1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <unistd.h>
29 #include <fcntl.h>
30 #include "drm-uapi/drm_fourcc.h"
31 #include "drm-uapi/drm.h"
32 #include <xf86drm.h>
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/os_misc.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/driconf.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_aux_map.h"
47 #include "common/gen_defines.h"
48 #include "common/gen_uuid.h"
49 #include "compiler/glsl_types.h"
50
51 #include "genxml/gen7_pack.h"
52
53 static const driOptionDescription anv_dri_options[] = {
54 DRI_CONF_SECTION_PERFORMANCE
55 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
56 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
57 DRI_CONF_SECTION_END
58
59 DRI_CONF_SECTION_DEBUG
60 DRI_CONF_ALWAYS_FLUSH_CACHE(false)
61 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
62 DRI_CONF_SECTION_END
63 };
64
65 /* This is probably far to big but it reflects the max size used for messages
66 * in OpenGLs KHR_debug.
67 */
68 #define MAX_DEBUG_MESSAGE_LENGTH 4096
69
70 /* Render engine timestamp register */
71 #define TIMESTAMP 0x2358
72
73 /* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
74 #if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
75 #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
76 #endif
77
78 static void
compiler_debug_log(void * data,const char * fmt,...)79 compiler_debug_log(void *data, const char *fmt, ...)
80 {
81 char str[MAX_DEBUG_MESSAGE_LENGTH];
82 struct anv_device *device = (struct anv_device *)data;
83 struct anv_instance *instance = device->physical->instance;
84
85 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
86 return;
87
88 va_list args;
89 va_start(args, fmt);
90 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
91 va_end(args);
92
93 vk_debug_report(&instance->debug_report_callbacks,
94 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
95 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
96 0, 0, 0, "anv", str);
97 }
98
99 static void
compiler_perf_log(void * data,const char * fmt,...)100 compiler_perf_log(void *data, const char *fmt, ...)
101 {
102 va_list args;
103 va_start(args, fmt);
104
105 if (INTEL_DEBUG & DEBUG_PERF)
106 mesa_logd_v(fmt, args);
107
108 va_end(args);
109 }
110
111 static uint64_t
anv_compute_heap_size(int fd,uint64_t gtt_size)112 anv_compute_heap_size(int fd, uint64_t gtt_size)
113 {
114 /* Query the total ram from the system */
115 uint64_t total_ram;
116 if (!os_get_total_physical_memory(&total_ram))
117 return 0;
118
119 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
120 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
121 */
122 uint64_t available_ram;
123 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
124 available_ram = total_ram / 2;
125 else
126 available_ram = total_ram * 3 / 4;
127
128 /* We also want to leave some padding for things we allocate in the driver,
129 * so don't go over 3/4 of the GTT either.
130 */
131 uint64_t available_gtt = gtt_size * 3 / 4;
132
133 return MIN2(available_ram, available_gtt);
134 }
135
136 static VkResult
anv_physical_device_init_heaps(struct anv_physical_device * device,int fd)137 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
138 {
139 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
140 &device->gtt_size) == -1) {
141 /* If, for whatever reason, we can't actually get the GTT size from the
142 * kernel (too old?) fall back to the aperture size.
143 */
144 anv_perf_warn(NULL, NULL,
145 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
146
147 if (gen_get_aperture_size(fd, &device->gtt_size) == -1) {
148 return vk_errorfi(device->instance, NULL,
149 VK_ERROR_INITIALIZATION_FAILED,
150 "failed to get aperture size: %m");
151 }
152 }
153
154 /* We only allow 48-bit addresses with softpin because knowing the actual
155 * address is required for the vertex cache flush workaround.
156 */
157 device->supports_48bit_addresses = (device->info.gen >= 8) &&
158 device->has_softpin &&
159 device->gtt_size > (4ULL << 30 /* GiB */);
160
161 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
162
163 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
164 /* When running with an overridden PCI ID, we may get a GTT size from
165 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
166 * address support can still fail. Just clamp the address space size to
167 * 2 GiB if we don't have 48-bit support.
168 */
169 mesa_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
170 "not support for 48-bit addresses",
171 __FILE__, __LINE__);
172 heap_size = 2ull << 30;
173 }
174
175 device->memory.heap_count = 1;
176 device->memory.heaps[0] = (struct anv_memory_heap) {
177 .size = heap_size,
178 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
179 };
180
181 uint32_t type_count = 0;
182 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 };
194 } else {
195 /* The spec requires that we expose a host-visible, coherent memory
196 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
197 * to give the application a choice between cached, but not coherent and
198 * coherent but uncached (WC though).
199 */
200 device->memory.types[type_count++] = (struct anv_memory_type) {
201 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
202 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
203 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
204 .heapIndex = heap,
205 };
206 device->memory.types[type_count++] = (struct anv_memory_type) {
207 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
208 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
209 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
210 .heapIndex = heap,
211 };
212 }
213 }
214 device->memory.type_count = type_count;
215
216 return VK_SUCCESS;
217 }
218
219 static VkResult
anv_physical_device_init_uuids(struct anv_physical_device * device)220 anv_physical_device_init_uuids(struct anv_physical_device *device)
221 {
222 const struct build_id_note *note =
223 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
224 if (!note) {
225 return vk_errorfi(device->instance, NULL,
226 VK_ERROR_INITIALIZATION_FAILED,
227 "Failed to find build-id");
228 }
229
230 unsigned build_id_len = build_id_length(note);
231 if (build_id_len < 20) {
232 return vk_errorfi(device->instance, NULL,
233 VK_ERROR_INITIALIZATION_FAILED,
234 "build-id too short. It needs to be a SHA");
235 }
236
237 memcpy(device->driver_build_sha1, build_id_data(note), 20);
238
239 struct mesa_sha1 sha1_ctx;
240 uint8_t sha1[20];
241 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
242
243 /* The pipeline cache UUID is used for determining when a pipeline cache is
244 * invalid. It needs both a driver build and the PCI ID of the device.
245 */
246 _mesa_sha1_init(&sha1_ctx);
247 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
248 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
249 sizeof(device->info.chipset_id));
250 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
251 sizeof(device->always_use_bindless));
252 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
253 sizeof(device->has_a64_buffer_access));
254 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
255 sizeof(device->has_bindless_images));
256 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
257 sizeof(device->has_bindless_samplers));
258 _mesa_sha1_final(&sha1_ctx, sha1);
259 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
260
261 gen_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
262 gen_uuid_compute_device_id(device->device_uuid, &device->isl_dev, VK_UUID_SIZE);
263
264 return VK_SUCCESS;
265 }
266
267 static void
anv_physical_device_init_disk_cache(struct anv_physical_device * device)268 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
269 {
270 #ifdef ENABLE_SHADER_CACHE
271 char renderer[10];
272 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
273 device->info.chipset_id);
274 assert(len == sizeof(renderer) - 2);
275
276 char timestamp[41];
277 _mesa_sha1_format(timestamp, device->driver_build_sha1);
278
279 const uint64_t driver_flags =
280 brw_get_compiler_config_value(device->compiler);
281 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
282 #else
283 device->disk_cache = NULL;
284 #endif
285 }
286
287 static void
anv_physical_device_free_disk_cache(struct anv_physical_device * device)288 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
289 {
290 #ifdef ENABLE_SHADER_CACHE
291 if (device->disk_cache)
292 disk_cache_destroy(device->disk_cache);
293 #else
294 assert(device->disk_cache == NULL);
295 #endif
296 }
297
298 static VkResult
anv_physical_device_try_create(struct anv_instance * instance,drmDevicePtr drm_device,struct anv_physical_device ** device_out)299 anv_physical_device_try_create(struct anv_instance *instance,
300 drmDevicePtr drm_device,
301 struct anv_physical_device **device_out)
302 {
303 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
304 const char *path = drm_device->nodes[DRM_NODE_RENDER];
305 VkResult result;
306 int fd;
307 int master_fd = -1;
308
309 brw_process_intel_debug_variable();
310
311 fd = open(path, O_RDWR | O_CLOEXEC);
312 if (fd < 0) {
313 if (errno == ENOMEM) {
314 return vk_errorfi(instance, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
315 "Unable to open device %s: out of memory", path);
316 }
317 return vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
318 "Unable to open device %s: %m", path);
319 }
320
321 struct gen_device_info devinfo;
322 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
323 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
324 goto fail_fd;
325 }
326
327 const char *device_name = gen_get_device_name(devinfo.chipset_id);
328
329 if (devinfo.is_haswell) {
330 mesa_logw("Haswell Vulkan support is incomplete");
331 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
332 mesa_logw("Ivy Bridge Vulkan support is incomplete");
333 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
334 mesa_logw("Bay Trail Vulkan support is incomplete");
335 } else if (devinfo.gen >= 8 && devinfo.gen <= 12) {
336 /* Gen8-12 fully supported */
337 } else {
338 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
339 "Vulkan not yet supported on %s", device_name);
340 goto fail_fd;
341 }
342
343 struct anv_physical_device *device =
344 vk_alloc(&instance->alloc, sizeof(*device), 8,
345 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
346 if (device == NULL) {
347 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
348 goto fail_fd;
349 }
350
351 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
352 device->instance = instance;
353
354 assert(strlen(path) < ARRAY_SIZE(device->path));
355 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
356
357 device->info = devinfo;
358 device->name = device_name;
359
360 device->no_hw = device->info.no_hw;
361 if (getenv("INTEL_NO_HW") != NULL)
362 device->no_hw = true;
363
364 device->pci_info.domain = drm_device->businfo.pci->domain;
365 device->pci_info.bus = drm_device->businfo.pci->bus;
366 device->pci_info.device = drm_device->businfo.pci->dev;
367 device->pci_info.function = drm_device->businfo.pci->func;
368
369 device->cmd_parser_version = -1;
370 if (device->info.gen == 7) {
371 device->cmd_parser_version =
372 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
373 if (device->cmd_parser_version == -1) {
374 result = vk_errorfi(device->instance, NULL,
375 VK_ERROR_INITIALIZATION_FAILED,
376 "failed to get command parser version");
377 goto fail_alloc;
378 }
379 }
380
381 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
382 result = vk_errorfi(device->instance, NULL,
383 VK_ERROR_INITIALIZATION_FAILED,
384 "kernel missing gem wait");
385 goto fail_alloc;
386 }
387
388 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
389 result = vk_errorfi(device->instance, NULL,
390 VK_ERROR_INITIALIZATION_FAILED,
391 "kernel missing execbuf2");
392 goto fail_alloc;
393 }
394
395 if (!device->info.has_llc &&
396 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
397 result = vk_errorfi(device->instance, NULL,
398 VK_ERROR_INITIALIZATION_FAILED,
399 "kernel missing wc mmap");
400 goto fail_alloc;
401 }
402
403 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
404 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
405 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
406 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
407 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
408 device->has_syncobj_wait = device->has_syncobj &&
409 anv_gem_supports_syncobj_wait(fd);
410 device->has_syncobj_wait_available =
411 anv_gem_get_drm_cap(fd, DRM_CAP_SYNCOBJ_TIMELINE) != 0;
412
413 device->has_context_priority = anv_gem_has_context_priority(fd);
414
415 result = anv_physical_device_init_heaps(device, fd);
416 if (result != VK_SUCCESS)
417 goto fail_alloc;
418
419 device->use_softpin = device->has_softpin &&
420 device->supports_48bit_addresses;
421
422 device->has_context_isolation =
423 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
424
425 device->has_exec_timeline =
426 anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_TIMELINE_FENCES);
427 if (env_var_as_boolean("ANV_QUEUE_THREAD_DISABLE", false))
428 device->has_exec_timeline = false;
429
430 device->has_thread_submit =
431 device->has_syncobj_wait_available && device->has_exec_timeline;
432
433 device->always_use_bindless =
434 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
435
436 device->use_call_secondary =
437 device->use_softpin &&
438 !env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
439
440 /* We first got the A64 messages on broadwell and we can only use them if
441 * we can pass addresses directly into the shader which requires softpin.
442 */
443 device->has_a64_buffer_access = device->info.gen >= 8 &&
444 device->use_softpin;
445
446 /* We first get bindless image access on Skylake and we can only really do
447 * it if we don't have any relocations so we need softpin.
448 */
449 device->has_bindless_images = device->info.gen >= 9 &&
450 device->use_softpin;
451
452 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
453 * because it's just a matter of setting the sampler address in the sample
454 * message header. However, we've not bothered to wire it up for vec4 so
455 * we leave it disabled on gen7.
456 */
457 device->has_bindless_samplers = device->info.gen >= 8;
458
459 device->has_implicit_ccs = device->info.has_aux_map;
460
461 /* Check if we can read the GPU timestamp register from the CPU */
462 uint64_t u64_ignore;
463 device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA,
464 &u64_ignore) == 0;
465
466 uint64_t avail_mem;
467 device->has_mem_available = os_get_available_system_memory(&avail_mem);
468
469 device->always_flush_cache =
470 driQueryOptionb(&instance->dri_options, "always_flush_cache");
471
472 device->has_mmap_offset =
473 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
474
475 /* GENs prior to 8 do not support EU/Subslice info */
476 if (device->info.gen >= 8) {
477 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
478 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
479
480 /* Without this information, we cannot get the right Braswell
481 * brandstrings, and we have to use conservative numbers for GPGPU on
482 * many platforms, but otherwise, things will just work.
483 */
484 if (device->subslice_total < 1 || device->eu_total < 1) {
485 mesa_logw("Kernel 4.1 required to properly query GPU properties");
486 }
487 } else if (device->info.gen == 7) {
488 device->subslice_total = 1 << (device->info.gt - 1);
489 }
490
491 if (device->info.is_cherryview &&
492 device->subslice_total > 0 && device->eu_total > 0) {
493 /* Logical CS threads = EUs per subslice * num threads per EU */
494 uint32_t max_cs_threads =
495 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
496
497 /* Fuse configurations may give more threads than expected, never less. */
498 if (max_cs_threads > device->info.max_cs_threads)
499 device->info.max_cs_threads = max_cs_threads;
500 }
501
502 device->compiler = brw_compiler_create(NULL, &device->info);
503 if (device->compiler == NULL) {
504 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
505 goto fail_alloc;
506 }
507 device->compiler->shader_debug_log = compiler_debug_log;
508 device->compiler->shader_perf_log = compiler_perf_log;
509 device->compiler->supports_pull_constants = false;
510 device->compiler->constant_buffer_0_is_relative =
511 device->info.gen < 8 || !device->has_context_isolation;
512 device->compiler->supports_shader_constants = true;
513 device->compiler->compact_params = false;
514 device->compiler->indirect_ubos_use_sampler = device->info.gen < 12;
515
516 /* Broadwell PRM says:
517 *
518 * "Before Gen8, there was a historical configuration control field to
519 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
520 * different places: TILECTL[1:0], ARB_MODE[5:4], and
521 * DISP_ARB_CTL[14:13].
522 *
523 * For Gen8 and subsequent generations, the swizzle fields are all
524 * reserved, and the CPU's memory controller performs all address
525 * swizzling modifications."
526 */
527 bool swizzled =
528 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
529
530 isl_device_init(&device->isl_dev, &device->info, swizzled);
531
532 result = anv_physical_device_init_uuids(device);
533 if (result != VK_SUCCESS)
534 goto fail_compiler;
535
536 anv_physical_device_init_disk_cache(device);
537
538 if (instance->enabled_extensions.KHR_display) {
539 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
540 if (master_fd >= 0) {
541 /* prod the device with a GETPARAM call which will fail if
542 * we don't have permission to even render on this device
543 */
544 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
545 close(master_fd);
546 master_fd = -1;
547 }
548 }
549 }
550 device->master_fd = master_fd;
551
552 result = anv_init_wsi(device);
553 if (result != VK_SUCCESS)
554 goto fail_disk_cache;
555
556 device->perf = anv_get_perf(&device->info, fd);
557
558 anv_physical_device_get_supported_extensions(device,
559 &device->supported_extensions);
560
561
562 device->local_fd = fd;
563
564 *device_out = device;
565
566 return VK_SUCCESS;
567
568 fail_disk_cache:
569 anv_physical_device_free_disk_cache(device);
570 fail_compiler:
571 ralloc_free(device->compiler);
572 fail_alloc:
573 vk_free(&instance->alloc, device);
574 fail_fd:
575 close(fd);
576 if (master_fd != -1)
577 close(master_fd);
578 return result;
579 }
580
581 static void
anv_physical_device_destroy(struct anv_physical_device * device)582 anv_physical_device_destroy(struct anv_physical_device *device)
583 {
584 anv_finish_wsi(device);
585 anv_physical_device_free_disk_cache(device);
586 ralloc_free(device->compiler);
587 ralloc_free(device->perf);
588 close(device->local_fd);
589 if (device->master_fd >= 0)
590 close(device->master_fd);
591 vk_object_base_finish(&device->base);
592 vk_free(&device->instance->alloc, device);
593 }
594
595 static void *
default_alloc_func(void * pUserData,size_t size,size_t align,VkSystemAllocationScope allocationScope)596 default_alloc_func(void *pUserData, size_t size, size_t align,
597 VkSystemAllocationScope allocationScope)
598 {
599 return malloc(size);
600 }
601
602 static void *
default_realloc_func(void * pUserData,void * pOriginal,size_t size,size_t align,VkSystemAllocationScope allocationScope)603 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
604 size_t align, VkSystemAllocationScope allocationScope)
605 {
606 return realloc(pOriginal, size);
607 }
608
609 static void
default_free_func(void * pUserData,void * pMemory)610 default_free_func(void *pUserData, void *pMemory)
611 {
612 free(pMemory);
613 }
614
615 static const VkAllocationCallbacks default_alloc = {
616 .pUserData = NULL,
617 .pfnAllocation = default_alloc_func,
618 .pfnReallocation = default_realloc_func,
619 .pfnFree = default_free_func,
620 };
621
anv_EnumerateInstanceExtensionProperties(const char * pLayerName,uint32_t * pPropertyCount,VkExtensionProperties * pProperties)622 VkResult anv_EnumerateInstanceExtensionProperties(
623 const char* pLayerName,
624 uint32_t* pPropertyCount,
625 VkExtensionProperties* pProperties)
626 {
627 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
628
629 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
630 if (anv_instance_extensions_supported.extensions[i]) {
631 vk_outarray_append(&out, prop) {
632 *prop = anv_instance_extensions[i];
633 }
634 }
635 }
636
637 return vk_outarray_status(&out);
638 }
639
640 static void
anv_init_dri_options(struct anv_instance * instance)641 anv_init_dri_options(struct anv_instance *instance)
642 {
643 driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
644 ARRAY_SIZE(anv_dri_options));
645 driParseConfigFiles(&instance->dri_options,
646 &instance->available_dri_options, 0, "anv", NULL,
647 instance->app_info.app_name,
648 instance->app_info.app_version,
649 instance->app_info.engine_name,
650 instance->app_info.engine_version);
651 }
652
anv_CreateInstance(const VkInstanceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkInstance * pInstance)653 VkResult anv_CreateInstance(
654 const VkInstanceCreateInfo* pCreateInfo,
655 const VkAllocationCallbacks* pAllocator,
656 VkInstance* pInstance)
657 {
658 struct anv_instance *instance;
659 VkResult result;
660
661 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
662
663 struct anv_instance_extension_table enabled_extensions = {};
664 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
665 int idx;
666 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
667 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
668 anv_instance_extensions[idx].extensionName) == 0)
669 break;
670 }
671
672 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
673 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
674
675 if (!anv_instance_extensions_supported.extensions[idx])
676 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
677
678 enabled_extensions.extensions[idx] = true;
679 }
680
681 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
682 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
683 if (!instance)
684 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
685
686 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
687
688 if (pAllocator)
689 instance->alloc = *pAllocator;
690 else
691 instance->alloc = default_alloc;
692
693 instance->app_info = (struct anv_app_info) { .api_version = 0 };
694 if (pCreateInfo->pApplicationInfo) {
695 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
696
697 instance->app_info.app_name =
698 vk_strdup(&instance->alloc, app->pApplicationName,
699 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
700 instance->app_info.app_version = app->applicationVersion;
701
702 instance->app_info.engine_name =
703 vk_strdup(&instance->alloc, app->pEngineName,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 instance->app_info.engine_version = app->engineVersion;
706
707 instance->app_info.api_version = app->apiVersion;
708 }
709
710 if (instance->app_info.api_version == 0)
711 instance->app_info.api_version = VK_API_VERSION_1_0;
712
713 instance->enabled_extensions = enabled_extensions;
714
715 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
716 /* Vulkan requires that entrypoints for extensions which have not been
717 * enabled must not be advertised.
