoopHelper {
136  public:
Arm64LoopHelper(const CodeGenerator & codegen)137   explicit Arm64LoopHelper(const CodeGenerator& codegen) : ArchDefaultLoopHelper(codegen) {}
138   // SIMD loop unrolling parameters and heuristics.
139   //
140   // Maximum possible unrolling factor.
141   static constexpr uint32_t kArm64SimdMaxUnrollFactor = 8;
142   // Loop's maximum instruction count. Loops with higher count will not be unrolled.
143   static constexpr uint32_t kArm64SimdHeuristicMaxBodySizeInstr = 50;
144 
145   // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
146   static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeInstr = 40;
147   // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
148   static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeBlocks = 8;
149 
IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo * loop_analysis_info) const150   bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* loop_analysis_info) const override {
151     return IsLoopTooBig(loop_analysis_info,
152                         kArm64ScalarHeuristicMaxBodySizeInstr,
153                         kArm64ScalarHeuristicMaxBodySizeBlocks);
154   }
155 
GetSIMDUnrollingFactor(HBasicBlock * block,int64_t trip_count,uint32_t max_peel,uint32_t vector_length) const156   uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
157                                   int64_t trip_count,
158                                   uint32_t max_peel,
159                                   uint32_t vector_length) const override {
160     // Don't unroll with insufficient iterations.
161     // TODO: Unroll loops with unknown trip count.
162     DCHECK_NE(vector_length, 0u);
163     // TODO: Unroll loops in predicated vectorization mode.
164     if (codegen_.SupportsPredicatedSIMD()) {
165       return LoopAnalysisInfo::kNoUnrollingFactor;
166     }
167     if (trip_count < (2 * vector_length + max_peel)) {
168       return LoopAnalysisInfo::kNoUnrollingFactor;
169     }
170     // Don't unroll for large loop body size.
171     uint32_t instruction_count = block->GetInstructions().CountSize();
172     if (instruction_count >= kArm64SimdHeuristicMaxBodySizeInstr) {
173       return LoopAnalysisInfo::kNoUnrollingFactor;
174     }
175     // Find a beneficial unroll factor with the following restrictions:
176     //  - At least one iteration of the transformed loop should be executed.
177     //  - The loop body shouldn't be "too big" (heuristic).
178 
179     uint32_t uf1 = kArm64SimdHeuristicMaxBodySizeInstr / instruction_count;
180     uint32_t uf2 = (trip_count - max_peel) / vector_length;
181     uint32_t unroll_factor =
182         TruncToPowerOfTwo(std::min({uf1, uf2, kArm64SimdMaxUnrollFactor}));
183     DCHECK_GE(unroll_factor, 1u);
184     return unroll_factor;
185   }
186 };
187 
188 // Custom implementation of loop helper for X86_64 target. Enables heuristics for scalar loop
189 // peeling and unrolling and supports SIMD loop unrolling.
190 class X86_64LoopHelper : public ArchDefaultLoopHelper {
191   // mapping of machine instruction count for most used IR instructions
192   // Few IRs generate different number of instructions based on input and result type.
193   // We checked top java apps, benchmarks and used the most generated instruction count.
