1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/geometry/GrTriangulator.h"
9
10 #include "src/gpu/BufferWriter.h"
11 #include "src/gpu/ganesh/GrEagerVertexAllocator.h"
12 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
13
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPointPriv.h"
16
17 #include <algorithm>
18
19 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
20
21 #if TRIANGULATOR_LOGGING
22 #define TESS_LOG printf
23 #define DUMP_MESH(M) (M).dump()
24 #else
25 #define TESS_LOG(...)
26 #define DUMP_MESH(M)
27 #endif
28
29 using EdgeType = GrTriangulator::EdgeType;
30 using Vertex = GrTriangulator::Vertex;
31 using VertexList = GrTriangulator::VertexList;
32 using Line = GrTriangulator::Line;
33 using Edge = GrTriangulator::Edge;
34 using EdgeList = GrTriangulator::EdgeList;
35 using Poly = GrTriangulator::Poly;
36 using MonotonePoly = GrTriangulator::MonotonePoly;
37 using Comparator = GrTriangulator::Comparator;
38
39 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)40 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
41 t->*Prev = prev;
42 t->*Next = next;
43 if (prev) {
44 prev->*Next = t;
45 } else if (head) {
46 *head = t;
47 }
48 if (next) {
49 next->*Prev = t;
50 } else if (tail) {
51 *tail = t;
52 }
53 }
54
55 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)56 static void list_remove(T* t, T** head, T** tail) {
57 if (t->*Prev) {
58 t->*Prev->*Next = t->*Next;
59 } else if (head) {
60 *head = t->*Next;
61 }
62 if (t->*Next) {
63 t->*Next->*Prev = t->*Prev;
64 } else if (tail) {
65 *tail = t->*Prev;
66 }
67 t->*Prev = t->*Next = nullptr;
68 }
69
70 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
71
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)72 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
73 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
74 }
75
sweep_lt_vert(const SkPoint & a,const SkPoint & b)76 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
77 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
78 }
79
sweep_lt(const SkPoint & a,const SkPoint & b) const80 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
81 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
82 }
83
emit_vertex(Vertex * v,bool emitCoverage,skgpu::VertexWriter data)84 static inline skgpu::VertexWriter emit_vertex(Vertex* v,
85 bool emitCoverage,
86 skgpu::VertexWriter data) {
87 data << v->fPoint;
88
89 if (emitCoverage) {
90 data << GrNormalizeByteToFloat(v->fAlpha);
91 }
92
93 return data;
94 }
95
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,skgpu::VertexWriter data)96 static skgpu::VertexWriter emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2,
97 bool emitCoverage, skgpu::VertexWriter data) {
98 TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
99 TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
100 TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
101 #if TESSELLATOR_WIREFRAME
102 data = emit_vertex(v0, emitCoverage, std::move(data));
103 data = emit_vertex(v1, emitCoverage, std::move(data));
104 data = emit_vertex(v1, emitCoverage, std::move(data));
105 data = emit_vertex(v2, emitCoverage, std::move(data));
106 data = emit_vertex(v2, emitCoverage, std::move(data));
107 data = emit_vertex(v0, emitCoverage, std::move(data));
108 #else
109 data = emit_vertex(v0, emitCoverage, std::move(data));
110 data = emit_vertex(v1, emitCoverage, std::move(data));
111 data = emit_vertex(v2, emitCoverage, std::move(data));
112 #endif
113 return data;
114 }
115
insert(Vertex * v,Vertex * prev,Vertex * next)116 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
117 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
118 }
119
remove(Vertex * v)120 void GrTriangulator::VertexList::remove(Vertex* v) {
121 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
122 }
123
124 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
125
round(SkPoint * p)126 static inline void round(SkPoint* p) {
127 p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
128 p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
129 }
130
double_to_clamped_scalar(double d)131 static inline SkScalar double_to_clamped_scalar(double d) {
132 // Clamps large values to what's finitely representable when cast back to a float.
133 static const double kMaxLimit = (double) SK_ScalarMax;
134 // It's not perfect, but a using a value larger than float_min helps protect from denormalized
135 // values and ill-conditions in intermediate calculations on coordinates.