718 */
719 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
720 &instance->enabled_extensions)) {
721 instance->dispatch.entrypoints[i] = NULL;
722 } else {
723 instance->dispatch.entrypoints[i] =
724 anv_instance_dispatch_table.entrypoints[i];
725 }
726 }
727
728 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
729 /* Vulkan requires that entrypoints for extensions which have not been
730 * enabled must not be advertised.
731 */
732 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
733 &instance->enabled_extensions)) {
734 instance->physical_device_dispatch.entrypoints[i] = NULL;
735 } else {
736 instance->physical_device_dispatch.entrypoints[i] =
737 anv_physical_device_dispatch_table.entrypoints[i];
738 }
739 }
740
741 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
742 /* Vulkan requires that entrypoints for extensions which have not been
743 * enabled must not be advertised.
744 */
745 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
746 &instance->enabled_extensions, NULL)) {
747 instance->device_dispatch.entrypoints[i] = NULL;
748 } else {
749 instance->device_dispatch.entrypoints[i] =
750 anv_device_dispatch_table.entrypoints[i];
751 }
752 }
753
754 instance->physical_devices_enumerated = false;
755 list_inithead(&instance->physical_devices);
756
757 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
758 if (result != VK_SUCCESS) {
759 vk_free2(&default_alloc, pAllocator, instance);
760 return vk_error(result);
761 }
762
763 instance->pipeline_cache_enabled =
764 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
765
766 glsl_type_singleton_init_or_ref();
767
768 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
769
770 anv_init_dri_options(instance);
771
772 *pInstance = anv_instance_to_handle(instance);
773
774 return VK_SUCCESS;
775 }
776
anv_DestroyInstance(VkInstance _instance,const VkAllocationCallbacks * pAllocator)777 void anv_DestroyInstance(
778 VkInstance _instance,
779 const VkAllocationCallbacks* pAllocator)
780 {
781 ANV_FROM_HANDLE(anv_instance, instance, _instance);
782
783 if (!instance)
784 return;
785
786 list_for_each_entry_safe(struct anv_physical_device, pdevice,
787 &instance->physical_devices, link)
788 anv_physical_device_destroy(pdevice);
789
790 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
791 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
792
793 VG(VALGRIND_DESTROY_MEMPOOL(instance));
794
795 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
796
797 glsl_type_singleton_decref();
798
799 driDestroyOptionCache(&instance->dri_options);
800 driDestroyOptionInfo(&instance->available_dri_options);
801
802 vk_object_base_finish(&instance->base);
803 vk_free(&instance->alloc, instance);
804 }
805
806 static VkResult
anv_enumerate_physical_devices(struct anv_instance * instance)807 anv_enumerate_physical_devices(struct anv_instance *instance)
808 {
809 if (instance->physical_devices_enumerated)
810 return VK_SUCCESS;
811
812 instance->physical_devices_enumerated = true;
813
814 /* TODO: Check for more devices ? */
815 drmDevicePtr devices[8];
816 int max_devices;
817
818 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
819 if (max_devices < 1)
820 return VK_SUCCESS;
821
822 VkResult result = VK_SUCCESS;
823 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
824 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
825 devices[i]->bustype == DRM_BUS_PCI &&
826 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
827
828 struct anv_physical_device *pdevice;
829 result = anv_physical_device_try_create(instance, devices[i],
830 &pdevice);
831 /* Incompatible DRM device, skip. */
832 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
833 result = VK_SUCCESS;
834 continue;
835 }
836
837 /* Error creating the physical device, report the error. */
838 if (result != VK_SUCCESS)
839 break;
840
841 list_addtail(&pdevice->link, &instance->physical_devices);
842 }
843 }
844 drmFreeDevices(devices, max_devices);
845
846 /* If we successfully enumerated any devices, call it success */
847 return result;
848 }
849
anv_EnumeratePhysicalDevices(VkInstance _instance,uint32_t * pPhysicalDeviceCount,VkPhysicalDevice * pPhysicalDevices)850 VkResult anv_EnumeratePhysicalDevices(
851 VkInstance _instance,
852 uint32_t* pPhysicalDeviceCount,
853 VkPhysicalDevice* pPhysicalDevices)
854 {
855 ANV_FROM_HANDLE(anv_instance, instance, _instance);
856 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
857
858 VkResult result = anv_enumerate_physical_devices(instance);
859 if (result != VK_SUCCESS)
860 return result;
861
862 list_for_each_entry(struct anv_physical_device, pdevice,
863 &instance->physical_devices, link) {
864 vk_outarray_append(&out, i) {
865 *i = anv_physical_device_to_handle(pdevice);
866 }
867 }
868
869 return vk_outarray_status(&out);
870 }
871
anv_EnumeratePhysicalDeviceGroups(VkInstance _instance,uint32_t * pPhysicalDeviceGroupCount,VkPhysicalDeviceGroupProperties * pPhysicalDeviceGroupProperties)872 VkResult anv_EnumeratePhysicalDeviceGroups(
873 VkInstance _instance,
874 uint32_t* pPhysicalDeviceGroupCount,
875 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
876 {
877 ANV_FROM_HANDLE(anv_instance, instance, _instance);
878 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
879 pPhysicalDeviceGroupCount);
880
881 VkResult result = anv_enumerate_physical_devices(instance);
882 if (result != VK_SUCCESS)
883 return result;
884
885 list_for_each_entry(struct anv_physical_device, pdevice,
886 &instance->physical_devices, link) {
887 vk_outarray_append(&out, p) {
888 p->physicalDeviceCount = 1;
889 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
890 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
891 p->subsetAllocation = false;
892
893 vk_foreach_struct(ext, p->pNext)
894 anv_debug_ignored_stype(ext->sType);
895 }
896 }
897
898 return vk_outarray_status(&out);
899 }
900
anv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures * pFeatures)901 void anv_GetPhysicalDeviceFeatures(
902 VkPhysicalDevice physicalDevice,
903 VkPhysicalDeviceFeatures* pFeatures)
904 {
905 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
906
907 *pFeatures = (VkPhysicalDeviceFeatures) {
908 .robustBufferAccess = true,
909 .fullDrawIndexUint32 = true,
910 .imageCubeArray = true,
911 .independentBlend = true,
912 .geometryShader = true,
913 .tessellationShader = true,
914 .sampleRateShading = true,
915 .dualSrcBlend = true,
916 .logicOp = true,
917 .multiDrawIndirect = true,
918 .drawIndirectFirstInstance = true,
919 .depthClamp = true,
920 .depthBiasClamp = true,
921 .fillModeNonSolid = true,
922 .depthBounds = pdevice->info.gen >= 12,
923 .wideLines = true,
924 .largePoints = true,
925 .alphaToOne = true,
926 .multiViewport = true,
927 .samplerAnisotropy = true,
928 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
929 pdevice->info.is_baytrail,
930 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
931 .textureCompressionBC = true,
932 .occlusionQueryPrecise = true,
933 .pipelineStatisticsQuery = true,
934 .fragmentStoresAndAtomics = true,
935 .shaderTessellationAndGeometryPointSize = true,
936 .shaderImageGatherExtended = true,
937 .shaderStorageImageExtendedFormats = true,
938 .shaderStorageImageMultisample = false,
939 .shaderStorageImageReadWithoutFormat = false,
940 .shaderStorageImageWriteWithoutFormat = true,
941 .shaderUniformBufferArrayDynamicIndexing = true,
942 .shaderSampledImageArrayDynamicIndexing = true,
943 .shaderStorageBufferArrayDynamicIndexing = true,
944 .shaderStorageImageArrayDynamicIndexing = true,
945 .shaderClipDistance = true,
946 .shaderCullDistance = true,
947 .shaderFloat64 = pdevice->info.gen >= 8 &&
948 pdevice->info.has_64bit_float,
949 .shaderInt64 = pdevice->info.gen >= 8 &&
950 pdevice->info.has_64bit_int,
951 .shaderInt16 = pdevice->info.gen >= 8,
952 .shaderResourceMinLod = pdevice->info.gen >= 9,
953 .variableMultisampleRate = true,
954 .inheritedQueries = true,
955 };
956
957 /* We can't do image stores in vec4 shaders */
958 pFeatures->vertexPipelineStoresAndAtomics =
959 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
960 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
961
962 struct anv_app_info *app_info = &pdevice->instance->app_info;
963
964 /* The new DOOM and Wolfenstein games require depthBounds without
965 * checking for it. They seem to run fine without it so just claim it's
966 * there and accept the consequences.
967 */
968 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
969 pFeatures->depthBounds = true;
970 }
971
972 static void
anv_get_physical_device_features_1_1(struct anv_physical_device * pdevice,VkPhysicalDeviceVulkan11Features * f)973 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
974 VkPhysicalDeviceVulkan11Features *f)
975 {
976 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
977
978 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
979 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
980 f->storagePushConstant16 = pdevice->info.gen >= 8;
981 f->storageInputOutput16 = false;
982 f->multiview = true;
983 f->multiviewGeometryShader = true;
984 f->multiviewTessellationShader = true;
985 f->variablePointersStorageBuffer = true;
986 f->variablePointers = true;
987 f->protectedMemory = false;
988 f->samplerYcbcrConversion = true;
989 f->shaderDrawParameters = true;
990 }
991
992 static void
anv_get_physical_device_features_1_2(struct anv_physical_device * pdevice,VkPhysicalDeviceVulkan12Features * f)993 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
994 VkPhysicalDeviceVulkan12Features *f)
995 {
996 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
997
998 f->samplerMirrorClampToEdge = true;
999 f->drawIndirectCount = true;
1000 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1001 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1002 f->storagePushConstant8 = pdevice->info.gen >= 8;
1003 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1004 pdevice->use_softpin;
1005 f->shaderSharedInt64Atomics = false;
1006 f->shaderFloat16 = pdevice->info.gen >= 8;
1007 f->shaderInt8 = pdevice->info.gen >= 8;
1008
1009 bool descIndexing = pdevice->has_a64_buffer_access &&
1010 pdevice->has_bindless_images;
1011 f->descriptorIndexing = descIndexing;
1012 f->shaderInputAttachmentArrayDynamicIndexing = false;
1013 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1014 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1015 f->shaderUniformBufferArrayNonUniformIndexing = false;
1016 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1017 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1018 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1019 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1020 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1021 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1022 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1023 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1024 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1025 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1026 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1027 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1028 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1029 f->descriptorBindingPartiallyBound = descIndexing;
1030 f->descriptorBindingVariableDescriptorCount = descIndexing;
1031 f->runtimeDescriptorArray = descIndexing;
1032
1033 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1034 f->scalarBlockLayout = true;
1035 f->imagelessFramebuffer = true;
1036 f->uniformBufferStandardLayout = true;
1037 f->shaderSubgroupExtendedTypes = true;
1038 f->separateDepthStencilLayouts = true;
1039 f->hostQueryReset = true;
1040 f->timelineSemaphore = true;
1041 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1042 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1043 f->bufferDeviceAddressMultiDevice = false;
1044 f->vulkanMemoryModel = true;
1045 f->vulkanMemoryModelDeviceScope = true;
1046 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1047 f->shaderOutputViewportIndex = true;
1048 f->shaderOutputLayer = true;
1049 f->subgroupBroadcastDynamicId = true;
1050 }
1051
anv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures2 * pFeatures)1052 void anv_GetPhysicalDeviceFeatures2(
1053 VkPhysicalDevice physicalDevice,
1054 VkPhysicalDeviceFeatures2* pFeatures)
1055 {
1056 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1057 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1058
1059 VkPhysicalDeviceVulkan11Features core_1_1 = {
1060 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1061 };
1062 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1063
1064 VkPhysicalDeviceVulkan12Features core_1_2 = {
1065 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1066 };
1067 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1068
1069 #define CORE_FEATURE(major, minor, feature) \
1070 features->feature = core_##major##_##minor.feature
1071
1072
1073 vk_foreach_struct(ext, pFeatures->pNext) {
1074 switch (ext->sType) {
1075 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
1076 VkPhysicalDevice4444FormatsFeaturesEXT *features =
1077 (VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
1078 features->formatA4R4G4B4 = true;
1079 features->formatA4B4G4R4 = false;
1080 break;
1081 }
1082
1083 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1084 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1085 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1086 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1087 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1088 CORE_FEATURE(1, 2, storagePushConstant8);
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1093 VkPhysicalDevice16BitStorageFeatures *features =
1094 (VkPhysicalDevice16BitStorageFeatures *)ext;
1095 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1096 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1097 CORE_FEATURE(1, 1, storagePushConstant16);
1098 CORE_FEATURE(1, 1, storageInputOutput16);
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1103 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1104 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1105 features->bufferDeviceAddressCaptureReplay = false;
1106 features->bufferDeviceAddressMultiDevice = false;
1107 break;
1108 }
1109
1110 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1111 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1112 CORE_FEATURE(1, 2, bufferDeviceAddress);
1113 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1114 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1115 break;
1116 }
1117
1118 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1119 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1120 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1121 features->computeDerivativeGroupQuads = true;
1122 features->computeDerivativeGroupLinear = true;
1123 break;
1124 }
1125
1126 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1127 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1128 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1129 features->conditionalRendering = pdevice->info.gen >= 8 ||
1130 pdevice->info.is_haswell;
1131 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1132 pdevice->info.is_haswell;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1137 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1138 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1139 features->customBorderColors = pdevice->info.gen >= 8;
1140 features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
1141 break;
1142 }
1143
1144 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1145 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1146 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1147 features->depthClipEnable = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1152 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1153 CORE_FEATURE(1, 2, shaderFloat16);
1154 CORE_FEATURE(1, 2, shaderInt8);
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1159 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1160 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1161 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1162 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1163 features->fragmentShaderShadingRateInterlock = false;
1164 break;
1165 }
1166
1167 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1168 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1169 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1170 CORE_FEATURE(1, 2, hostQueryReset);
1171 break;
1172 }
1173
1174 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1175 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1176 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1177 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1178 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1179 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1180 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1181 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1182 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1183 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1184 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1185 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1186 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1187 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1188 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1189 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1190 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1191 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1192 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1193 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1194 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1195 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1196 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1197 break;
1198 }
1199
1200 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
1201 VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
1202 (VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
1203 features->robustImageAccess = true;
1204 break;
1205 }
1206
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1208 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1209 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1210 features->indexTypeUint8 = true;
1211 break;
1212 }
1213
1214 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1215 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1216 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1217 features->inlineUniformBlock = true;
1218 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1219 break;
1220 }
1221
1222 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1223 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1224 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1225 features->rectangularLines = true;
1226 features->bresenhamLines = true;
1227 /* Support for Smooth lines with MSAA was removed on gen11. From the
1228 * BSpec section "Multisample ModesState" table for "AA Line Support
1229 * Requirements":
1230 *
1231 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1232 *
1233 * Fortunately, this isn't a case most people care about.