GetMachineInstructionCount(HInstruction * inst) const194   uint32_t GetMachineInstructionCount(HInstruction* inst) const {
195     switch (inst->GetKind()) {
196       case HInstruction::InstructionKind::kAbs:
197         return 3;
198       case HInstruction::InstructionKind::kAdd:
199         return 1;
200       case HInstruction::InstructionKind::kAnd:
201         return 1;
202       case HInstruction::InstructionKind::kArrayLength:
203         return 1;
204       case HInstruction::InstructionKind::kArrayGet:
205         return 1;
206       case HInstruction::InstructionKind::kArraySet:
207         return 1;
208       case HInstruction::InstructionKind::kBoundsCheck:
209         return 2;
210       case HInstruction::InstructionKind::kCheckCast:
211         return 9;
212       case HInstruction::InstructionKind::kDiv:
213         return 8;
214       case HInstruction::InstructionKind::kDivZeroCheck:
215         return 2;
216       case HInstruction::InstructionKind::kEqual:
217         return 3;
218       case HInstruction::InstructionKind::kGreaterThan:
219         return 3;
220       case HInstruction::InstructionKind::kGreaterThanOrEqual:
221         return 3;
222       case HInstruction::InstructionKind::kIf:
223         return 2;
224       case HInstruction::InstructionKind::kPredicatedInstanceFieldGet:
225         // test + cond-jump + IFieldGet
226         return 4;
227       case HInstruction::InstructionKind::kInstanceFieldGet:
228         return 2;
229       case HInstruction::InstructionKind::kInstanceFieldSet:
230         return 1;
231       case HInstruction::InstructionKind::kLessThan:
232         return 3;
233       case HInstruction::InstructionKind::kLessThanOrEqual:
234         return 3;
235       case HInstruction::InstructionKind::kMax:
236         return 2;
237       case HInstruction::InstructionKind::kMin:
238         return 2;
239       case HInstruction::InstructionKind::kMul:
240         return 1;
241       case HInstruction::InstructionKind::kNotEqual:
242         return 3;
243       case HInstruction::InstructionKind::kOr:
244         return 1;
245       case HInstruction::InstructionKind::kRem:
246         return 11;
247       case HInstruction::InstructionKind::kSelect:
248         return 2;
249       case HInstruction::InstructionKind::kShl:
250         return 1;
251       case HInstruction::InstructionKind::kShr:
252         return 1;
253       case HInstruction::InstructionKind::kSub:
254         return 1;
255       case HInstruction::InstructionKind::kTypeConversion:
256         return 1;
257       case HInstruction::InstructionKind::kUShr:
258         return 1;
259       case HInstruction::InstructionKind::kVecReplicateScalar:
260         return 2;
261       case HInstruction::InstructionKind::kVecExtractScalar:
262        return 1;
263       case HInstruction::InstructionKind::kVecReduce:
264         return 4;
265       case HInstruction::InstructionKind::kVecNeg:
266         return 2;
267       case HInstruction::InstructionKind::kVecAbs:
268         return 4;
269       case HInstruction::InstructionKind::kVecNot:
270         return 3;
271       case HInstruction::InstructionKind::kVecAdd:
272         return 1;
273       case HInstruction::InstructionKind::kVecSub:
274         return 1;
275       case HInstruction::InstructionKind::kVecMul:
276         return 1;
277       case HInstruction::InstructionKind::kVecDiv:
278         return 1;
279       case HInstruction::InstructionKind::kVecMax:
280         return 1;
281       case HInstruction::InstructionKind::kVecMin:
282         return 1;
283       case HInstruction::InstructionKind::kVecOr:
284         return 1;
285       case HInstruction::InstructionKind::kVecXor:
286         return 1;
287       case HInstruction::InstructionKind::kVecShl:
288         return 1;
289       case HInstruction::InstructionKind::kVecShr:
290         return 1;
291       case HInstruction::InstructionKind::kVecLoad:
292         return 1;
293       case HInstruction::InstructionKind::kVecStore:
294         return 1;
295       case HInstruction::InstructionKind::kXor:
296         return 1;
297       default:
298         return 1;
299     }
300   }
301 
302   // Maximum possible unrolling factor.
303   static constexpr uint32_t kX86_64MaxUnrollFactor = 2;  // pow(2,2) = 4
304 
305   // According to Intel® 64 and IA-32 Architectures Optimization Reference Manual,
306   // avoid excessive loop unrolling to ensure LSD (loop stream decoder) is operating efficiently.
307   // This variable takes care that unrolled loop instructions should not exceed LSD size.
308   // For Intel Atom processors (silvermont & goldmont), LSD size is 28
309   // TODO - identify architecture and LSD size at runtime
310   static constexpr uint32_t kX86_64UnrolledMaxBodySizeInstr = 28;
311 
312   // Loop's maximum basic block count. Loops with higher count will not be partial
313   // unrolled (unknown iterations).
314   static constexpr uint32_t kX86_64UnknownIterMaxBodySizeBlocks = 2;
315 
316   uint32_t GetUnrollingFactor(HLoopInformation* loop_info, HBasicBlock* header) const;
317 
318  public:
X86_64LoopHelper(const CodeGenerator & codegen)319   explicit X86_64LoopHelper(const CodeGenerator& codegen) : ArchDefaultLoopHelper(codegen) {}
320 
GetSIMDUnrollingFactor(HBasicBlock * block,int64_t trip_count,uint32_t max_peel,uint32_t vector_length) const321   uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
322                                   int64_t trip_count,
323                                   uint32_t max_peel,
324                                   uint32_t vector_length) const override {
325     DCHECK_NE(vector_length, 0u);
326     HLoopInformation* loop_info = block->GetLoopInformation();
327     DCHECK(loop_info);
328     HBasicBlock* header = loop_info->GetHeader();
329     DCHECK(header);
330     uint32_t unroll_factor = 0;
331 
332     if ((trip_count == 0) || (trip_count == LoopAnalysisInfo::kUnknownTripCount)) {
333       // Don't unroll for large loop body size.