136 static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
137 if (std::abs(d) < kNearZeroLimit) {
138 d = 0.f;
139 }
140 return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
141 }
142
intersect(const Line & other,SkPoint * point) const143 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
144 double denom = fA * other.fB - fB * other.fA;
145 if (denom == 0.0) {
146 return false;
147 }
148 double scale = 1.0 / denom;
149 point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
150 point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
151 round(point);
152 return point->isFinite();
153 }
154
155 // If the edge's vertices differ by many orders of magnitude, the computed line equation can have
156 // significant error in its distance and intersection tests. To avoid this, we recursively subdivide
157 // long edges and effectively perform a binary search to perform a more accurate intersection test.
edge_line_needs_recursion(const SkPoint & p0,const SkPoint & p1)158 static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
159 // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
160 // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
161 // very large coordinates.
162 int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
163 (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
164 int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
165 (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
166 // Differ by more than 2^20, or roughly a factor of one million.
167 return expDiffX > 20 || expDiffY > 20;
168 }
169
recursive_edge_intersect(const Line & u,SkPoint u0,SkPoint u1,const Line & v,SkPoint v0,SkPoint v1,SkPoint * p,double * s,double * t)170 static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
171 const Line& v, SkPoint v0, SkPoint v1,
172 SkPoint* p, double* s, double* t) {
173 // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
174 // two line segments cannot intersect in their domain (even if the lines themselves might).
175 // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
176 // appear as empty rects, which then never "intersect" according to SkRect.
177 if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
178 std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
179 std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
180 std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
181 return false;
182 }
183
184 // Compute intersection based on current segment vertices; if an intersection is found but the
185 // vertices differ too much in magnitude, we recurse using the midpoint of the segment to
186 // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
187 // line reports no intersection but there is one).
188 double denom = u.fA * v.fB - u.fB * v.fA;
189 if (denom == 0.0) {
190 return false;
191 }
192 double dx = static_cast<double>(v0.fX) - u0.fX;
193 double dy = static_cast<double>(v0.fY) - u0.fY;
194 double sNumer = dy * v.fB + dx * v.fA;
195 double tNumer = dy * u.fB + dx * u.fA;
196 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
197 // This saves us doing the divide below unless absolutely necessary.
198 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
199 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
200 return false;
201 }
202
203 *s = sNumer / denom;
204 *t = tNumer / denom;
205 SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
206
207 const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
208 const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
209 if (!uNeedsSplit && !vNeedsSplit) {
210 p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
211 p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
212 return true;
213 } else {
214 double sScale = 1.0, sShift = 0.0;
215 double tScale = 1.0, tShift = 0.0;
216
217 if (uNeedsSplit) {
218 SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
219 (float) (0.5 * u0.fY + 0.5 * u1.fY)};
220 sScale = 0.5;
221 if (*s >= 0.5) {
222 u0 = uM;
223 sShift = 0.5;
224 } else {
225 u1 = uM;
226 }
227 }
228 if (vNeedsSplit) {
229 SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
230 (float) (0.5 * v0.fY + 0.5 * v1.fY)};
231 tScale = 0.5;
232 if (*t >= 0.5) {
233 v0 = vM;
234 tShift = 0.5;
235 } else {
236 v1 = vM;
237 }
238 }
239
240 // Just recompute both lines, even if only one was split; we're already in a slow path.
241 if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
242 // Adjust s and t back to full range
243 *s = sScale * (*s) + sShift;
244 *t = tScale * (*t) + tShift;
245 return true;
246 } else {
247 // False positive
248 return false;
249 }
250 }
251 }
252
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const253 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
254 TESS_LOG("intersecting %g -> %g with %g -> %g\n",
255 fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
256 if (fTop == other.fTop || fBottom == other.fBottom ||
257 fTop == other.fBottom || fBottom == other.fTop) {
258 // If the two edges share a vertex by construction, they have already been split and
259 // shouldn't be considered "intersecting" anymore.
260 return false;
261 }
262
263 double s, t; // needed to interpolate vertex alpha
264 const bool intersects = recursive_edge_intersect(
265 fLine, fTop->fPoint, fBottom->fPoint,
266 other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
267 p, &s, &t);
268 if (!intersects) {
269 return false;
270 }
271
272 if (alpha) {
273 if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
274 // If the intersection is on any interior edge, it needs to stay fully opaque or later
275 // triangulation could leech transparency into the inner fill region.
276 *alpha = 255;
277 } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
278 // Trivially, the intersection will be fully transparent since since it is by
279 // construction on the outer edge.