1234 */
1235 features->smoothLines = pdevice->info.gen < 10;
1236 features->stippledRectangularLines = false;
1237 features->stippledBresenhamLines = true;
1238 features->stippledSmoothLines = false;
1239 break;
1240 }
1241
1242 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1243 VkPhysicalDeviceMultiviewFeatures *features =
1244 (VkPhysicalDeviceMultiviewFeatures *)ext;
1245 CORE_FEATURE(1, 1, multiview);
1246 CORE_FEATURE(1, 1, multiviewGeometryShader);
1247 CORE_FEATURE(1, 1, multiviewTessellationShader);
1248 break;
1249 }
1250
1251 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1252 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1253 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1254 CORE_FEATURE(1, 2, imagelessFramebuffer);
1255 break;
1256 }
1257
1258 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
1259 VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
1260 (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
1261 feature->performanceCounterQueryPools = true;
1262 /* HW only supports a single configuration at a time. */
1263 feature->performanceCounterMultipleQueryPools = false;
1264 break;
1265 }
1266
1267 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
1268 VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
1269 (VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
1270 features->pipelineCreationCacheControl = true;
1271 break;
1272 }
1273
1274 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1275 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1276 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1277 features->pipelineExecutableInfo = true;
1278 break;
1279 }
1280
1281 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1282 VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
1283 features->privateData = true;
1284 break;
1285 }
1286
1287 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1288 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1289 CORE_FEATURE(1, 1, protectedMemory);
1290 break;
1291 }
1292
1293 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1294 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1295 features->robustBufferAccess2 = true;
1296 features->robustImageAccess2 = true;
1297 features->nullDescriptor = true;
1298 break;
1299 }
1300
1301 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1302 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1303 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1304 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1305 break;
1306 }
1307
1308 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1309 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1310 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1311 CORE_FEATURE(1, 2, scalarBlockLayout);
1312 break;
1313 }
1314
1315 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1316 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1317 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1318 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1319 break;
1320 }
1321
1322 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
1323 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (void *)ext;
1324 features->shaderBufferFloat32Atomics = true;
1325 features->shaderBufferFloat32AtomicAdd = false;
1326 features->shaderBufferFloat64Atomics = false;
1327 features->shaderBufferFloat64AtomicAdd = false;
1328 features->shaderSharedFloat32Atomics = true;
1329 features->shaderSharedFloat32AtomicAdd = false;
1330 features->shaderSharedFloat64Atomics = false;
1331 features->shaderSharedFloat64AtomicAdd = false;
1332 features->shaderImageFloat32Atomics = true;
1333 features->shaderImageFloat32AtomicAdd = false;
1334 features->sparseImageFloat32Atomics = false;
1335 features->sparseImageFloat32AtomicAdd = false;
1336 break;
1337 }
1338
1339 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1340 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1341 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1342 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1343 break;
1344 }
1345
1346 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1347 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1348 features->shaderDemoteToHelperInvocation = true;
1349 break;
1350 }
1351
1352 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1353 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1354 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1355 features->shaderSubgroupClock = true;
1356 features->shaderDeviceClock = false;
1357 break;
1358 }
1359
1360 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1361 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1362 CORE_FEATURE(1, 1, shaderDrawParameters);
1363 break;
1364 }
1365
1366 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
1367 VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
1368 (VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
1369 features->shaderIntegerFunctions2 = true;
1370 break;
1371 }
1372
1373 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1374 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1375 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1376 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1377 break;
1378 }
1379
1380 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES_KHR: {
1381 VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *features =
1382 (VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *)ext;
1383 features->shaderTerminateInvocation = true;
1384 break;
1385 }
1386
1387 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1388 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1389 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1390 features->subgroupSizeControl = true;
1391 features->computeFullSubgroups = true;
1392 break;
1393 }
1394
1395 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1396 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1397 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1398 features->texelBufferAlignment = true;
1399 break;
1400 }
1401
1402 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1403 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1404 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1405 CORE_FEATURE(1, 2, timelineSemaphore);
1406 break;
1407 }
1408
1409 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1410 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1411 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1412 CORE_FEATURE(1, 1, variablePointers);
1413 break;
1414 }
1415
1416 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1417 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1418 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1419 features->transformFeedback = true;
1420 features->geometryStreams = true;
1421 break;
1422 }
1423
1424 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1425 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1426 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1427 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1428 break;
1429 }
1430
1431 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1432 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1433 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1434 features->vertexAttributeInstanceRateDivisor = true;
1435 features->vertexAttributeInstanceRateZeroDivisor = true;
1436 break;
1437 }
1438
1439 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1440 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1441 break;
1442
1443 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1444 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1445 break;
1446
1447 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1448 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1449 CORE_FEATURE(1, 2, vulkanMemoryModel);
1450 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1451 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1452 break;
1453 }
1454
1455 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1456 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1457 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1458 features->ycbcrImageArrays = true;
1459 break;
1460 }
1461
1462 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
1463 VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
1464 (VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
1465 features->extendedDynamicState = true;
1466 break;
1467 }
1468
1469 default:
1470 anv_debug_ignored_stype(ext->sType);
1471 break;
1472 }
1473 }
1474
1475 #undef CORE_FEATURE
1476 }
1477
1478 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1479
1480 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1481 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1482
1483 #define MAX_CUSTOM_BORDER_COLORS 4096
1484
anv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)1485 void anv_GetPhysicalDeviceProperties(
1486 VkPhysicalDevice physicalDevice,
1487 VkPhysicalDeviceProperties* pProperties)
1488 {
1489 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1490 const struct gen_device_info *devinfo = &pdevice->info;
1491
1492 /* See assertions made when programming the buffer surface state. */
1493 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1494 (1ul << 30) : (1ul << 27);
1495
1496 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1497 const uint32_t max_textures =
1498 pdevice->has_bindless_images ? UINT16_MAX : 128;
1499 const uint32_t max_samplers =
1500 pdevice->has_bindless_samplers ? UINT16_MAX :
1501 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1502 const uint32_t max_images =
1503 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1504
1505 /* If we can use bindless for everything, claim a high per-stage limit,
1506 * otherwise use the binding table size, minus the slots reserved for
1507 * render targets and one slot for the descriptor buffer. */
1508 const uint32_t max_per_stage =
1509 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1510 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1511
1512 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1513 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1514
1515 VkSampleCountFlags sample_counts =
1516 isl_device_get_sample_counts(&pdevice->isl_dev);
1517
1518
1519 VkPhysicalDeviceLimits limits = {
1520 .maxImageDimension1D = (1 << 14),
1521 .maxImageDimension2D = (1 << 14),
1522 .maxImageDimension3D = (1 << 11),
1523 .maxImageDimensionCube = (1 << 14),
1524 .maxImageArrayLayers = (1 << 11),
1525 .maxTexelBufferElements = 128 * 1024 * 1024,
1526 .maxUniformBufferRange = (1ul << 27),
1527 .maxStorageBufferRange = max_raw_buffer_sz,
1528 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1529 .maxMemoryAllocationCount = UINT32_MAX,
1530 .maxSamplerAllocationCount = 64 * 1024,
1531 .bufferImageGranularity = 64, /* A cache line */
1532 .sparseAddressSpaceSize = 0,
1533 .maxBoundDescriptorSets = MAX_SETS,
1534 .maxPerStageDescriptorSamplers = max_samplers,
1535 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1536 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1537 .maxPerStageDescriptorSampledImages = max_textures,
1538 .maxPerStageDescriptorStorageImages = max_images,
1539 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1540 .maxPerStageResources = max_per_stage,
1541 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1542 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1543 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1544 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1545 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1546 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1547 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1548 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1549 .maxVertexInputAttributes = MAX_VBS,
1550 .maxVertexInputBindings = MAX_VBS,
1551 .maxVertexInputAttributeOffset = 2047,
1552 .maxVertexInputBindingStride = 2048,
1553 .maxVertexOutputComponents = 128,
1554 .maxTessellationGenerationLevel = 64,
1555 .maxTessellationPatchSize = 32,
1556 .maxTessellationControlPerVertexInputComponents = 128,
1557 .maxTessellationControlPerVertexOutputComponents = 128,
1558 .maxTessellationControlPerPatchOutputComponents = 128,
1559 .maxTessellationControlTotalOutputComponents = 2048,
1560 .maxTessellationEvaluationInputComponents = 128,
1561 .maxTessellationEvaluationOutputComponents = 128,
1562 .maxGeometryShaderInvocations = 32,
1563 .maxGeometryInputComponents = 64,
1564 .maxGeometryOutputComponents = 128,
1565 .maxGeometryOutputVertices = 256,
1566 .maxGeometryTotalOutputComponents = 1024,
1567 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1568 .maxFragmentOutputAttachments = 8,
1569 .maxFragmentDualSrcAttachments = 1,
1570 .maxFragmentCombinedOutputResources = 8,
1571 .maxComputeSharedMemorySize = 64 * 1024,
1572 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1573 .maxComputeWorkGroupInvocations = max_workgroup_size,
1574 .maxComputeWorkGroupSize = {
1575 max_workgroup_size,
1576 max_workgroup_size,
1577 max_workgroup_size,
1578 },
1579 .subPixelPrecisionBits = 8,
1580 .subTexelPrecisionBits = 8,
1581 .mipmapPrecisionBits = 8,
1582 .maxDrawIndexedIndexValue = UINT32_MAX,
1583 .maxDrawIndirectCount = UINT32_MAX,
1584 .maxSamplerLodBias = 16,
1585 .maxSamplerAnisotropy = 16,
1586 .maxViewports = MAX_VIEWPORTS,
1587 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1588 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1589 .viewportSubPixelBits = 13, /* We take a float? */
1590 .minMemoryMapAlignment = 4096, /* A page */
1591 /* The dataport requires texel alignment so we need to assume a worst
1592 * case of R32G32B32A32 which is 16 bytes.
1593 */
1594 .minTexelBufferOffsetAlignment = 16,
1595 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1596 .minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
1597 .minTexelOffset = -8,
1598 .maxTexelOffset = 7,
1599 .minTexelGatherOffset = -32,
1600 .maxTexelGatherOffset = 31,
1601 .minInterpolationOffset = -0.5,
1602 .maxInterpolationOffset = 0.4375,
1603 .subPixelInterpolationOffsetBits = 4,
1604 .maxFramebufferWidth = (1 << 14),
1605 .maxFramebufferHeight = (1 << 14),
1606 .maxFramebufferLayers = (1 << 11),
1607 .framebufferColorSampleCounts = sample_counts,
1608 .framebufferDepthSampleCounts = sample_counts,
1609 .framebufferStencilSampleCounts = sample_counts,
1610 .framebufferNoAttachmentsSampleCounts = sample_counts,
1611 .maxColorAttachments = MAX_RTS,
1612 .sampledImageColorSampleCounts = sample_counts,
1613 .sampledImageIntegerSampleCounts = sample_counts,
1614 .sampledImageDepthSampleCounts = sample_counts,
1615 .sampledImageStencilSampleCounts = sample_counts,
1616 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1617 .maxSampleMaskWords = 1,
1618 .timestampComputeAndGraphics = true,
1619 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1620 .maxClipDistances = 8,
1621 .maxCullDistances = 8,
1622 .maxCombinedClipAndCullDistances = 8,
1623 .discreteQueuePriorities = 2,
1624 .pointSizeRange = { 0.125, 255.875 },
1625 .lineWidthRange = {
1626 0.0,
1627 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1628 2047.9921875 : 7.9921875,
1629 },
1630 .pointSizeGranularity = (1.0 / 8.0),
1631 .lineWidthGranularity = (1.0 / 128.0),
1632 .strictLines = false,
1633 .standardSampleLocations = true,
1634 .optimalBufferCopyOffsetAlignment = 128,
1635 .optimalBufferCopyRowPitchAlignment = 128,
1636 .nonCoherentAtomSize = 64,
1637 };
1638
1639 *pProperties = (VkPhysicalDeviceProperties) {
1640 .apiVersion = anv_physical_device_api_version(pdevice),
1641 .driverVersion = vk_get_driver_version(),
1642 .vendorID = 0x8086,
1643 .deviceID = pdevice->info.chipset_id,
1644 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1645 .limits = limits,
1646 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1647 };
1648
1649 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1650 "%s", pdevice->name);
1651 memcpy(pProperties->pipelineCacheUUID,
1652 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1653 }
1654
1655 static void
anv_get_physical_device_properties_1_1(struct anv_physical_device * pdevice,VkPhysicalDeviceVulkan11Properties * p)1656 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1657 VkPhysicalDeviceVulkan11Properties *p)
1658 {
1659 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1660
1661 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1662 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1663 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1664 p->deviceNodeMask = 0;
1665 p->deviceLUIDValid = false;
1666
1667 p->subgroupSize = BRW_SUBGROUP_SIZE;
1668 VkShaderStageFlags scalar_stages = 0;
1669 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1670 if (pdevice->compiler->scalar_stage[stage])
1671 scalar_stages |= mesa_to_vk_shader_stage(stage);
1672 }
1673 p->subgroupSupportedStages = scalar_stages;
1674 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1675 VK_SUBGROUP_FEATURE_VOTE_BIT |
1676 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1677 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1678 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1679 VK_SUBGROUP_FEATURE_QUAD_BIT;
1680 if (pdevice->info.gen >= 8) {
1681 /* TODO: There's no technical reason why these can't be made to
1682 * work on gen7 but they don't at the moment so it's best to leave
1683 * the feature disabled than enabled and broken.
1684 */
1685 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1686 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1687 }
1688 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1689
1690 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1691 p->maxMultiviewViewCount = 16;
1692 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1693 p->protectedNoFault = false;
1694 /* This value doesn't matter for us today as our per-stage descriptors are
1695 * the real limit.
1696 */
1697 p->maxPerSetDescriptors = 1024;
1698 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1699 }
1700
1701 static void
anv_get_physical_device_properties_1_2(struct anv_physical_device * pdevice,VkPhysicalDeviceVulkan12Properties * p)1702 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1703 VkPhysicalDeviceVulkan12Properties *p)
1704 {
1705 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1706
1707 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1708 memset(p->driverName, 0, sizeof(p->driverName));
1709 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1710 "Intel open-source Mesa driver");
1711 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1712 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1713 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1714 p->conformanceVersion = (VkConformanceVersionKHR) {
1715 .major = 1,
1716 .minor = 2,
1717 .subminor = 0,
1718 .patch = 0,
1719 };
1720
1721 p->denormBehaviorIndependence =
1722 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1723 p->roundingModeIndependence =
1724 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1725
1726 /* Broadwell does not support HF denorms and there are restrictions
1727 * other gens. According to Kabylake's PRM:
1728 *
1729 * "math - Extended Math Function
1730 * [...]
1731 * Restriction : Half-float denorms are always retained."
1732 */
1733 p->shaderDenormFlushToZeroFloat16 = false;
1734 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1735 p->shaderRoundingModeRTEFloat16 = true;
1736 p->shaderRoundingModeRTZFloat16 = true;
1737 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1738
1739 p->shaderDenormFlushToZeroFloat32 = true;
1740 p->shaderDenormPreserveFloat32 = true;
1741 p->shaderRoundingModeRTEFloat32 = true;
1742 p->shaderRoundingModeRTZFloat32 = true;
1743 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1744
1745 p->shaderDenormFlushToZeroFloat64 = true;
1746 p->shaderDenormPreserveFloat64 = true;
1747 p->shaderRoundingModeRTEFloat64 = true;
1748 p->shaderRoundingModeRTZFloat64 = true;
1749 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1750
1751 /* It's a bit hard to exactly map our implementation to the limits
1752 * described by Vulkan. The bindless surface handle in the extended
1753 * message descriptors is 20 bits and it's an index into the table of
1754 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1755 * address. This means that we can have at must 1M surface states
1756 * allocated at any given time. Since most image views take two
1757 * descriptors, this means we have a limit of about 500K image views.
1758 *
1759 * However, since we allocate surface states at vkCreateImageView time,
1760 * this means our limit is actually something on the order of 500K image
1761 * views allocated at any time. The actual limit describe by Vulkan, on
1762 * the other hand, is a limit of how many you can have in a descriptor set.
1763 * Assuming anyone using 1M descriptors will be using the same image view
1764 * twice a bunch of times (or a bunch of null descriptors), we can safely
1765 * advertise a larger limit here.
1766 */
1767 const unsigned max_bindless_views = 1 << 20;
1768 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1769 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1770 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1771 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1772 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1773 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1774 p->robustBufferAccessUpdateAfterBind = true;
1775 p->quadDivergentImplicitLod = false;
1776 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1777 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1778 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1779 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1780 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1781 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1782 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1783 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1784 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1785 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1786 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1787 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1788 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1789 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1790 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1791
1792 /* We support all of the depth resolve modes */
1793 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1794 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1795 VK_RESOLVE_MODE_MIN_BIT_KHR |
1796 VK_RESOLVE_MODE_MAX_BIT_KHR;
1797 /* Average doesn't make sense for stencil so we don't support that */
1798 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1799 if (pdevice->info.gen >= 8) {
1800 /* The advanced stencil resolve modes currently require stencil
1801 * sampling be supported by the hardware.