334       unroll_factor = GetUnrollingFactor(loop_info, header);
335       if (unroll_factor <= 1) {
336         return LoopAnalysisInfo::kNoUnrollingFactor;
337       }
338     } else {
339       // Don't unroll with insufficient iterations.
340       if (trip_count < (2 * vector_length + max_peel)) {
341         return LoopAnalysisInfo::kNoUnrollingFactor;
342       }
343 
344       // Don't unroll for large loop body size.
345       uint32_t unroll_cnt = GetUnrollingFactor(loop_info, header);
346       if (unroll_cnt <= 1) {
347         return LoopAnalysisInfo::kNoUnrollingFactor;
348       }
349 
350       // Find a beneficial unroll factor with the following restrictions:
351       //  - At least one iteration of the transformed loop should be executed.
352       //  - The loop body shouldn't be "too big" (heuristic).
353       uint32_t uf2 = (trip_count - max_peel) / vector_length;
354       unroll_factor = TruncToPowerOfTwo(std::min(uf2, unroll_cnt));
355       DCHECK_GE(unroll_factor, 1u);
356     }
357 
358     return unroll_factor;
359   }
360 };
361 
GetUnrollingFactor(HLoopInformation * loop_info,HBasicBlock * header) const362 uint32_t X86_64LoopHelper::GetUnrollingFactor(HLoopInformation* loop_info,
363                                               HBasicBlock* header) const {
364   uint32_t num_inst = 0, num_inst_header = 0, num_inst_loop_body = 0;
365   for (HBlocksInLoopIterator it(*loop_info); !it.Done(); it.Advance()) {
366     HBasicBlock* block = it.Current();
367     DCHECK(block);
368     num_inst = 0;
369 
370     for (HInstructionIterator it1(block->GetInstructions()); !it1.Done(); it1.Advance()) {
371       HInstruction* inst = it1.Current();
372       DCHECK(inst);
373 
374       // SuspendCheck inside loop is handled with Goto.
375       // Ignoring SuspendCheck & Goto as partially unrolled loop body will have only one Goto.
376       // Instruction count for Goto is being handled during unroll factor calculation below.
377       if (inst->IsSuspendCheck() || inst->IsGoto()) {
378         continue;
379       }
380 
381       num_inst += GetMachineInstructionCount(inst);
382     }
383 
384     if (block == header) {
385       num_inst_header = num_inst;
386     } else {
387       num_inst_loop_body += num_inst;
388     }
389   }
390 
391   // Calculate actual unroll factor.
392   uint32_t unrolling_factor = kX86_64MaxUnrollFactor;
393   uint32_t unrolling_inst = kX86_64UnrolledMaxBodySizeInstr;
394   // "-3" for one Goto instruction.
395   uint32_t desired_size = unrolling_inst - num_inst_header - 3;
396   if (desired_size < (2 * num_inst_loop_body)) {
397     return 1;
398   }
399 
400   while (unrolling_factor > 0) {
401     if ((desired_size >> unrolling_factor) >= num_inst_loop_body) {
402       break;
403     }
404     unrolling_factor--;
405   }
406 
407   return (1 << unrolling_factor);
408 }
409 
Create(const CodeGenerator & codegen,ArenaAllocator * allocator)410 ArchNoOptsLoopHelper* ArchNoOptsLoopHelper::Create(const CodeGenerator& codegen,
411                                                    ArenaAllocator* allocator) {
412   InstructionSet isa = codegen.GetInstructionSet();
413   switch (isa) {
414     case InstructionSet::kArm64: {
415       return new (allocator) Arm64LoopHelper(codegen);
416     }
417     case InstructionSet::kX86_64: {
418       return new (allocator) X86_64LoopHelper(codegen);
419     }
420     default: {
421       return new (allocator) ArchDefaultLoopHelper(codegen);
422     }
423   }
424 }
425 
426 }  // namespace art
427