280 *alpha = 0;
281 } else {
282 // Could be two connectors crossing, or a connector crossing an outer edge.
283 // Take the max interpolated alpha
284 SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
285 *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
286 (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
287 }
288 }
289 return true;
290 }
291
insert(Edge * edge,Edge * prev,Edge * next)292 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
293 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
294 }
295
remove(Edge * edge)296 void GrTriangulator::EdgeList::remove(Edge* edge) {
297 TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
298 SkASSERT(this->contains(edge));
299 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
300 }
301
addEdge(Edge * edge)302 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
303 if (fSide == kRight_Side) {
304 SkASSERT(!edge->fUsedInRightPoly);
305 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
306 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
307 edge->fUsedInRightPoly = true;
308 } else {
309 SkASSERT(!edge->fUsedInLeftPoly);
310 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
311 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
312 edge->fUsedInLeftPoly = true;
313 }
314 }
315
emitMonotonePoly(const MonotonePoly * monotonePoly,skgpu::VertexWriter data) const316 skgpu::VertexWriter GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly,
317 skgpu::VertexWriter data) const {
318 SkASSERT(monotonePoly->fWinding != 0);
319 Edge* e = monotonePoly->fFirstEdge;
320 VertexList vertices;
321 vertices.append(e->fTop);
322 int count = 1;
323 while (e != nullptr) {
324 if (kRight_Side == monotonePoly->fSide) {
325 vertices.append(e->fBottom);
326 e = e->fRightPolyNext;
327 } else {
328 vertices.prepend(e->fBottom);
329 e = e->fLeftPolyNext;
330 }
331 count++;
332 }
333 Vertex* first = vertices.fHead;
334 Vertex* v = first->fNext;
335 while (v != vertices.fTail) {
336 SkASSERT(v && v->fPrev && v->fNext);
337 Vertex* prev = v->fPrev;
338 Vertex* curr = v;
339 Vertex* next = v->fNext;
340 if (count == 3) {
341 return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
342 }
343 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
344 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
345 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
346 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
347 if (ax * by - ay * bx >= 0.0) {
348 data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
349 v->fPrev->fNext = v->fNext;
350 v->fNext->fPrev = v->fPrev;
351 count--;
352 if (v->fPrev == first) {
353 v = v->fNext;
354 } else {
355 v = v->fPrev;
356 }
357 } else {
358 v = v->fNext;
359 }
360 }
361 return data;
362 }
363
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,skgpu::VertexWriter data) const364 skgpu::VertexWriter GrTriangulator::emitTriangle(
365 Vertex* prev, Vertex* curr, Vertex* next, int winding, skgpu::VertexWriter data) const {
366 if (winding > 0) {
367 // Ensure our triangles always wind in the same direction as if the path had been
368 // triangulated as a simple fan (a la red book).
369 std::swap(prev, next);
370 }
371 if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
372 fPath.getFillType() == SkPathFillType::kWinding) {
373 // The first winding count will come from the actual triangle we emit. The remaining counts
374 // come from the breadcrumb triangle.