1802 */
1803 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1804 VK_RESOLVE_MODE_MAX_BIT_KHR;
1805 }
1806 p->independentResolveNone = true;
1807 p->independentResolve = true;
1808
1809 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1810 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1811
1812 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1813
1814 p->framebufferIntegerColorSampleCounts =
1815 isl_device_get_sample_counts(&pdevice->isl_dev);
1816 }
1817
anv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties2 * pProperties)1818 void anv_GetPhysicalDeviceProperties2(
1819 VkPhysicalDevice physicalDevice,
1820 VkPhysicalDeviceProperties2* pProperties)
1821 {
1822 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1823
1824 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1825
1826 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1827 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1828 };
1829 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1830
1831 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1832 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1833 };
1834 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1835
1836 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1837 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1838 sizeof(core_##major##_##minor.core_property))
1839
1840 #define CORE_PROPERTY(major, minor, property) \
1841 CORE_RENAMED_PROPERTY(major, minor, property, property)
1842
1843 vk_foreach_struct(ext, pProperties->pNext) {
1844 switch (ext->sType) {
1845 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
1846 VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
1847 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
1848 properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
1849 break;
1850 }
1851
1852 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1853 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1854 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1855 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1856 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1857 CORE_PROPERTY(1, 2, independentResolveNone);
1858 CORE_PROPERTY(1, 2, independentResolve);
1859 break;
1860 }
1861
1862 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1863 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1864 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1865 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1866 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1867 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1868 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1869 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1870 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1871 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1872 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1873 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1874 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1875 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1876 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1877 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1878 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1879 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1880 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1881 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1882 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1883 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1884 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1885 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1886 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1887 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1888 break;
1889 }
1890
1891 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1892 VkPhysicalDeviceDriverPropertiesKHR *properties =
1893 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1894 CORE_PROPERTY(1, 2, driverID);
1895 CORE_PROPERTY(1, 2, driverName);
1896 CORE_PROPERTY(1, 2, driverInfo);
1897 CORE_PROPERTY(1, 2, conformanceVersion);
1898 break;
1899 }
1900
1901 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1902 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1903 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1904 /* Userptr needs page aligned memory. */
1905 props->minImportedHostPointerAlignment = 4096;
1906 break;
1907 }
1908
1909 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1910 VkPhysicalDeviceIDProperties *properties =
1911 (VkPhysicalDeviceIDProperties *)ext;
1912 CORE_PROPERTY(1, 1, deviceUUID);
1913 CORE_PROPERTY(1, 1, driverUUID);
1914 CORE_PROPERTY(1, 1, deviceLUID);
1915 CORE_PROPERTY(1, 1, deviceLUIDValid);
1916 break;
1917 }
1918
1919 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1920 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1921 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1922 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1923 props->maxPerStageDescriptorInlineUniformBlocks =
1924 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1925 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1926 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1927 props->maxDescriptorSetInlineUniformBlocks =
1928 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1929 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1930 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1931 break;
1932 }
1933
1934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1935 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1936 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1937 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1938 * Sampling Rules - Legacy Mode", it says the following:
1939 *
1940 * "Note that the device divides a pixel into a 16x16 array of
1941 * subpixels, referenced by their upper left corners."
1942 *
1943 * This is the only known reference in the PRMs to the subpixel
1944 * precision of line rasterization and a "16x16 array of subpixels"
1945 * implies 4 subpixel precision bits. Empirical testing has shown
1946 * that 4 subpixel precision bits applies to all line rasterization
1947 * types.
1948 */
1949 props->lineSubPixelPrecisionBits = 4;
1950 break;
1951 }
1952
1953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1954 VkPhysicalDeviceMaintenance3Properties *properties =
1955 (VkPhysicalDeviceMaintenance3Properties *)ext;
1956 /* This value doesn't matter for us today as our per-stage
1957 * descriptors are the real limit.
1958 */
1959 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1960 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1961 break;
1962 }
1963
1964 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1965 VkPhysicalDeviceMultiviewProperties *properties =
1966 (VkPhysicalDeviceMultiviewProperties *)ext;
1967 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1968 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1969 break;
1970 }
1971
1972 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1973 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1974 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1975 properties->pciDomain = pdevice->pci_info.domain;
1976 properties->pciBus = pdevice->pci_info.bus;
1977 properties->pciDevice = pdevice->pci_info.device;
1978 properties->pciFunction = pdevice->pci_info.function;
1979 break;
1980 }
1981
1982 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
1983 VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
1984 (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
1985 /* We could support this by spawning a shader to do the equation
1986 * normalization.
1987 */
1988 properties->allowCommandBufferQueryCopies = false;
1989 break;
1990 }
1991
1992 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1993 VkPhysicalDevicePointClippingProperties *properties =
1994 (VkPhysicalDevicePointClippingProperties *) ext;
1995 CORE_PROPERTY(1, 1, pointClippingBehavior);
1996 break;
1997 }
1998
1999 #pragma GCC diagnostic push
2000 #pragma GCC diagnostic ignored "-Wswitch"
2001 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
2002 VkPhysicalDevicePresentationPropertiesANDROID *props =
2003 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
2004 props->sharedImage = VK_FALSE;
2005 break;
2006 }
2007 #pragma GCC diagnostic pop
2008
2009 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
2010 VkPhysicalDeviceProtectedMemoryProperties *properties =
2011 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
2012 CORE_PROPERTY(1, 1, protectedNoFault);
2013 break;
2014 }
2015
2016 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
2017 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
2018 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
2019 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
2020 break;
2021 }
2022
2023 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
2024 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
2025 properties->robustStorageBufferAccessSizeAlignment =
2026 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
2027 properties->robustUniformBufferAccessSizeAlignment =
2028 ANV_UBO_ALIGNMENT;
2029 break;
2030 }
2031
2032 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
2033 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
2034 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
2035 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
2036 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
2037 break;
2038 }
2039
2040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
2041 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
2042 CORE_PROPERTY(1, 1, subgroupSize);
2043 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
2044 subgroupSupportedStages);
2045 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
2046 subgroupSupportedOperations);
2047 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
2048 subgroupQuadOperationsInAllStages);
2049 break;
2050 }
2051
2052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
2053 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
2054 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
2055 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
2056 props->minSubgroupSize = 8;
2057 props->maxSubgroupSize = 32;
2058 /* Limit max_threads to 64 for the GPGPU_WALKER command. */
2059 props->maxComputeWorkgroupSubgroups = MIN2(64, pdevice->info.max_cs_threads);
2060 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
2061 break;
2062 }
2063 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
2064 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
2065 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
2066 CORE_PROPERTY(1, 2, roundingModeIndependence);
2067 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
2068 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
2069 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
2070 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
2071 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
2072 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
2073 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
2074 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
2075 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
2076 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
2077 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
2078 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
2079 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
2080 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
2081 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
2082 break;
2083 }
2084
2085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
2086 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
2087 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2088
2089 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
2090 * Base Address:
2091 *
2092 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
2093 * specifies the base address of the first element of the surface,
2094 * computed in software by adding the surface base address to the
2095 * byte offset of the element in the buffer. The base address must
2096 * be aligned to element size."
2097 *
2098 * The typed dataport messages require that things be texel aligned.
2099 * Otherwise, we may just load/store the wrong data or, in the worst
2100 * case, there may be hangs.
2101 */
2102 props->storageTexelBufferOffsetAlignmentBytes = 16;
2103 props->storageTexelBufferOffsetSingleTexelAlignment = true;
2104
2105 /* The sampler, however, is much more forgiving and it can handle
2106 * arbitrary byte alignment for linear and buffer surfaces. It's
2107 * hard to find a good PRM citation for this but years of empirical
2108 * experience demonstrate that this is true.
2109 */
2110 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2111 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2112 break;
2113 }
2114
2115 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2116 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2117 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2118 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2119 break;
2120 }
2121
2122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2123 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2124 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2125
2126 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2127 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2128 props->maxTransformFeedbackBufferSize = (1ull << 32);
2129 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2130 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2131 props->maxTransformFeedbackBufferDataStride = 2048;
2132 props->transformFeedbackQueries = true;
2133 props->transformFeedbackStreamsLinesTriangles = false;
2134 props->transformFeedbackRasterizationStreamSelect = false;
2135 /* This requires MI_MATH */
2136 props->transformFeedbackDraw = pdevice->info.is_haswell ||
2137 pdevice->info.gen >= 8;
2138 break;
2139 }
2140
2141 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2142 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2143 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2144 /* We have to restrict this a bit for multiview */
2145 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2146 break;
2147 }
2148
2149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2150 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2151 break;
2152
2153 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2154 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2155 break;
2156
2157 default:
2158 anv_debug_ignored_stype(ext->sType);
2159 break;
2160 }
2161 }
2162
2163 #undef CORE_RENAMED_PROPERTY
2164 #undef CORE_PROPERTY
2165 }
2166
2167 /* We support exactly one queue family. */
2168 static const VkQueueFamilyProperties
2169 anv_queue_family_properties = {
2170 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2171 VK_QUEUE_COMPUTE_BIT |
2172 VK_QUEUE_TRANSFER_BIT,
2173 .queueCount = 1,
2174 .timestampValidBits = 36, /* XXX: Real value here */
2175 .minImageTransferGranularity = { 1, 1, 1 },
2176 };
2177
anv_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties * pQueueFamilyProperties)2178 void anv_GetPhysicalDeviceQueueFamilyProperties(
2179 VkPhysicalDevice physicalDevice,
2180 uint32_t* pCount,
2181 VkQueueFamilyProperties* pQueueFamilyProperties)
2182 {
2183 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2184
2185 vk_outarray_append(&out, p) {
2186 *p = anv_queue_family_properties;
2187 }
2188 }
2189
anv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,uint32_t * pQueueFamilyPropertyCount,VkQueueFamilyProperties2 * pQueueFamilyProperties)2190 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2191 VkPhysicalDevice physicalDevice,
2192 uint32_t* pQueueFamilyPropertyCount,
2193 VkQueueFamilyProperties2* pQueueFamilyProperties)
2194 {
2195
2196 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2197
2198 vk_outarray_append(&out, p) {
2199 p->queueFamilyProperties = anv_queue_family_properties;
2200
2201 vk_foreach_struct(s, p->pNext) {
2202 anv_debug_ignored_stype(s->sType);
2203 }
2204 }
2205 }
2206
anv_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties * pMemoryProperties)2207 void anv_GetPhysicalDeviceMemoryProperties(
2208 VkPhysicalDevice physicalDevice,
2209 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2210 {
2211 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2212
2213 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2214 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2215 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2216 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2217 .heapIndex = physical_device->memory.types[i].heapIndex,
2218 };
2219 }
2220
2221 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2222 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2223 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2224 .size = physical_device->memory.heaps[i].size,
2225 .flags = physical_device->memory.heaps[i].flags,
2226 };
2227 }
2228 }
2229
2230 static void
anv_get_memory_budget(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryBudgetPropertiesEXT * memoryBudget)2231 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2232 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2233 {
2234 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2235 uint64_t sys_available;
2236 ASSERTED bool has_available_memory =
2237 os_get_available_system_memory(&sys_available);
2238 assert(has_available_memory);
2239
2240 VkDeviceSize total_heaps_size = 0;
2241 for (size_t i = 0; i < device->memory.heap_count; i++)
2242 total_heaps_size += device->memory.heaps[i].size;
2243
2244 for (size_t i = 0; i < device->memory.heap_count; i++) {
2245 VkDeviceSize heap_size = device->memory.heaps[i].size;
2246 VkDeviceSize heap_used = device->memory.heaps[i].used;
2247 VkDeviceSize heap_budget;
2248
2249 double heap_proportion = (double) heap_size / total_heaps_size;
2250 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2251
2252 /*
2253 * Let's not incite the app to starve the system: report at most 90% of
2254 * available system memory.
2255 */
2256 uint64_t heap_available = sys_available_prop * 9 / 10;
2257 heap_budget = MIN2(heap_size, heap_used + heap_available);
2258
2259 /*
2260 * Round down to the nearest MB
2261 */
2262 heap_budget &= ~((1ull << 20) - 1);
2263
2264 /*
2265 * The heapBudget value must be non-zero for array elements less than
2266 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2267 * value must be less than or equal to VkMemoryHeap::size for each heap.
2268 */
2269 assert(0 < heap_budget && heap_budget <= heap_size);
2270
2271 memoryBudget->heapUsage[i] = heap_used;
2272 memoryBudget->heapBudget[i] = heap_budget;
2273 }
2274
2275 /* The heapBudget and heapUsage values must be zero for array elements
2276 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2277 */
2278 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2279 memoryBudget->heapBudget[i] = 0;
2280 memoryBudget->heapUsage[i] = 0;
2281 }
2282 }
2283
anv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties2 * pMemoryProperties)2284 void anv_GetPhysicalDeviceMemoryProperties2(
2285 VkPhysicalDevice physicalDevice,
2286 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2287 {
2288 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2289 &pMemoryProperties->memoryProperties);
2290
2291 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2292 switch (ext->sType) {
2293 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2294 anv_get_memory_budget(physicalDevice, (void*)ext);
2295 break;
2296 default:
2297 anv_debug_ignored_stype(ext->sType);
2298 break;
2299 }
2300 }
2301 }
2302
2303 void
anv_GetDeviceGroupPeerMemoryFeatures(VkDevice device,uint32_t heapIndex,uint32_t localDeviceIndex,uint32_t remoteDeviceIndex,VkPeerMemoryFeatureFlags * pPeerMemoryFeatures)2304 anv_GetDeviceGroupPeerMemoryFeatures(
2305 VkDevice device,
2306 uint32_t heapIndex,
2307 uint32_t localDeviceIndex,
2308 uint32_t remoteDeviceIndex,
2309 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2310 {
2311 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2312 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2313 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2314 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2315 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2316 }
2317
anv_GetInstanceProcAddr(VkInstance _instance,const char * pName)2318 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2319 VkInstance _instance,
2320 const char* pName)
2321 {
2322 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2323
2324 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2325 * when we have to return valid function pointers, NULL, or it's left
2326 * undefined. See the table for exact details.
2327 */
2328 if (pName == NULL)
2329 return NULL;
2330
2331 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2332 if (strcmp(pName, "vk" #entrypoint) == 0) \
2333 return (PFN_vkVoidFunction)anv_##entrypoint
2334
2335 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2336 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2337 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2338 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2339
2340 /* GetInstanceProcAddr() can also be called with a NULL instance.
2341 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2342 */
2343 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2344
2345 #undef LOOKUP_ANV_ENTRYPOINT
2346
2347 if (instance == NULL)
2348 return NULL;
2349
2350 int idx = anv_get_instance_entrypoint_index(pName);
2351 if (idx >= 0)
2352 return instance->dispatch.entrypoints[idx];
2353
2354 idx = anv_get_physical_device_entrypoint_index(pName);
2355 if (idx >= 0)
2356 return instance->physical_device_dispatch.entrypoints[idx];
2357
2358 idx = anv_get_device_entrypoint_index(pName);
2359 if (idx >= 0)
2360 return instance->device_dispatch.entrypoints[idx];
2361
2362 return NULL;
2363 }
2364
2365 /* With version 1+ of the loader interface the ICD should expose
2366 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2367 */
2368 PUBLIC
2369 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2370 VkInstance instance,
2371 const char* pName);
2372
2373 PUBLIC
vk_icdGetInstanceProcAddr(VkInstance instance,const char * pName)2374 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2375 VkInstance instance,
2376 const char* pName)
2377 {
2378 return anv_GetInstanceProcAddr(instance, pName);
2379 }
2380
anv_GetDeviceProcAddr(VkDevice _device,const char * pName)2381 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2382 VkDevice _device,
2383 const char* pName)
2384 {
2385 ANV_FROM_HANDLE(anv_device, device, _device);
2386
2387 if (!device || !pName)
2388 return NULL;
2389
2390 int idx = anv_get_device_entrypoint_index(pName);
2391 if (idx < 0)
2392 return NULL;
2393
2394 return device->dispatch.entrypoints[idx];
2395 }
2396
2397 /* With version 4+ of the loader interface the ICD should expose
2398 * vk_icdGetPhysicalDeviceProcAddr()
2399 */
2400 PUBLIC
2401 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2402 VkInstance _instance,
2403 const char* pName);
2404
vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance,const char * pName)2405 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2406 VkInstance _instance,
2407 const char* pName)
2408 {
2409 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2410
2411 if (!pName || !instance)
2412 return NULL;
2413
2414 int idx = anv_get_physical_device_entrypoint_index(pName);
2415 if (idx < 0)
2416 return NULL;
2417
2418 return instance->physical_device_dispatch.entrypoints[idx];
2419 }
2420
2421
2422 VkResult
anv_CreateDebugReportCallbackEXT(VkInstance _instance,const VkDebugReportCallbackCreateInfoEXT * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDebugReportCallbackEXT * pCallback)2423 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2424 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2425 const VkAllocationCallbacks* pAllocator,
2426 VkDebugReportCallbackEXT* pCallback)
2427 {
2428 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2429 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2430 pCreateInfo, pAllocator, &instance->alloc,
2431 pCallback);
2432 }
2433
2434 void
anv_DestroyDebugReportCallbackEXT(VkInstance _instance,VkDebugReportCallbackEXT _callback,const VkAllocationCallbacks * pAllocator)2435 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2436 VkDebugReportCallbackEXT _callback,
2437 const VkAllocationCallbacks* pAllocator)
2438 {
2439 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2440 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2441 _callback, pAllocator, &instance->alloc);
2442 }
2443
2444 void
anv_DebugReportMessageEXT(VkInstance _instance,VkDebugReportFlagsEXT flags,VkDebugReportObjectTypeEXT objectType,uint64_t object,size_t location,int32_t messageCode,const char * pLayerPrefix,const char * pMessage)2445 anv_DebugReportMessageEXT(VkInstance _instance,
2446 VkDebugReportFlagsEXT flags,
2447 VkDebugReportObjectTypeEXT objectType,
2448 uint64_t object,
2449 size_t location,
2450 int32_t messageCode,
2451 const char* pLayerPrefix,
2452 const char* pMessage)
2453 {
2454 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2455 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2456 object, location, messageCode, pLayerPrefix, pMessage);
2457 }
2458
2459 static struct anv_state
anv_state_pool_emit_data(struct anv_state_pool * pool,size_t size,size_t align,const void * p)2460 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2461 {
2462 struct anv_state state;
2463
2464 state = anv_state_pool_alloc(pool, size, align);
2465 memcpy(state.map, p, size);
2466
2467 return state;
2468 }
2469
2470 static void
anv_device_init_border_colors(struct anv_device * device)2471 anv_device_init_border_colors(struct anv_device *device)
2472 {
2473 if (device->info.is_haswell) {
2474 static const struct hsw_border_color border_colors[] = {
2475 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2476 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2477 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2478 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2479 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2480 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2481 };
2482
2483 device->border_colors =
2484 anv_state_pool_emit_data(&device->dynamic_state_pool,
2485 sizeof(border_colors), 512, border_colors);
2486 } else {
2487 static const struct gen8_border_color border_colors[] = {
2488 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2489 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2490 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2491 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2492 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2493 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2494 };
2495
2496 device->border_colors =
2497 anv_state_pool_emit_data(&device->dynamic_state_pool,
2498 sizeof(border_colors), 64, border_colors);
2499 }
2500 }
2501
2502 static VkResult
anv_device_init_trivial_batch(struct anv_device * device)2503 anv_device_init_trivial_batch(struct anv_device *device)
2504 {
2505 VkResult result = anv_device_alloc_bo(device, 4096,
2506 ANV_BO_ALLOC_MAPPED,
2507 0 /* explicit_address */,
2508 &device->trivial_batch_bo);
2509 if (result != VK_SUCCESS)
2510 return result;
2511
2512 struct anv_batch batch = {
2513 .start = device->trivial_batch_bo->map,
2514 .next = device->trivial_batch_bo->map,
2515 .end = device->trivial_batch_bo->map + 4096,
2516 };
2517
2518 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2519 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2520
2521 if (!device->info.has_llc)
2522 gen_clflush_range(batch.start, batch.next - batch.start);
2523
2524 return VK_SUCCESS;
2525 }
2526
anv_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,const char * pLayerName,uint32_t * pPropertyCount,VkExtensionProperties * pProperties)2527 VkResult anv_EnumerateDeviceExtensionProperties(
2528 VkPhysicalDevice physicalDevice,
2529 const char* pLayerName,
2530 uint32_t* pPropertyCount,
2531 VkExtensionProperties* pProperties)
2532 {
2533 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2534 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2535
2536 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2537 if (device->supported_extensions.extensions[i]) {
2538 vk_outarray_append(&out, prop) {
2539 *prop = anv_device_extensions[i];
2540 }
2541 }
2542 }
2543
2544 return vk_outarray_status(&out);
2545 }
2546
2547 static int
vk_priority_to_gen(int priority)2548 vk_priority_to_gen(int priority)
2549 {
2550 switch (priority) {
2551 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2552 return GEN_CONTEXT_LOW_PRIORITY;
2553 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2554 return GEN_CONTEXT_MEDIUM_PRIORITY;
2555 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2556 return GEN_CONTEXT_HIGH_PRIORITY;
2557 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2558 return GEN_CONTEXT_REALTIME_PRIORITY;
2559 default:
2560 unreachable("Invalid priority");
2561 }
2562 }
2563
2564 static VkResult
anv_device_init_hiz_clear_value_bo(struct anv_device * device)2565 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2566 {
2567 VkResult result = anv_device_alloc_bo(device, 4096,
2568 ANV_BO_ALLOC_MAPPED,
2569 0 /* explicit_address */,
2570 &device->hiz_clear_bo);
2571 if (result != VK_SUCCESS)
2572 return result;
2573
2574 union isl_color_value hiz_clear = { .u32 = { 0, } };
2575 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2576
2577 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2578
2579 if (!device->info.has_llc)
2580 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2581
2582 return VK_SUCCESS;
2583 }
2584
2585 static bool
get_bo_from_pool(struct gen_batch_decode_bo * ret,struct anv_block_pool * pool,uint64_t address)2586 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2587 struct anv_block_pool *pool,
2588 uint64_t address)
2589 {
2590 anv_block_pool_foreach_bo(bo, pool) {
2591 uint64_t bo_address = gen_48b_address(bo->offset);
2592 if (address >= bo_address && address < (bo_address + bo->size)) {
2593 *ret = (struct gen_batch_decode_bo) {
2594 .addr = bo_address,
2595 .size = bo->size,
2596 .map = bo->map,
2597 };
2598 return true;
2599 }
2600 }
2601 return false;
2602 }
2603
2604 /* Finding a buffer for batch decoding */
2605 static struct gen_batch_decode_bo
decode_get_bo(void * v_batch,bool ppgtt,uint64_t address)2606 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2607 {
2608 struct anv_device *device = v_batch;
2609 struct gen_batch_decode_bo ret_bo = {};
2610
2611 assert(ppgtt);
2612
2613 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2614 return ret_bo;
2615 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2616 return ret_bo;
2617 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2618 return ret_bo;
2619 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2620 return ret_bo;
2621
2622 if (!device->cmd_buffer_being_decoded)
2623 return (struct gen_batch_decode_bo) { };
2624
2625 struct anv_batch_bo **bo;
2626
2627 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2628 /* The decoder zeroes out the top 16 bits, so we need to as well */
2629 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2630
2631 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2632 return (struct gen_batch_decode_bo) {
2633 .addr = bo_address,
2634 .size = (*bo)->bo->size,
2635 .map = (*bo)->bo->map,
2636 };
2637 }
2638 }
2639
2640 return (struct gen_batch_decode_bo) { };
2641 }
2642
2643 struct gen_aux_map_buffer {
2644 struct gen_buffer base;
2645 struct anv_state state;
2646 };
2647
2648 static struct gen_buffer *
gen_aux_map_buffer_alloc(void * driver_ctx,uint32_t size)2649 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2650 {
2651 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2652 if (!buf)
2653 return NULL;
2654
2655 struct anv_device *device = (struct anv_device*)driver_ctx;
2656 assert(device->physical->supports_48bit_addresses &&
2657 device->physical->use_softpin);
2658
2659 struct anv_state_pool *pool = &device->dynamic_state_pool;
2660 buf->state = anv_state_pool_alloc(pool, size, size);
2661
2662 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2663 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2664 buf->base.map = buf->state.map;
2665 buf->base.driver_bo = &buf->state;
2666 return &buf->base;
2667 }
2668
2669 static void
gen_aux_map_buffer_free(void * driver_ctx,struct gen_buffer * buffer)2670 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2671 {
2672 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2673 struct anv_device *device = (struct anv_device*)driver_ctx;
2674 struct anv_state_pool *pool = &device->dynamic_state_pool;
2675 anv_state_pool_free(pool, buf->state);
2676 free(buf);
2677 }
2678
2679 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2680 .alloc = gen_aux_map_buffer_alloc,
2681 .free = gen_aux_map_buffer_free,
2682 };
2683
2684 static VkResult
check_physical_device_features(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceFeatures * features)2685 check_physical_device_features(VkPhysicalDevice physicalDevice,
2686 const VkPhysicalDeviceFeatures *features)
2687 {
2688 VkPhysicalDeviceFeatures supported_features;
2689 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2690 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2691 VkBool32 *enabled_feature = (VkBool32 *)features;
2692 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2693 for (uint32_t i = 0; i < num_features; i++) {
2694 if (enabled_feature[i] && !supported_feature[i])
2695 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2696 }
2697
2698 return VK_SUCCESS;
2699 }
2700
anv_CreateDevice(VkPhysicalDevice physicalDevice,const VkDeviceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDevice * pDevice)2701 VkResult anv_CreateDevice(
2702 VkPhysicalDevice physicalDevice,
2703 const VkDeviceCreateInfo* pCreateInfo,
2704 const VkAllocationCallbacks* pAllocator,
2705 VkDevice* pDevice)
2706 {
2707 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2708 VkResult result;
2709 struct anv_device *device;
2710
2711 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2712
2713 struct anv_device_extension_table enabled_extensions = { };
2714 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2715 int idx;
2716 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2717 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2718 anv_device_extensions[idx].extensionName) == 0)
2719 break;
2720 }
2721
2722 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2723 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2724
2725 if (!physical_device->supported_extensions.extensions[idx])
2726 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2727
2728 enabled_extensions.extensions[idx] = true;
2729 }
2730
2731 /* Check enabled features */
2732 bool robust_buffer_access = false;
2733 if (pCreateInfo->pEnabledFeatures) {
2734 result = check_physical_device_features(physicalDevice,
2735 pCreateInfo->pEnabledFeatures);
2736 if (result != VK_SUCCESS)
2737 return result;
2738
2739 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2740 robust_buffer_access = true;
2741 }
2742
2743 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2744 switch (ext->sType) {
2745 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2746 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2747 result = check_physical_device_features(physicalDevice,
2748 &features->features);
2749 if (result != VK_SUCCESS)
2750 return result;
2751
2752 if (features->features.robustBufferAccess)
2753 robust_buffer_access = true;
2754 break;
2755 }
2756
2757 default:
2758 /* Don't warn */
2759 break;
2760 }
2761 }
2762
2763 /* Check requested queues and fail if we are requested to create any
2764 * queues with flags we don't support.
2765 */
2766 assert(pCreateInfo->queueCreateInfoCount > 0);
2767 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2768 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2769 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2770 }
2771
2772 /* Check if client specified queue priority. */
2773 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2774 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2775 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2776
2777 VkQueueGlobalPriorityEXT priority =
2778 queue_priority ? queue_priority->globalPriority :
2779 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2780
2781 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2782 sizeof(*device), 8,
2783 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2784 if (!device)
2785 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2786
2787 vk_device_init(&device->vk, pCreateInfo,
2788 &physical_device->instance->alloc, pAllocator);
2789
2790 if (INTEL_DEBUG & DEBUG_BATCH) {
2791 const unsigned decode_flags =
2792 GEN_BATCH_DECODE_FULL |
2793 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2794 GEN_BATCH_DECODE_OFFSETS |
2795 GEN_BATCH_DECODE_FLOATS;
2796
2797 gen_batch_decode_ctx_init(&device->decoder_ctx,
2798 &physical_device->info,
2799 stderr, decode_flags, NULL,
2800 decode_get_bo, NULL, device);
2801 }
2802
2803 device->physical = physical_device;
2804 device->no_hw = physical_device->no_hw;
2805 device->_lost = false;
2806
2807 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2808 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2809 if (device->fd == -1) {
2810 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2811 goto fail_device;
2812 }
2813
2814 device->context_id = anv_gem_create_context(device);
2815 if (device->context_id == -1) {
2816 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2817 goto fail_fd;
2818 }
2819
2820 device->has_thread_submit = physical_device->has_thread_submit;
2821
2822 result = anv_queue_init(device, &device->queue);
2823 if (result != VK_SUCCESS)
2824 goto fail_context_id;
2825
2826 if (physical_device->use_softpin) {
2827 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2828 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2829 goto fail_queue;
2830 }
2831
2832 /* keep the page with address zero out of the allocator */
2833 util_vma_heap_init(&device->vma_lo,
2834 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2835
2836 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2837 CLIENT_VISIBLE_HEAP_SIZE);
2838
2839 /* Leave the last 4GiB out of the high vma range, so that no state
2840 * base address + size can overflow 48 bits. For more information see
2841 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2842 */
2843 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2844 physical_device->gtt_size - (1ull << 32) -
2845 HIGH_HEAP_MIN_ADDRESS);
2846 }
2847
2848 list_inithead(&device->memory_objects);
2849
2850 /* As per spec, the driver implementation may deny requests to acquire
2851 * a priority above the default priority (MEDIUM) if the caller does not
2852 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2853 * is returned.
2854 */
2855 if (physical_device->has_context_priority) {
2856 int err = anv_gem_set_context_param(device->fd, device->context_id,
2857 I915_CONTEXT_PARAM_PRIORITY,
2858 vk_priority_to_gen(priority));
2859 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2860 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2861 goto fail_vmas;
2862 }
2863 }
2864
2865 device->info = physical_device->info;
2866 device->isl_dev = physical_device->isl_dev;
2867
2868 /* On Broadwell and later, we can use batch chaining to more efficiently
2869 * implement growing command buffers. Prior to Haswell, the kernel
2870 * command parser gets in the way and we have to fall back to growing
2871 * the batch.
2872 */
2873 device->can_chain_batches = device->info.gen >= 8;
2874
2875 device->robust_buffer_access = robust_buffer_access;
2876 device->enabled_extensions = enabled_extensions;
2877
2878 const struct anv_instance *instance = physical_device->instance;
2879 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2880 /* Vulkan requires that entrypoints for extensions which have not been
2881 * enabled must not be advertised.
2882 */
2883 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2884 &instance->enabled_extensions,
2885 &device->enabled_extensions)) {
2886 device->dispatch.entrypoints[i] = NULL;
2887 } else {
2888 device->dispatch.entrypoints[i] =
2889 anv_resolve_device_entrypoint(&device->info, i);
2890 }
2891 }
2892
2893 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2894 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2895 goto fail_queue;
2896 }
2897
2898 pthread_condattr_t condattr;
2899 if (pthread_condattr_init(&condattr) != 0) {
2900 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2901 goto fail_mutex;
2902 }
2903 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2904 pthread_condattr_destroy(&condattr);
2905 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2906 goto fail_mutex;
2907 }
2908 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2909 pthread_condattr_destroy(&condattr);
2910 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2911 goto fail_mutex;
2912 }
2913 pthread_condattr_destroy(&condattr);
2914
2915 result = anv_bo_cache_init(&device->bo_cache);
2916 if (result != VK_SUCCESS)
2917 goto fail_queue_cond;
2918
2919 anv_bo_pool_init(&device->batch_bo_pool, device);
2920
2921 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2922 DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
2923 if (result != VK_SUCCESS)
2924 goto fail_batch_bo_pool;
2925
2926 if (device->info.gen >= 8) {
2927 /* The border color pointer is limited to 24 bits, so we need to make
2928 * sure that any such color used at any point in the program doesn't
2929 * exceed that limit.
2930 * We achieve that by reserving all the custom border colors we support
2931 * right off the bat, so they are close to the base address.
2932 */
2933 anv_state_reserved_pool_init(&device->custom_border_colors,
2934 &device->dynamic_state_pool,
2935 MAX_CUSTOM_BORDER_COLORS,
2936 sizeof(struct gen8_border_color), 64);
2937 }
2938
2939 result = anv_state_pool_init(&device->instruction_state_pool, device,
2940 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
2941 if (result != VK_SUCCESS)
2942 goto fail_dynamic_state_pool;
2943
2944 result = anv_state_pool_init(&device->surface_state_pool, device,
2945 SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
2946 if (result != VK_SUCCESS)
2947 goto fail_instruction_state_pool;
2948
2949 if (physical_device->use_softpin) {
2950 int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
2951 (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
2952 assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
2953 result = anv_state_pool_init(&device->binding_table_pool, device,
2954 SURFACE_STATE_POOL_MIN_ADDRESS,
2955 bt_pool_offset, 4096);
2956 if (result != VK_SUCCESS)
2957 goto fail_surface_state_pool;
2958 }
2959
2960 if (device->info.has_aux_map) {
2961 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2962 &physical_device->info);
2963 if (!device->aux_map_ctx)
2964 goto fail_binding_table_pool;
2965 }
2966
2967 result = anv_device_alloc_bo(device, 4096,
2968 ANV_BO_ALLOC_CAPTURE | ANV_BO_ALLOC_MAPPED /* flags */,
2969 0 /* explicit_address */,
2970 &device->workaround_bo);
2971 if (result != VK_SUCCESS)
2972 goto fail_surface_aux_map_pool;
2973
2974 device->workaround_address = (struct anv_address) {
2975 .bo = device->workaround_bo,
2976 .offset = align_u32(
2977 intel_debug_write_identifiers(device->workaround_bo->map,
2978 device->workaround_bo->size,
2979 "Anv") + 8, 8),
2980 };
2981
2982 device->debug_frame_desc =
2983 intel_debug_get_identifier_block(device->workaround_bo->map,
2984 device->workaround_bo->size,
2985 GEN_DEBUG_BLOCK_TYPE_FRAME);
2986
2987 result = anv_device_init_trivial_batch(device);
2988 if (result != VK_SUCCESS)
2989 goto fail_workaround_bo;
2990
2991 /* Allocate a null surface state at surface state offset 0. This makes
2992 * NULL descriptor handling trivial because we can just memset structures
2993 * to zero and they have a valid descriptor.