375 fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
376 }
377 return emit_triangle(prev, curr, next, fEmitCoverage, std::move(data));
378 }
379
Poly(Vertex * v,int winding)380 GrTriangulator::Poly::Poly(Vertex* v, int winding)
381 : fFirstVertex(v)
382 , fWinding(winding)
383 , fHead(nullptr)
384 , fTail(nullptr)
385 , fNext(nullptr)
386 , fPartner(nullptr)
387 , fCount(0)
388 {
389 #if TRIANGULATOR_LOGGING
390 static int gID = 0;
391 fID = gID++;
392 TESS_LOG("*** created Poly %d\n", fID);
393 #endif
394 }
395
addEdge(Edge * e,Side side,GrTriangulator * tri)396 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) {
397 TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
398 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
399 Poly* partner = fPartner;
400 Poly* poly = this;
401 if (side == kRight_Side) {
402 if (e->fUsedInRightPoly) {
403 return this;
404 }
405 } else {
406 if (e->fUsedInLeftPoly) {
407 return this;
408 }
409 }
410 if (partner) {
411 fPartner = partner->fPartner = nullptr;
412 }
413 if (!fTail) {
414 fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding);
415 fCount += 2;
416 } else if (e->fBottom == fTail->fLastEdge->fBottom) {
417 return poly;
418 } else if (side == fTail->fSide) {
419 fTail->addEdge(e);
420 fCount++;
421 } else {
422 e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
423 fTail->addEdge(e);
424 fCount++;
425 if (partner) {
426 partner->addEdge(e, side, tri);
427 poly = partner;
428 } else {
429 MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding);
430 m->fPrev = fTail;
431 fTail->fNext = m;
432 fTail = m;
433 }
434 }
435 return poly;
436 }
emitPoly(const Poly * poly,skgpu::VertexWriter data) const437 skgpu::VertexWriter GrTriangulator::emitPoly(const Poly* poly, skgpu::VertexWriter data) const {
438 if (poly->fCount < 3) {
439 return data;
440 }
441 TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
442 for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
443 data = this->emitMonotonePoly(m, std::move(data));
444 }
445 return data;
446 }
447
coincident(const SkPoint & a,const SkPoint & b)448 static bool coincident(const SkPoint& a, const SkPoint& b) {
449 return a == b;
450 }
451
makePoly(Poly ** head,Vertex * v,int winding) const452 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
453 Poly* poly = fAlloc->make<Poly>(v, winding);
454 poly->fNext = *head;
455 *head = poly;
456 return poly;
457 }
458
appendPointToContour(const SkPoint & p,VertexList * contour) const459 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
460 Vertex* v = fAlloc->make<Vertex>(p, 255);
461 #if TRIANGULATOR_LOGGING
462 static float gID = 0.0f;
463 v->fID = gID++;
464 #endif
465 contour->append(v);
466 }
467
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)468 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
469 SkQuadCoeff quad(pts);
470 SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
471 SkPoint mid = to_point(quad.eval(t));
472 SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
473 if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
474 return 0;
475 }
476 return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
477 }
478
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const479 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
480 VertexList* contour) const {
481 SkQuadCoeff quad(pts);
482 skvx::float2 aa = quad.fA * quad.fA;
483 SkScalar denom = 2.0f * (aa[0] + aa[1]);
484 skvx::float2 ab = quad.fA * quad.fB;
485 SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
486 int nPoints = 1;
487 SkScalar u = 1.0f;
488 // Test possible subdivision values only at the point of maximum curvature.
489 // If it passes the flatness metric there, it'll pass everywhere.
490 while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
491 u = 1.0f / nPoints;
492 if (quad_error_at(pts, t, u) < toleranceSqd) {
493 break;
494 }
495 nPoints++;
496 }
497 for (int j = 1; j <= nPoints; j++) {
498 this->appendPointToContour(to_point(quad.eval(j * u)), contour);
499 }
500 }
501
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const502 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
503 const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
504 int pointsLeft) const {
505 SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
506 SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
507 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
508 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
509 this->appendPointToContour(p3, contour);
510 return;
511 }
512 const SkPoint q[] = {
513 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
514 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
515 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
516 };
517 const SkPoint r[] = {
518 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
519 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
520 };
521 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
522 pointsLeft >>= 1;
523 this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
524 this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
525 }
526
527 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
528
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const529 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
530 VertexList* contours, bool* isLinear) const {
531 SkScalar toleranceSqd = tolerance * tolerance;
532 SkPoint pts[4];
533 *isLinear = true;
534 VertexList* contour = contours;
535 SkPath::Iter iter(fPath, false);
536 if (fPath.isInverseFillType()) {
537 SkPoint quad[4];