2994 */
2995 device->null_surface_state =
2996 anv_state_pool_alloc(&device->surface_state_pool,
2997 device->isl_dev.ss.size,
2998 device->isl_dev.ss.align);
2999 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
3000 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
3001 assert(device->null_surface_state.offset == 0);
3002
3003 if (device->info.gen >= 10) {
3004 result = anv_device_init_hiz_clear_value_bo(device);
3005 if (result != VK_SUCCESS)
3006 goto fail_trivial_batch_bo;
3007 }
3008
3009 anv_scratch_pool_init(device, &device->scratch_pool);
3010
3011 switch (device->info.gen) {
3012 case 7:
3013 if (!device->info.is_haswell)
3014 result = gen7_init_device_state(device);
3015 else
3016 result = gen75_init_device_state(device);
3017 break;
3018 case 8:
3019 result = gen8_init_device_state(device);
3020 break;
3021 case 9:
3022 result = gen9_init_device_state(device);
3023 break;
3024 case 11:
3025 result = gen11_init_device_state(device);
3026 break;
3027 case 12:
3028 result = gen12_init_device_state(device);
3029 break;
3030 default:
3031 /* Shouldn't get here as we don't create physical devices for any other
3032 * gens. */
3033 unreachable("unhandled gen");
3034 }
3035 if (result != VK_SUCCESS)
3036 goto fail_clear_value_bo;
3037
3038 anv_pipeline_cache_init(&device->default_pipeline_cache, device,
3039 true /* cache_enabled */, false /* external_sync */);
3040
3041 anv_device_init_blorp(device);
3042
3043 anv_device_init_border_colors(device);
3044
3045 anv_device_perf_init(device);
3046
3047 *pDevice = anv_device_to_handle(device);
3048
3049 return VK_SUCCESS;
3050
3051 fail_clear_value_bo:
3052 if (device->info.gen >= 10)
3053 anv_device_release_bo(device, device->hiz_clear_bo);
3054 anv_scratch_pool_finish(device, &device->scratch_pool);
3055 fail_trivial_batch_bo:
3056 anv_device_release_bo(device, device->trivial_batch_bo);
3057 fail_workaround_bo:
3058 anv_device_release_bo(device, device->workaround_bo);
3059 fail_surface_aux_map_pool:
3060 if (device->info.has_aux_map) {
3061 gen_aux_map_finish(device->aux_map_ctx);
3062 device->aux_map_ctx = NULL;
3063 }
3064 fail_binding_table_pool:
3065 if (physical_device->use_softpin)
3066 anv_state_pool_finish(&device->binding_table_pool);
3067 fail_surface_state_pool:
3068 anv_state_pool_finish(&device->surface_state_pool);
3069 fail_instruction_state_pool:
3070 anv_state_pool_finish(&device->instruction_state_pool);
3071 fail_dynamic_state_pool:
3072 if (device->info.gen >= 8)
3073 anv_state_reserved_pool_finish(&device->custom_border_colors);
3074 anv_state_pool_finish(&device->dynamic_state_pool);
3075 fail_batch_bo_pool:
3076 anv_bo_pool_finish(&device->batch_bo_pool);
3077 anv_bo_cache_finish(&device->bo_cache);
3078 fail_queue_cond:
3079 pthread_cond_destroy(&device->queue_submit);
3080 fail_mutex:
3081 pthread_mutex_destroy(&device->mutex);
3082 fail_vmas:
3083 if (physical_device->use_softpin) {
3084 util_vma_heap_finish(&device->vma_hi);
3085 util_vma_heap_finish(&device->vma_cva);
3086 util_vma_heap_finish(&device->vma_lo);
3087 }
3088 fail_queue:
3089 anv_queue_finish(&device->queue);
3090 fail_context_id:
3091 anv_gem_destroy_context(device, device->context_id);
3092 fail_fd:
3093 close(device->fd);
3094 fail_device:
3095 vk_free(&device->vk.alloc, device);
3096
3097 return result;
3098 }
3099
anv_DestroyDevice(VkDevice _device,const VkAllocationCallbacks * pAllocator)3100 void anv_DestroyDevice(
3101 VkDevice _device,
3102 const VkAllocationCallbacks* pAllocator)
3103 {
3104 ANV_FROM_HANDLE(anv_device, device, _device);
3105
3106 if (!device)
3107 return;
3108
3109 anv_queue_finish(&device->queue);
3110
3111 anv_device_finish_blorp(device);
3112
3113 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3114
3115 #ifdef HAVE_VALGRIND
3116 /* We only need to free these to prevent valgrind errors. The backing
3117 * BO will go away in a couple of lines so we don't actually leak.
3118 */
3119 if (device->info.gen >= 8)
3120 anv_state_reserved_pool_finish(&device->custom_border_colors);
3121 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3122 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3123 #endif
3124
3125 anv_scratch_pool_finish(device, &device->scratch_pool);
3126
3127 anv_device_release_bo(device, device->workaround_bo);
3128 anv_device_release_bo(device, device->trivial_batch_bo);
3129 if (device->info.gen >= 10)
3130 anv_device_release_bo(device, device->hiz_clear_bo);
3131
3132 if (device->info.has_aux_map) {
3133 gen_aux_map_finish(device->aux_map_ctx);
3134 device->aux_map_ctx = NULL;
3135 }
3136
3137 if (device->physical->use_softpin)
3138 anv_state_pool_finish(&device->binding_table_pool);
3139 anv_state_pool_finish(&device->surface_state_pool);
3140 anv_state_pool_finish(&device->instruction_state_pool);
3141 anv_state_pool_finish(&device->dynamic_state_pool);
3142
3143 anv_bo_pool_finish(&device->batch_bo_pool);
3144
3145 anv_bo_cache_finish(&device->bo_cache);
3146
3147 if (device->physical->use_softpin) {
3148 util_vma_heap_finish(&device->vma_hi);
3149 util_vma_heap_finish(&device->vma_cva);
3150 util_vma_heap_finish(&device->vma_lo);
3151 }
3152
3153 pthread_cond_destroy(&device->queue_submit);
3154 pthread_mutex_destroy(&device->mutex);
3155
3156 anv_gem_destroy_context(device, device->context_id);
3157
3158 if (INTEL_DEBUG & DEBUG_BATCH)
3159 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3160
3161 close(device->fd);
3162
3163 vk_device_finish(&device->vk);
3164 vk_free(&device->vk.alloc, device);
3165 }
3166
anv_EnumerateInstanceLayerProperties(uint32_t * pPropertyCount,VkLayerProperties * pProperties)3167 VkResult anv_EnumerateInstanceLayerProperties(
3168 uint32_t* pPropertyCount,
3169 VkLayerProperties* pProperties)
3170 {
3171 if (pProperties == NULL) {
3172 *pPropertyCount = 0;
3173 return VK_SUCCESS;
3174 }
3175
3176 /* None supported at this time */
3177 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3178 }
3179
anv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,uint32_t * pPropertyCount,VkLayerProperties * pProperties)3180 VkResult anv_EnumerateDeviceLayerProperties(
3181 VkPhysicalDevice physicalDevice,
3182 uint32_t* pPropertyCount,
3183 VkLayerProperties* pProperties)
3184 {
3185 if (pProperties == NULL) {
3186 *pPropertyCount = 0;
3187 return VK_SUCCESS;
3188 }
3189
3190 /* None supported at this time */
3191 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3192 }
3193
anv_GetDeviceQueue(VkDevice _device,uint32_t queueNodeIndex,uint32_t queueIndex,VkQueue * pQueue)3194 void anv_GetDeviceQueue(
3195 VkDevice _device,
3196 uint32_t queueNodeIndex,
3197 uint32_t queueIndex,
3198 VkQueue* pQueue)
3199 {
3200 const VkDeviceQueueInfo2 info = {
3201 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3202 .pNext = NULL,
3203 .flags = 0,
3204 .queueFamilyIndex = queueNodeIndex,
3205 .queueIndex = queueIndex,
3206 };
3207
3208 anv_GetDeviceQueue2(_device, &info, pQueue);
3209 }
3210
anv_GetDeviceQueue2(VkDevice _device,const VkDeviceQueueInfo2 * pQueueInfo,VkQueue * pQueue)3211 void anv_GetDeviceQueue2(
3212 VkDevice _device,
3213 const VkDeviceQueueInfo2* pQueueInfo,
3214 VkQueue* pQueue)
3215 {
3216 ANV_FROM_HANDLE(anv_device, device, _device);
3217
3218 assert(pQueueInfo->queueIndex == 0);
3219
3220 if (pQueueInfo->flags == device->queue.flags)
3221 *pQueue = anv_queue_to_handle(&device->queue);
3222 else
3223 *pQueue = NULL;
3224 }
3225
3226 void
_anv_device_report_lost(struct anv_device * device)3227 _anv_device_report_lost(struct anv_device *device)
3228 {
3229 assert(p_atomic_read(&device->_lost) > 0);
3230
3231 device->lost_reported = true;
3232
3233 struct anv_queue *queue = &device->queue;
3234
3235 __vk_errorf(device->physical->instance, device,
3236 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3237 VK_ERROR_DEVICE_LOST,
3238 queue->error_file, queue->error_line,
3239 "%s", queue->error_msg);
3240 }
3241
3242 VkResult
_anv_device_set_lost(struct anv_device * device,const char * file,int line,const char * msg,...)3243 _anv_device_set_lost(struct anv_device *device,
3244 const char *file, int line,
3245 const char *msg, ...)
3246 {
3247 VkResult err;
3248 va_list ap;
3249
3250 if (p_atomic_read(&device->_lost) > 0)
3251 return VK_ERROR_DEVICE_LOST;
3252
3253 p_atomic_inc(&device->_lost);
3254 device->lost_reported = true;
3255
3256 va_start(ap, msg);
3257 err = __vk_errorv(device->physical->instance, device,
3258 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3259 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3260 va_end(ap);
3261
3262 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3263 abort();
3264
3265 return err;
3266 }
3267
3268 VkResult
_anv_queue_set_lost(struct anv_queue * queue,const char * file,int line,const char * msg,...)3269 _anv_queue_set_lost(struct anv_queue *queue,
3270 const char *file, int line,
3271 const char *msg, ...)
3272 {
3273 va_list ap;
3274
3275 if (queue->lost)
3276 return VK_ERROR_DEVICE_LOST;
3277
3278 queue->lost = true;
3279
3280 queue->error_file = file;
3281 queue->error_line = line;
3282 va_start(ap, msg);
3283 vsnprintf(queue->error_msg, sizeof(queue->error_msg),
3284 msg, ap);
3285 va_end(ap);
3286
3287 p_atomic_inc(&queue->device->_lost);
3288
3289 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3290 abort();
3291
3292 return VK_ERROR_DEVICE_LOST;
3293 }
3294
3295 VkResult
anv_device_query_status(struct anv_device * device)3296 anv_device_query_status(struct anv_device *device)
3297 {
3298 /* This isn't likely as most of the callers of this function already check
3299 * for it. However, it doesn't hurt to check and it potentially lets us
3300 * avoid an ioctl.
3301 */
3302 if (anv_device_is_lost(device))
3303 return VK_ERROR_DEVICE_LOST;
3304
3305 uint32_t active, pending;
3306 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3307 if (ret == -1) {
3308 /* We don't know the real error. */
3309 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3310 }
3311
3312 if (active) {
3313 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3314 } else if (pending) {
3315 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3316 }
3317
3318 return VK_SUCCESS;
3319 }
3320
3321 VkResult
anv_device_bo_busy(struct anv_device * device,struct anv_bo * bo)3322 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3323 {
3324 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3325 * Other usages of the BO (such as on different hardware) will not be
3326 * flagged as "busy" by this ioctl. Use with care.
3327 */
3328 int ret = anv_gem_busy(device, bo->gem_handle);
3329 if (ret == 1) {
3330 return VK_NOT_READY;
3331 } else if (ret == -1) {
3332 /* We don't know the real error. */
3333 return anv_device_set_lost(device, "gem wait failed: %m");
3334 }
3335
3336 /* Query for device status after the busy call. If the BO we're checking
3337 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3338 * client because it clearly doesn't have valid data. Yes, this most
3339 * likely means an ioctl, but we just did an ioctl to query the busy status
3340 * so it's no great loss.
3341 */
3342 return anv_device_query_status(device);
3343 }
3344
3345 VkResult
anv_device_wait(struct anv_device * device,struct anv_bo * bo,int64_t timeout)3346 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3347 int64_t timeout)
3348 {
3349 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3350 if (ret == -1 && errno == ETIME) {
3351 return VK_TIMEOUT;
3352 } else if (ret == -1) {
3353 /* We don't know the real error. */
3354 return anv_device_set_lost(device, "gem wait failed: %m");
3355 }
3356
3357 /* Query for device status after the wait. If the BO we're waiting on got
3358 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3359 * because it clearly doesn't have valid data. Yes, this most likely means
3360 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3361 */
3362 return anv_device_query_status(device);
3363 }
3364
anv_DeviceWaitIdle(VkDevice _device)3365 VkResult anv_DeviceWaitIdle(
3366 VkDevice _device)
3367 {
3368 ANV_FROM_HANDLE(anv_device, device, _device);
3369
3370 if (anv_device_is_lost(device))
3371 return VK_ERROR_DEVICE_LOST;
3372
3373 return anv_queue_submit_simple_batch(&device->queue, NULL);
3374 }
3375
3376 uint64_t
anv_vma_alloc(struct anv_device * device,uint64_t size,uint64_t align,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address)3377 anv_vma_alloc(struct anv_device *device,
3378 uint64_t size, uint64_t align,
3379 enum anv_bo_alloc_flags alloc_flags,
3380 uint64_t client_address)
3381 {
3382 pthread_mutex_lock(&device->vma_mutex);
3383
3384 uint64_t addr = 0;
3385
3386 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3387 if (client_address) {
3388 if (util_vma_heap_alloc_addr(&device->vma_cva,
3389 client_address, size)) {
3390 addr = client_address;
3391 }
3392 } else {
3393 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3394 }
3395 /* We don't want to fall back to other heaps */
3396 goto done;
3397 }
3398
3399 assert(client_address == 0);
3400
3401 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3402 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3403
3404 if (addr == 0)
3405 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3406
3407 done:
3408 pthread_mutex_unlock(&device->vma_mutex);
3409
3410 assert(addr == gen_48b_address(addr));
3411 return gen_canonical_address(addr);
3412 }
3413
3414 void
anv_vma_free(struct anv_device * device,uint64_t address,uint64_t size)3415 anv_vma_free(struct anv_device *device,
3416 uint64_t address, uint64_t size)
3417 {
3418 const uint64_t addr_48b = gen_48b_address(address);
3419
3420 pthread_mutex_lock(&device->vma_mutex);
3421
3422 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3423 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3424 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3425 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3426 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3427 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3428 } else {
3429 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3430 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3431 }
3432
3433 pthread_mutex_unlock(&device->vma_mutex);
3434 }
3435
anv_AllocateMemory(VkDevice _device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)3436 VkResult anv_AllocateMemory(
3437 VkDevice _device,
3438 const VkMemoryAllocateInfo* pAllocateInfo,
3439 const VkAllocationCallbacks* pAllocator,
3440 VkDeviceMemory* pMem)
3441 {
3442 ANV_FROM_HANDLE(anv_device, device, _device);
3443 struct anv_physical_device *pdevice = device->physical;
3444 struct anv_device_memory *mem;
3445 VkResult result = VK_SUCCESS;
3446
3447 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3448
3449 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3450 assert(pAllocateInfo->allocationSize > 0);
3451
3452 VkDeviceSize aligned_alloc_size =
3453 align_u64(pAllocateInfo->allocationSize, 4096);
3454
3455 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3456 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3457
3458 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3459 struct anv_memory_type *mem_type =
3460 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3461 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3462 struct anv_memory_heap *mem_heap =
3463 &pdevice->memory.heaps[mem_type->heapIndex];
3464
3465 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3466 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3467 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3468
3469 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3470 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3471 if (mem == NULL)
3472 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3473
3474 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3475 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3476 mem->type = mem_type;
3477 mem->map = NULL;
3478 mem->map_size = 0;
3479 mem->ahw = NULL;
3480 mem->host_ptr = NULL;
3481
3482 enum anv_bo_alloc_flags alloc_flags = 0;
3483
3484 const VkExportMemoryAllocateInfo *export_info = NULL;
3485 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3486 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3487 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3488 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3489 VkMemoryAllocateFlags vk_flags = 0;
3490 uint64_t client_address = 0;
3491
3492 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3493 switch (ext->sType) {
3494 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3495 export_info = (void *)ext;
3496 break;
3497
3498 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3499 ahw_import_info = (void *)ext;
3500 break;
3501
3502 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3503 fd_info = (void *)ext;
3504 break;
3505
3506 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3507 host_ptr_info = (void *)ext;
3508 break;
3509
3510 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3511 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3512 vk_flags = flags_info->flags;
3513 break;
3514 }
3515
3516 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3517 dedicated_info = (void *)ext;
3518 break;
3519
3520 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3521 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3522 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3523 client_address = addr_info->opaqueCaptureAddress;
3524 break;
3525 }
3526
3527 default:
3528 anv_debug_ignored_stype(ext->sType);
3529 break;
3530 }
3531 }
3532
3533 /* By default, we want all VkDeviceMemory objects to support CCS */
3534 if (device->physical->has_implicit_ccs)
3535 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3536
3537 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3538 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3539
3540 if ((export_info && export_info->handleTypes) ||
3541 (fd_info && fd_info->handleType) ||
3542 (host_ptr_info && host_ptr_info->handleType)) {
3543 /* Anything imported or exported is EXTERNAL */
3544 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3545
3546 /* We can't have implicit CCS on external memory with an AUX-table.
3547 * Doing so would require us to sync the aux tables across processes
3548 * which is impractical.
3549 */
3550 if (device->info.has_aux_map)
3551 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3552 }
3553
3554 /* Check if we need to support Android HW buffer export. If so,
3555 * create AHardwareBuffer and import memory from it.
3556 */
3557 bool android_export = false;
3558 if (export_info && export_info->handleTypes &
3559 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3560 android_export = true;
3561
3562 if (ahw_import_info) {
3563 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3564 if (result != VK_SUCCESS)
3565 goto fail;
3566
3567 goto success;
3568 } else if (android_export) {
3569 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3570 if (result != VK_SUCCESS)
3571 goto fail;
3572
3573 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3574 .buffer = mem->ahw,
3575 };
3576 result = anv_import_ahw_memory(_device, mem, &import_info);
3577 if (result != VK_SUCCESS)
3578 goto fail;
3579
3580 goto success;
3581 }
3582
3583 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3584 * ignored.
3585 */
3586 if (fd_info && fd_info->handleType) {
3587 /* At the moment, we support only the below handle types. */
3588 assert(fd_info->handleType ==
3589 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3590 fd_info->handleType ==
3591 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3592
3593 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3594 client_address, &mem->bo);
3595 if (result != VK_SUCCESS)
3596 goto fail;
3597
3598 /* For security purposes, we reject importing the bo if it's smaller
3599 * than the requested allocation size. This prevents a malicious client
3600 * from passing a buffer to a trusted client, lying about the size, and
3601 * telling the trusted client to try and texture from an image that goes
3602 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3603 * in the trusted client. The trusted client can protect itself against
3604 * this sort of attack but only if it can trust the buffer size.
3605 */
3606 if (mem->bo->size < aligned_alloc_size) {
3607 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3608 "aligned allocationSize too large for "
3609 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3610 "%"PRIu64"B > %"PRIu64"B",
3611 aligned_alloc_size, mem->bo->size);
3612 anv_device_release_bo(device, mem->bo);
3613 goto fail;
3614 }
3615
3616 /* From the Vulkan spec:
3617 *
3618 * "Importing memory from a file descriptor transfers ownership of
3619 * the file descriptor from the application to the Vulkan
3620 * implementation. The application must not perform any operations on
3621 * the file descriptor after a successful import."
3622 *
3623 * If the import fails, we leave the file descriptor open.