538 clipBounds.toQuad(quad);
539 for (int i = 3; i >= 0; i--) {
540 this->appendPointToContour(quad[i], contours);
541 }
542 contour++;
543 }
544 SkAutoConicToQuads converter;
545 SkPath::Verb verb;
546 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
547 switch (verb) {
548 case SkPath::kConic_Verb: {
549 *isLinear = false;
550 if (toleranceSqd == 0) {
551 this->appendPointToContour(pts[2], contour);
552 break;
553 }
554 SkScalar weight = iter.conicWeight();
555 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
556 for (int i = 0; i < converter.countQuads(); ++i) {
557 this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
558 quadPts += 2;
559 }
560 break;
561 }
562 case SkPath::kMove_Verb:
563 if (contour->fHead) {
564 contour++;
565 }
566 this->appendPointToContour(pts[0], contour);
567 break;
568 case SkPath::kLine_Verb: {
569 this->appendPointToContour(pts[1], contour);
570 break;
571 }
572 case SkPath::kQuad_Verb: {
573 *isLinear = false;
574 if (toleranceSqd == 0) {
575 this->appendPointToContour(pts[2], contour);
576 break;
577 }
578 this->appendQuadraticToContour(pts, toleranceSqd, contour);
579 break;
580 }
581 case SkPath::kCubic_Verb: {
582 *isLinear = false;
583 if (toleranceSqd == 0) {
584 this->appendPointToContour(pts[3], contour);
585 break;
586 }
587 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
588 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
589 pointsLeft);
590 break;
591 }
592 case SkPath::kClose_Verb:
593 case SkPath::kDone_Verb:
594 break;
595 }
596 }
597 }
598
apply_fill_type(SkPathFillType fillType,int winding)599 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
600 switch (fillType) {
601 case SkPathFillType::kWinding:
602 return winding != 0;
603 case SkPathFillType::kEvenOdd:
604 return (winding & 1) != 0;
605 case SkPathFillType::kInverseWinding:
606 return winding == 1;
607 case SkPathFillType::kInverseEvenOdd:
608 return (winding & 1) == 1;
609 default:
610 SkASSERT(false);
611 return false;
612 }
613 }
614
applyFillType(int winding) const615 bool GrTriangulator::applyFillType(int winding) const {
616 return apply_fill_type(fPath.getFillType(), winding);
617 }
618
apply_fill_type(SkPathFillType fillType,Poly * poly)619 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
620 return poly && apply_fill_type(fillType, poly->fWinding);
621 }
622
allocateMonotonePoly(Edge * edge,Side side,int winding)623 MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) {
624 ++fNumMonotonePolys;
625 return fAlloc->make<MonotonePoly>(edge, side, winding);
626 }
627
allocateEdge(Vertex * top,Vertex * bottom,int winding,EdgeType type)628 Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) {
629 ++fNumEdges;
630 return fAlloc->make<Edge>(top, bottom, winding, type);
631 }
632
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c)633 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
634 const Comparator& c) {
635 SkASSERT(prev->fPoint != next->fPoint);
636 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
637 Vertex* top = winding < 0 ? next : prev;
638 Vertex* bottom = winding < 0 ? prev : next;
639 return this->allocateEdge(top, bottom, winding, type);
640 }
641
insert(Edge * edge,Edge * prev)642 void EdgeList::insert(Edge* edge, Edge* prev) {
643 TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
644 SkASSERT(!this->contains(edge));
645 Edge* next = prev ? prev->fRight : fHead;
646 this->insert(edge, prev, next);
647 }
648
FindEnclosingEdges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)649 void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
650 if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
651 *left = v->fFirstEdgeAbove->fLeft;
652 *right = v->fLastEdgeAbove->fRight;
653 return;
654 }
655 Edge* next = nullptr;
656 Edge* prev;
657 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
658 if (prev->isLeftOf(v)) {
659 break;
660 }
661 next = prev;
662 }
663 *left = prev;
664 *right = next;
665 }
666
insertAbove(Vertex * v,const Comparator & c)667 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
668 if (fTop->fPoint == fBottom->fPoint ||
669 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
670 return;
671 }
672 TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
673 Edge* prev = nullptr;
674 Edge* next;
675 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
676 if (next->isRightOf(fTop)) {
677 break;
678 }
679 prev = next;
680 }
681 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
682 this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
683 }
684
insertBelow(Vertex * v,const Comparator & c)685 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
686 if (fTop->fPoint == fBottom->fPoint ||
687 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
688 return;
689 }
690 TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
691 Edge* prev = nullptr;
692 Edge* next;
693 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
694 if (next->isRightOf(fBottom)) {
695 break;
696 }
697 prev = next;
698 }
699 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
700 this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
701 }
702
remove_edge_above(Edge * edge)703 static void remove_edge_above(Edge* edge) {
704 SkASSERT(edge->fTop && edge->fBottom);
705 TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
706 edge->fBottom->fID);
707 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
708 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
709 }
710
remove_edge_below(Edge * edge)711 static void remove_edge_below(Edge* edge) {
712 SkASSERT(edge->fTop && edge->fBottom);