3624 */
3625 close(fd_info->fd);
3626 goto success;
3627 }
3628
3629 if (host_ptr_info && host_ptr_info->handleType) {
3630 if (host_ptr_info->handleType ==
3631 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3632 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3633 goto fail;
3634 }
3635
3636 assert(host_ptr_info->handleType ==
3637 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3638
3639 result = anv_device_import_bo_from_host_ptr(device,
3640 host_ptr_info->pHostPointer,
3641 pAllocateInfo->allocationSize,
3642 alloc_flags,
3643 client_address,
3644 &mem->bo);
3645 if (result != VK_SUCCESS)
3646 goto fail;
3647
3648 mem->host_ptr = host_ptr_info->pHostPointer;
3649 goto success;
3650 }
3651
3652 /* Regular allocate (not importing memory). */
3653
3654 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3655 alloc_flags, client_address, &mem->bo);
3656 if (result != VK_SUCCESS)
3657 goto fail;
3658
3659 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3660 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3661
3662 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3663 * the BO. In this case, we have a dedicated allocation.
3664 */
3665 if (image->needs_set_tiling) {
3666 const uint32_t i915_tiling =
3667 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3668 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3669 image->planes[0].surface.isl.row_pitch_B,
3670 i915_tiling);
3671 if (ret) {
3672 anv_device_release_bo(device, mem->bo);
3673 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3674 "failed to set BO tiling: %m");
3675 goto fail;
3676 }
3677 }
3678 }
3679
3680 success:
3681 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3682 if (mem_heap_used > mem_heap->size) {
3683 p_atomic_add(&mem_heap->used, -mem->bo->size);
3684 anv_device_release_bo(device, mem->bo);
3685 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3686 "Out of heap memory");
3687 goto fail;
3688 }
3689
3690 pthread_mutex_lock(&device->mutex);
3691 list_addtail(&mem->link, &device->memory_objects);
3692 pthread_mutex_unlock(&device->mutex);
3693
3694 *pMem = anv_device_memory_to_handle(mem);
3695
3696 return VK_SUCCESS;
3697
3698 fail:
3699 vk_free2(&device->vk.alloc, pAllocator, mem);
3700
3701 return result;
3702 }
3703
anv_GetMemoryFdKHR(VkDevice device_h,const VkMemoryGetFdInfoKHR * pGetFdInfo,int * pFd)3704 VkResult anv_GetMemoryFdKHR(
3705 VkDevice device_h,
3706 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3707 int* pFd)
3708 {
3709 ANV_FROM_HANDLE(anv_device, dev, device_h);
3710 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3711
3712 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3713
3714 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3715 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3716
3717 return anv_device_export_bo(dev, mem->bo, pFd);
3718 }
3719
anv_GetMemoryFdPropertiesKHR(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,int fd,VkMemoryFdPropertiesKHR * pMemoryFdProperties)3720 VkResult anv_GetMemoryFdPropertiesKHR(
3721 VkDevice _device,
3722 VkExternalMemoryHandleTypeFlagBits handleType,
3723 int fd,
3724 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3725 {
3726 ANV_FROM_HANDLE(anv_device, device, _device);
3727
3728 switch (handleType) {
3729 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3730 /* dma-buf can be imported as any memory type */
3731 pMemoryFdProperties->memoryTypeBits =
3732 (1 << device->physical->memory.type_count) - 1;
3733 return VK_SUCCESS;
3734
3735 default:
3736 /* The valid usage section for this function says:
3737 *
3738 * "handleType must not be one of the handle types defined as
3739 * opaque."
3740 *
3741 * So opaque handle types fall into the default "unsupported" case.
3742 */
3743 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3744 }
3745 }
3746
anv_GetMemoryHostPointerPropertiesEXT(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,const void * pHostPointer,VkMemoryHostPointerPropertiesEXT * pMemoryHostPointerProperties)3747 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3748 VkDevice _device,
3749 VkExternalMemoryHandleTypeFlagBits handleType,
3750 const void* pHostPointer,
3751 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3752 {
3753 ANV_FROM_HANDLE(anv_device, device, _device);
3754
3755 assert(pMemoryHostPointerProperties->sType ==
3756 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3757
3758 switch (handleType) {
3759 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3760 /* Host memory can be imported as any memory type. */
3761 pMemoryHostPointerProperties->memoryTypeBits =
3762 (1ull << device->physical->memory.type_count) - 1;
3763
3764 return VK_SUCCESS;
3765
3766 default:
3767 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3768 }
3769 }
3770
anv_FreeMemory(VkDevice _device,VkDeviceMemory _mem,const VkAllocationCallbacks * pAllocator)3771 void anv_FreeMemory(
3772 VkDevice _device,
3773 VkDeviceMemory _mem,
3774 const VkAllocationCallbacks* pAllocator)
3775 {
3776 ANV_FROM_HANDLE(anv_device, device, _device);
3777 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3778
3779 if (mem == NULL)
3780 return;
3781
3782 pthread_mutex_lock(&device->mutex);
3783 list_del(&mem->link);
3784 pthread_mutex_unlock(&device->mutex);
3785
3786 if (mem->map)
3787 anv_UnmapMemory(_device, _mem);
3788
3789 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3790 -mem->bo->size);
3791
3792 anv_device_release_bo(device, mem->bo);
3793
3794 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3795 if (mem->ahw)
3796 AHardwareBuffer_release(mem->ahw);
3797 #endif
3798
3799 vk_object_base_finish(&mem->base);
3800 vk_free2(&device->vk.alloc, pAllocator, mem);
3801 }
3802
anv_MapMemory(VkDevice _device,VkDeviceMemory _memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)3803 VkResult anv_MapMemory(
3804 VkDevice _device,
3805 VkDeviceMemory _memory,
3806 VkDeviceSize offset,
3807 VkDeviceSize size,
3808 VkMemoryMapFlags flags,
3809 void** ppData)
3810 {
3811 ANV_FROM_HANDLE(anv_device, device, _device);
3812 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3813
3814 if (mem == NULL) {
3815 *ppData = NULL;
3816 return VK_SUCCESS;
3817 }
3818
3819 if (mem->host_ptr) {
3820 *ppData = mem->host_ptr + offset;
3821 return VK_SUCCESS;
3822 }
3823
3824 if (size == VK_WHOLE_SIZE)
3825 size = mem->bo->size - offset;
3826
3827 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3828 *
3829 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3830 * assert(size != 0);
3831 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3832 * equal to the size of the memory minus offset
3833 */
3834 assert(size > 0);
3835 assert(offset + size <= mem->bo->size);
3836
3837 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3838 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3839 * at a time is valid. We could just mmap up front and return an offset
3840 * pointer here, but that may exhaust virtual memory on 32 bit
3841 * userspace. */
3842
3843 uint32_t gem_flags = 0;
3844
3845 if (!device->info.has_llc &&
3846 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3847 gem_flags |= I915_MMAP_WC;
3848
3849 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3850 uint64_t map_offset;
3851 if (!device->physical->has_mmap_offset)
3852 map_offset = offset & ~4095ull;
3853 else
3854 map_offset = 0;
3855 assert(offset >= map_offset);
3856 uint64_t map_size = (offset + size) - map_offset;
3857
3858 /* Let's map whole pages */
3859 map_size = align_u64(map_size, 4096);
3860
3861 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3862 map_offset, map_size, gem_flags);
3863 if (map == MAP_FAILED)
3864 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3865
3866 mem->map = map;
3867 mem->map_size = map_size;
3868
3869 *ppData = mem->map + (offset - map_offset);
3870
3871 return VK_SUCCESS;
3872 }
3873
anv_UnmapMemory(VkDevice _device,VkDeviceMemory _memory)3874 void anv_UnmapMemory(
3875 VkDevice _device,
3876 VkDeviceMemory _memory)
3877 {
3878 ANV_FROM_HANDLE(anv_device, device, _device);
3879 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3880
3881 if (mem == NULL || mem->host_ptr)
3882 return;
3883
3884 anv_gem_munmap(device, mem->map, mem->map_size);
3885
3886 mem->map = NULL;
3887 mem->map_size = 0;
3888 }
3889
3890 static void
clflush_mapped_ranges(struct anv_device * device,uint32_t count,const VkMappedMemoryRange * ranges)3891 clflush_mapped_ranges(struct anv_device *device,
3892 uint32_t count,
3893 const VkMappedMemoryRange *ranges)
3894 {
3895 for (uint32_t i = 0; i < count; i++) {
3896 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3897 if (ranges[i].offset >= mem->map_size)
3898 continue;
3899
3900 gen_clflush_range(mem->map + ranges[i].offset,
3901 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3902 }
3903 }
3904
anv_FlushMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)3905 VkResult anv_FlushMappedMemoryRanges(
3906 VkDevice _device,
3907 uint32_t memoryRangeCount,
3908 const VkMappedMemoryRange* pMemoryRanges)
3909 {
3910 ANV_FROM_HANDLE(anv_device, device, _device);
3911
3912 if (device->info.has_llc)
3913 return VK_SUCCESS;
3914
3915 /* Make sure the writes we're flushing have landed. */
3916 __builtin_ia32_mfence();
3917
3918 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3919
3920 return VK_SUCCESS;
3921 }
3922
anv_InvalidateMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)3923 VkResult anv_InvalidateMappedMemoryRanges(
3924 VkDevice _device,
3925 uint32_t memoryRangeCount,
3926 const VkMappedMemoryRange* pMemoryRanges)
3927 {
3928 ANV_FROM_HANDLE(anv_device, device, _device);
3929
3930 if (device->info.has_llc)
3931 return VK_SUCCESS;
3932
3933 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3934
3935 /* Make sure no reads get moved up above the invalidate. */
3936 __builtin_ia32_mfence();
3937
3938 return VK_SUCCESS;
3939 }
3940
anv_GetBufferMemoryRequirements(VkDevice _device,VkBuffer _buffer,VkMemoryRequirements * pMemoryRequirements)3941 void anv_GetBufferMemoryRequirements(
3942 VkDevice _device,
3943 VkBuffer _buffer,
3944 VkMemoryRequirements* pMemoryRequirements)
3945 {
3946 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3947 ANV_FROM_HANDLE(anv_device, device, _device);
3948
3949 /* The Vulkan spec (git aaed022) says:
3950 *
3951 * memoryTypeBits is a bitfield and contains one bit set for every
3952 * supported memory type for the resource. The bit `1<<i` is set if and
3953 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3954 * structure for the physical device is supported.
3955 */
3956 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3957
3958 /* Base alignment requirement of a cache line */
3959 uint32_t alignment = 16;
3960
3961 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3962 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3963
3964 pMemoryRequirements->size = buffer->size;
3965 pMemoryRequirements->alignment = alignment;
3966
3967 /* Storage and Uniform buffers should have their size aligned to
3968 * 32-bits to avoid boundary checks when last DWord is not complete.
3969 * This would ensure that not internal padding would be needed for
3970 * 16-bit types.
3971 */
3972 if (device->robust_buffer_access &&
3973 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3974 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3975 pMemoryRequirements->size = align_u64(buffer->size, 4);
3976
3977 pMemoryRequirements->memoryTypeBits = memory_types;
3978 }
3979
anv_GetBufferMemoryRequirements2(VkDevice _device,const VkBufferMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)3980 void anv_GetBufferMemoryRequirements2(
3981 VkDevice _device,
3982 const VkBufferMemoryRequirementsInfo2* pInfo,
3983 VkMemoryRequirements2* pMemoryRequirements)
3984 {
3985 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3986 &pMemoryRequirements->memoryRequirements);
3987
3988 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3989 switch (ext->sType) {
3990 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3991 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3992 requirements->prefersDedicatedAllocation = false;
3993 requirements->requiresDedicatedAllocation = false;
3994 break;
3995 }
3996
3997 default:
3998 anv_debug_ignored_stype(ext->sType);
3999 break;
4000 }
4001 }
4002 }
4003
anv_GetImageMemoryRequirements(VkDevice _device,VkImage _image,VkMemoryRequirements * pMemoryRequirements)4004 void anv_GetImageMemoryRequirements(
4005 VkDevice _device,
4006 VkImage _image,
4007 VkMemoryRequirements* pMemoryRequirements)
4008 {
4009 ANV_FROM_HANDLE(anv_image, image, _image);
4010 ANV_FROM_HANDLE(anv_device, device, _device);
4011
4012 /* The Vulkan spec (git aaed022) says:
4013 *
4014 * memoryTypeBits is a bitfield and contains one bit set for every
4015 * supported memory type for the resource. The bit `1<<i` is set if and
4016 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
4017 * structure for the physical device is supported.
4018 *
4019 * All types are currently supported for images.
4020 */
4021 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
4022
4023 pMemoryRequirements->size = image->size;
4024 pMemoryRequirements->alignment = image->alignment;
4025 pMemoryRequirements->memoryTypeBits = memory_types;
4026 }
4027
anv_GetImageMemoryRequirements2(VkDevice _device,const VkImageMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)4028 void anv_GetImageMemoryRequirements2(
4029 VkDevice _device,
4030 const VkImageMemoryRequirementsInfo2* pInfo,
4031 VkMemoryRequirements2* pMemoryRequirements)
4032 {
4033 ANV_FROM_HANDLE(anv_device, device, _device);
4034 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
4035
4036 anv_GetImageMemoryRequirements(_device, pInfo->image,
4037 &pMemoryRequirements->memoryRequirements);
4038
4039 vk_foreach_struct_const(ext, pInfo->pNext) {
4040 switch (ext->sType) {
4041 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
4042 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
4043 (const VkImagePlaneMemoryRequirementsInfo *) ext;
4044 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
4045 plane_reqs->planeAspect);
4046
4047 assert(image->planes[plane].offset == 0);
4048
4049 /* The Vulkan spec (git aaed022) says:
4050 *
4051 * memoryTypeBits is a bitfield and contains one bit set for every
4052 * supported memory type for the resource. The bit `1<<i` is set
4053 * if and only if the memory type `i` in the
4054 * VkPhysicalDeviceMemoryProperties structure for the physical
4055 * device is supported.
4056 *
4057 * All types are currently supported for images.
4058 */
4059 pMemoryRequirements->memoryRequirements.memoryTypeBits =
4060 (1ull << device->physical->memory.type_count) - 1;
4061
4062 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
4063 pMemoryRequirements->memoryRequirements.alignment =
4064 image->planes[plane].alignment;
4065 break;
4066 }
4067
4068 default:
4069 anv_debug_ignored_stype(ext->sType);
4070 break;
4071 }
4072 }
4073
4074 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
4075 switch (ext->sType) {
4076 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
4077 VkMemoryDedicatedRequirements *requirements = (void *)ext;
4078 if (image->needs_set_tiling || image->external_format) {
4079 /* If we need to set the tiling for external consumers, we need a
4080 * dedicated allocation.
4081 *
4082 * See also anv_AllocateMemory.
4083 */
4084 requirements->prefersDedicatedAllocation = true;
4085 requirements->requiresDedicatedAllocation = true;
4086 } else {
4087 requirements->prefersDedicatedAllocation = false;
4088 requirements->requiresDedicatedAllocation = false;
4089 }
4090 break;
4091 }
4092
4093 default:
4094 anv_debug_ignored_stype(ext->sType);
4095 break;
4096 }
4097 }
4098 }
4099
anv_GetImageSparseMemoryRequirements(VkDevice device,VkImage image,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements * pSparseMemoryRequirements)4100 void anv_GetImageSparseMemoryRequirements(
4101 VkDevice device,
4102 VkImage image,
4103 uint32_t* pSparseMemoryRequirementCount,
4104 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
4105 {
4106 *pSparseMemoryRequirementCount = 0;
4107 }
4108
anv_GetImageSparseMemoryRequirements2(VkDevice device,const VkImageSparseMemoryRequirementsInfo2 * pInfo,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements2 * pSparseMemoryRequirements)4109 void anv_GetImageSparseMemoryRequirements2(
4110 VkDevice device,
4111 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4112 uint32_t* pSparseMemoryRequirementCount,
4113 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4114 {
4115 *pSparseMemoryRequirementCount = 0;
4116 }
4117
anv_GetDeviceMemoryCommitment(VkDevice device,VkDeviceMemory memory,VkDeviceSize * pCommittedMemoryInBytes)4118 void anv_GetDeviceMemoryCommitment(
4119 VkDevice device,
4120 VkDeviceMemory memory,
4121 VkDeviceSize* pCommittedMemoryInBytes)
4122 {
4123 *pCommittedMemoryInBytes = 0;
4124 }
4125
4126 static void
anv_bind_buffer_memory(const VkBindBufferMemoryInfo * pBindInfo)4127 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4128 {
4129 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4130 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4131
4132 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4133
4134 if (mem) {
4135 buffer->address = (struct anv_address) {
4136 .bo = mem->bo,
4137 .offset = pBindInfo->memoryOffset,
4138 };
4139 } else {
4140 buffer->address = ANV_NULL_ADDRESS;
4141 }
4142 }
4143
anv_BindBufferMemory(VkDevice device,VkBuffer buffer,VkDeviceMemory memory,VkDeviceSize memoryOffset)4144 VkResult anv_BindBufferMemory(
4145 VkDevice device,
4146 VkBuffer buffer,
4147 VkDeviceMemory memory,
4148 VkDeviceSize memoryOffset)
4149 {
4150 anv_bind_buffer_memory(
4151 &(VkBindBufferMemoryInfo) {
4152 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4153 .buffer = buffer,
4154 .memory = memory,
4155 .memoryOffset = memoryOffset,
4156 });
4157
4158 return VK_SUCCESS;
4159 }
4160
anv_BindBufferMemory2(VkDevice device,uint32_t bindInfoCount,const VkBindBufferMemoryInfo * pBindInfos)4161 VkResult anv_BindBufferMemory2(
4162 VkDevice device,
4163 uint32_t bindInfoCount,
4164 const VkBindBufferMemoryInfo* pBindInfos)
4165 {
4166 for (uint32_t i = 0; i < bindInfoCount; i++)
4167 anv_bind_buffer_memory(&pBindInfos[i]);
4168
4169 return VK_SUCCESS;
4170 }
4171
anv_QueueBindSparse(VkQueue _queue,uint32_t bindInfoCount,const VkBindSparseInfo * pBindInfo,VkFence fence)4172 VkResult anv_QueueBindSparse(
4173 VkQueue _queue,
4174 uint32_t bindInfoCount,
4175 const VkBindSparseInfo* pBindInfo,
4176 VkFence fence)
4177 {
4178 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4179 if (anv_device_is_lost(queue->device))
4180 return VK_ERROR_DEVICE_LOST;
4181
4182 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4183 }
4184
4185 // Event functions
4186
anv_CreateEvent(VkDevice _device,const VkEventCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkEvent * pEvent)4187 VkResult anv_CreateEvent(
4188 VkDevice _device,
4189 const VkEventCreateInfo* pCreateInfo,
4190 const VkAllocationCallbacks* pAllocator,
4191 VkEvent* pEvent)
4192 {
4193 ANV_FROM_HANDLE(anv_device, device, _device);
4194 struct anv_event *event;
4195
4196 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4197
4198 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4199 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4200 if (event == NULL)
4201 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4202
4203 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4204 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4205 sizeof(uint64_t), 8);
4206 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4207
4208 *pEvent = anv_event_to_handle(event);
4209
4210 return VK_SUCCESS;
4211 }
4212
anv_DestroyEvent(VkDevice _device,VkEvent _event,const VkAllocationCallbacks * pAllocator)4213 void anv_DestroyEvent(
4214 VkDevice _device,
4215 VkEvent _event,
4216 const VkAllocationCallbacks* pAllocator)
4217 {
4218 ANV_FROM_HANDLE(anv_device, device, _device);
4219 ANV_FROM_HANDLE(anv_event, event, _event);
4220
4221 if (!event)
4222 return;
4223
4224 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4225
4226 vk_object_base_finish(&event->base);
4227 vk_free2(&device->vk.alloc, pAllocator, event);
4228 }
4229
anv_GetEventStatus(VkDevice _device,VkEvent _event)4230 VkResult anv_GetEventStatus(
4231 VkDevice _device,
4232 VkEvent _event)
4233 {
4234 ANV_FROM_HANDLE(anv_device, device, _device);
4235 ANV_FROM_HANDLE(anv_event, event, _event);
4236
4237 if (anv_device_is_lost(device))
4238 return VK_ERROR_DEVICE_LOST;
4239
4240 return *(uint64_t *)event->state.map;
4241 }
4242
anv_SetEvent(VkDevice _device,VkEvent _event)4243 VkResult anv_SetEvent(
4244 VkDevice _device,
4245 VkEvent _event)
4246 {
4247 ANV_FROM_HANDLE(anv_event, event, _event);
4248
4249 *(uint64_t *)event->state.map = VK_EVENT_SET;
4250
4251 return VK_SUCCESS;
4252 }
4253
anv_ResetEvent(VkDevice _device,VkEvent _event)4254 VkResult anv_ResetEvent(
4255 VkDevice _device,
4256 VkEvent _event)
4257 {
4258 ANV_FROM_HANDLE(anv_event, event, _event);
4259
4260 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4261
4262 return VK_SUCCESS;
4263 }
4264
4265 // Buffer functions
4266
anv_CreateBuffer(VkDevice _device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)4267 VkResult anv_CreateBuffer(
4268 VkDevice _device,
4269 const VkBufferCreateInfo* pCreateInfo,
4270 const VkAllocationCallbacks* pAllocator,
4271 VkBuffer* pBuffer)
4272 {
4273 ANV_FROM_HANDLE(anv_device, device, _device);
4274 struct anv_buffer *buffer;
4275
4276 /* Don't allow creating buffers bigger than our address space. The real
4277 * issue here is that we may align up the buffer size and we don't want
4278 * doing so to cause roll-over. However, no one has any business
4279 * allocating a buffer larger than our GTT size.
4280 */
4281 if (pCreateInfo->size > device->physical->gtt_size)
4282 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4283
4284 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4285
4286 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4287 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4288 if (buffer == NULL)
4289 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4290
4291 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4292 buffer->size = pCreateInfo->size;
4293 buffer->usage = pCreateInfo->usage;
4294 buffer->address = ANV_NULL_ADDRESS;
4295
4296 *pBuffer = anv_buffer_to_handle(buffer);
4297
4298 return VK_SUCCESS;
4299 }
4300
anv_DestroyBuffer(VkDevice _device,VkBuffer _buffer,const VkAllocationCallbacks * pAllocator)4301 void anv_DestroyBuffer(
4302 VkDevice _device,
4303 VkBuffer _buffer,
4304 const VkAllocationCallbacks* pAllocator)
4305 {
4306 ANV_FROM_HANDLE(anv_device, device, _device);
4307 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4308
4309 if (!buffer)
4310 return;
4311
4312 vk_object_base_finish(&buffer->base);
4313 vk_free2(&device->vk.alloc, pAllocator, buffer);
4314 }
4315
anv_GetBufferDeviceAddress(VkDevice device,const VkBufferDeviceAddressInfoKHR * pInfo)4316 VkDeviceAddress anv_GetBufferDeviceAddress(
4317 VkDevice device,
4318 const VkBufferDeviceAddressInfoKHR* pInfo)
4319 {
4320 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4321
4322 assert(!anv_address_is_null(buffer->address));
4323 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4324
4325 return anv_address_physical(buffer->address);
4326 }
4327
anv_GetBufferOpaqueCaptureAddress(VkDevice device,const VkBufferDeviceAddressInfoKHR * pInfo)4328 uint64_t anv_GetBufferOpaqueCaptureAddress(
4329 VkDevice device,
4330 const VkBufferDeviceAddressInfoKHR* pInfo)
4331 {
4332 return 0;
4333 }
4334
anv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,const VkDeviceMemoryOpaqueCaptureAddressInfoKHR * pInfo)4335 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4336 VkDevice device,
4337 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4338 {
4339 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4340
4341 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4342 assert(memory->bo->has_client_visible_address);
4343
4344 return gen_48b_address(memory->bo->offset);
4345 }
4346
4347 void
anv_fill_buffer_surface_state(struct anv_device * device,struct anv_state state,enum isl_format format,isl_surf_usage_flags_t usage,struct anv_address address,uint32_t range,uint32_t stride)4348 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4349 enum isl_format format,
4350 isl_surf_usage_flags_t usage,
4351 struct anv_address address,
4352 uint32_t range, uint32_t stride)
4353 {
4354 isl_buffer_fill_state(&device->isl_dev, state.map,
4355 .address = anv_address_physical(address),
4356 .mocs = isl_mocs(&device->isl_dev, usage),
4357 .size_B = range,
4358 .format = format,
4359 .swizzle = ISL_SWIZZLE_IDENTITY,
4360 .stride_B = stride);
4361 }
4362
anv_DestroySampler(VkDevice _device,VkSampler _sampler,const VkAllocationCallbacks * pAllocator)4363 void anv_DestroySampler(
4364 VkDevice _device,
4365 VkSampler _sampler,
4366 const VkAllocationCallbacks* pAllocator)
4367 {
4368 ANV_FROM_HANDLE(anv_device, device, _device);
4369 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4370
4371 if (!sampler)
4372 return;
4373
4374 if (sampler->bindless_state.map) {
4375 anv_state_pool_free(&device->dynamic_state_pool,
4376 sampler->bindless_state);
4377 }
4378
4379 if (sampler->custom_border_color.map) {
4380 anv_state_reserved_pool_free(&device->custom_border_colors,
4381 sampler->custom_border_color);
4382 }
4383
4384 vk_object_base_finish(&sampler->base);
4385 vk_free2(&device->vk.alloc, pAllocator, sampler);
4386 }
4387
anv_CreateFramebuffer(VkDevice _device,const VkFramebufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkFramebuffer * pFramebuffer)4388 VkResult anv_CreateFramebuffer(
4389 VkDevice _device,
4390 const VkFramebufferCreateInfo* pCreateInfo,
4391 const VkAllocationCallbacks* pAllocator,
4392 VkFramebuffer* pFramebuffer)
4393 {
4394 ANV_FROM_HANDLE(anv_device, device, _device);
4395 struct anv_framebuffer *framebuffer;
4396
4397 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4398
4399 size_t size = sizeof(*framebuffer);
4400
4401 /* VK_KHR_imageless_framebuffer extension says:
4402 *
4403 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4404 * parameter pAttachments is ignored.
4405 */
4406 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4407 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4408 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4409 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4410 if (framebuffer == NULL)
4411 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4412
4413 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4414 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4415 framebuffer->attachments[i] = iview;
4416 }
4417 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4418 } else {
4419 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4420 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4421 if (framebuffer == NULL)
4422 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4423
4424 framebuffer->attachment_count = 0;
4425 }
4426
4427 vk_object_base_init(&device->vk, &framebuffer->base,
4428 VK_OBJECT_TYPE_FRAMEBUFFER);
4429
4430 framebuffer->width = pCreateInfo->width;
4431 framebuffer->height = pCreateInfo->height;
4432 framebuffer->layers = pCreateInfo->layers;
4433
4434 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4435
4436 return VK_SUCCESS;
4437 }
4438
anv_DestroyFramebuffer(VkDevice _device,VkFramebuffer _fb,const VkAllocationCallbacks * pAllocator)4439 void anv_DestroyFramebuffer(
4440 VkDevice _device,
4441 VkFramebuffer _fb,
4442 const VkAllocationCallbacks* pAllocator)
4443 {
4444 ANV_FROM_HANDLE(anv_device, device, _device);
4445 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4446
4447 if (!fb)
4448 return;
4449
4450 vk_object_base_finish(&fb->base);
4451 vk_free2(&device->vk.alloc, pAllocator, fb);
4452 }
4453
4454 static const VkTimeDomainEXT anv_time_domains[] = {
4455 VK_TIME_DOMAIN_DEVICE_EXT,
4456 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4457 #ifdef CLOCK_MONOTONIC_RAW
4458 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4459 #endif
4460 };
4461
anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,uint32_t * pTimeDomainCount,VkTimeDomainEXT * pTimeDomains)4462 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4463 VkPhysicalDevice physicalDevice,
4464 uint32_t *pTimeDomainCount,
4465 VkTimeDomainEXT *pTimeDomains)
4466 {
4467 int d;
4468 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4469
4470 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4471 vk_outarray_append(&out, i) {
4472 *i = anv_time_domains[d];
4473 }
4474 }
4475
4476 return vk_outarray_status(&out);
4477 }
4478
4479 static uint64_t
anv_clock_gettime(clockid_t clock_id)4480 anv_clock_gettime(clockid_t clock_id)
4481 {
4482 struct timespec current;
4483 int ret;
4484
4485 ret = clock_gettime(clock_id, ¤t);
4486 #ifdef CLOCK_MONOTONIC_RAW
4487 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4488 ret = clock_gettime(CLOCK_MONOTONIC, ¤t);
4489 #endif
4490 if (ret < 0)
4491 return 0;
4492
4493 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4494 }
4495
anv_GetCalibratedTimestampsEXT(VkDevice _device,uint32_t timestampCount,const VkCalibratedTimestampInfoEXT * pTimestampInfos,uint64_t * pTimestamps,uint64_t * pMaxDeviation)4496 VkResult anv_GetCalibratedTimestampsEXT(
4497 VkDevice _device,
4498 uint32_t timestampCount,
4499 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4500 uint64_t *pTimestamps,
4501 uint64_t *pMaxDeviation)
4502 {
4503 ANV_FROM_HANDLE(anv_device, device, _device);
4504 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4505 int ret;
4506 int d;
4507 uint64_t begin, end;
4508 uint64_t max_clock_period = 0;
4509
4510 #ifdef CLOCK_MONOTONIC_RAW
4511 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4512 #else
4513 begin = anv_clock_gettime(CLOCK_MONOTONIC);
4514 #endif
4515
4516 for (d = 0; d < timestampCount; d++) {
4517 switch (pTimestampInfos[d].timeDomain) {
4518 case VK_TIME_DOMAIN_DEVICE_EXT:
4519 ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA,
4520 &pTimestamps[d]);
4521
4522 if (ret != 0) {
4523 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4524 "register: %m");
4525 }
4526 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4527 max_clock_period = MAX2(max_clock_period, device_period);
4528 break;
4529 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4530 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4531 max_clock_period = MAX2(max_clock_period, 1);
4532 break;
4533
4534 #ifdef CLOCK_MONOTONIC_RAW
4535 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4536 pTimestamps[d] = begin;
4537 break;
4538 #endif
4539 default:
4540 pTimestamps[d] = 0;
4541 break;
4542 }
4543 }
4544
4545 #ifdef CLOCK_MONOTONIC_RAW
4546 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4547 #else
4548 end = anv_clock_gettime(CLOCK_MONOTONIC);
4549 #endif
4550
4551 /*
4552 * The maximum deviation is the sum of the interval over which we
4553 * perform the sampling and the maximum period of any sampled
4554 * clock. That's because the maximum skew between any two sampled
4555 * clock edges is when the sampled clock with the largest period is
4556 * sampled at the end of that period but right at the beginning of the
4557 * sampling interval and some other clock is sampled right at the
4558 * begining of its sampling period and right at the end of the
4559 * sampling interval. Let's assume the GPU has the longest clock
4560 * period and that the application is sampling GPU and monotonic:
4561 *
4562 * s e
4563 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4564 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4565 *
4566 * g
4567 * 0 1 2 3
4568 * GPU -----_____-----_____-----_____-----_____
4569 *
4570 * m
4571 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4572 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4573 *
4574 * Interval <----------------->
4575 * Deviation <-------------------------->
4576 *
4577 * s = read(raw) 2
4578 * g = read(GPU) 1
4579 * m = read(monotonic) 2
4580 * e = read(raw) b
4581 *
4582 * We round the sample interval up by one tick to cover sampling error
4583 * in the interval clock
4584 */
4585
4586 uint64_t sample_interval = end - begin + 1;
4587
4588 *pMaxDeviation = sample_interval + max_clock_period;
4589
4590 return VK_SUCCESS;
4591 }
4592
4593 /* vk_icd.h does not declare this function, so we declare it here to
4594 * suppress Wmissing-prototypes.
4595 */
4596 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4597 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4598
4599 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t * pSupportedVersion)4600 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4601 {
4602 /* For the full details on loader interface versioning, see
4603 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4604 * What follows is a condensed summary, to help you navigate the large and
4605 * confusing official doc.
4606 *
4607 * - Loader interface v0 is incompatible with later versions. We don't
4608 * support it.
4609 *
4610 * - In loader interface v1:
4611 * - The first ICD entrypoint called by the loader is
4612 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4613 * entrypoint.
4614 * - The ICD must statically expose no other Vulkan symbol unless it is
4615 * linked with -Bsymbolic.
4616 * - Each dispatchable Vulkan handle created by the ICD must be
4617 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4618 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4619 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4620 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4621 * such loader-managed surfaces.
4622 *
4623 * - Loader interface v2 differs from v1 in:
4624 * - The first ICD entrypoint called by the loader is
4625 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4626 * statically expose this entrypoint.
4627 *
4628 * - Loader interface v3 differs from v2 in:
4629 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4630 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4631 * because the loader no longer does so.
4632 *
4633 * - Loader interface v4 differs from v3 in:
4634 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4635 */
4636 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4637 return VK_SUCCESS;
4638 }
4639
anv_CreatePrivateDataSlotEXT(VkDevice _device,const VkPrivateDataSlotCreateInfoEXT * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPrivateDataSlotEXT * pPrivateDataSlot)4640 VkResult anv_CreatePrivateDataSlotEXT(
4641 VkDevice _device,
4642 const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
4643 const VkAllocationCallbacks* pAllocator,
4644 VkPrivateDataSlotEXT* pPrivateDataSlot)
4645 {
4646 ANV_FROM_HANDLE(anv_device, device, _device);
4647 return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
4648 pPrivateDataSlot);
4649 }
4650
anv_DestroyPrivateDataSlotEXT(VkDevice _device,VkPrivateDataSlotEXT privateDataSlot,const VkAllocationCallbacks * pAllocator)4651 void anv_DestroyPrivateDataSlotEXT(
4652 VkDevice _device,
4653 VkPrivateDataSlotEXT privateDataSlot,
4654 const VkAllocationCallbacks* pAllocator)
4655 {
4656 ANV_FROM_HANDLE(anv_device, device, _device);
4657 vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
4658 }
4659
anv_SetPrivateDataEXT(VkDevice _device,VkObjectType objectType,uint64_t objectHandle,VkPrivateDataSlotEXT privateDataSlot,uint64_t data)4660 VkResult anv_SetPrivateDataEXT(
4661 VkDevice _device,
4662 VkObjectType objectType,
4663 uint64_t objectHandle,
4664 VkPrivateDataSlotEXT privateDataSlot,
4665 uint64_t data)
4666 {
4667 ANV_FROM_HANDLE(anv_device, device, _device);
4668 return vk_object_base_set_private_data(&device->vk,
4669 objectType, objectHandle,
4670 privateDataSlot, data);
4671 }
4672
anv_GetPrivateDataEXT(VkDevice _device,VkObjectType objectType,uint64_t objectHandle,VkPrivateDataSlotEXT privateDataSlot,uint64_t * pData)4673 void anv_GetPrivateDataEXT(
4674 VkDevice _device,
4675 VkObjectType objectType,
4676 uint64_t objectHandle,
4677 VkPrivateDataSlotEXT privateDataSlot,
4678 uint64_t* pData)
4679 {
4680 ANV_FROM_HANDLE(anv_device, device, _device);
4681 vk_object_base_get_private_data(&device->vk,
4682 objectType, objectHandle,
4683 privateDataSlot, pData);
4684 }
4685