713 TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
714 edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
715 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
716 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
717 }
718
disconnect()719 void GrTriangulator::Edge::disconnect() {
720 remove_edge_above(this);
721 remove_edge_below(this);
722 }
723
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)724 static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
725 if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
726 return;
727 }
728 Vertex* v = *current;
729 TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
730 while (v != dst) {
731 v = v->fPrev;
732 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
733 activeEdges->remove(e);
734 }
735 Edge* leftEdge = v->fLeftEnclosingEdge;
736 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
737 activeEdges->insert(e, leftEdge);
738 leftEdge = e;
739 Vertex* top = e->fTop;
740 if (c.sweep_lt(top->fPoint, dst->fPoint) &&
741 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) ||
742 (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) {
743 dst = top;
744 }
745 }
746 }
747 *current = v;
748 }
749
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)750 static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
751 const Comparator& c) {
752 if (!activeEdges || !current) {
753 return;
754 }
755 Vertex* top = edge->fTop;
756 Vertex* bottom = edge->fBottom;
757 if (edge->fLeft) {
758 Vertex* leftTop = edge->fLeft->fTop;
759 Vertex* leftBottom = edge->fLeft->fBottom;
760 if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
761 rewind(activeEdges, current, leftTop, c);
762 } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
763 rewind(activeEdges, current, top, c);
764 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
765 !edge->fLeft->isLeftOf(bottom)) {
766 rewind(activeEdges, current, leftTop, c);
767 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
768 rewind(activeEdges, current, top, c);
769 }
770 }
771 if (edge->fRight) {
772 Vertex* rightTop = edge->fRight->fTop;
773 Vertex* rightBottom = edge->fRight->fBottom;
774 if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
775 rewind(activeEdges, current, rightTop, c);
776 } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
777 rewind(activeEdges, current, top, c);
778 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
779 !edge->fRight->isRightOf(bottom)) {
780 rewind(activeEdges, current, rightTop, c);
781 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
782 !edge->isLeftOf(rightBottom)) {
783 rewind(activeEdges, current, top, c);
784 }
785 }
786 }
787
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const788 void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
789 const Comparator& c) const {
790 remove_edge_below(edge);
791 if (fCollectBreadcrumbTriangles) {
792 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
793 edge->fWinding);
794 }
795 edge->fTop = v;
796 edge->recompute();
797 edge->insertBelow(v, c);
798 rewind_if_necessary(edge, activeEdges, current, c);
799 this->mergeCollinearEdges(edge, activeEdges, current, c);
800 }
801
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const802 void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
803 const Comparator& c) const {
804 remove_edge_above(edge);
805 if (fCollectBreadcrumbTriangles) {
806 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
807 edge->fWinding);
808 }
809 edge->fBottom = v;
810 edge->recompute();
811 edge->insertAbove(v, c);
812 rewind_if_necessary(edge, activeEdges, current, c);
813 this->mergeCollinearEdges(edge, activeEdges, current, c);
814 }
815
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const816 void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
817 Vertex** current, const Comparator& c) const {
818 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
819 TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
820 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
821 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
822 rewind(activeEdges, current, edge->fTop, c);
823 other->fWinding += edge->fWinding;
824 edge->disconnect();
825 edge->fTop = edge->fBottom = nullptr;
826 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
827 rewind(activeEdges, current, edge->fTop, c);
828 other->fWinding += edge->fWinding;
829 this->setBottom(edge, other->fTop, activeEdges, current, c);
830 } else {
831 rewind(activeEdges, current, other->fTop, c);
832 edge->fWinding += other->fWinding;
833 this->setBottom(other, edge->fTop, activeEdges, current, c);
834 }
835 }
836
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const837 void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
838 Vertex** current, const Comparator& c) const {
839 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
840 TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
841 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
842 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
843 rewind(activeEdges, current, edge->fTop, c);
844 other->fWinding += edge->fWinding;
845 edge->disconnect();
846 edge->fTop = edge->fBottom = nullptr;
847 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
848 rewind(activeEdges, current, other->fTop, c);
849 edge->fWinding += other->fWinding;
850 this->setTop(other, edge->fBottom, activeEdges, current, c);
851 } else {
852 rewind(activeEdges, current, edge->fTop, c);
853 other->fWinding += edge->fWinding;
854 this->setTop(edge, other->fBottom, activeEdges, current, c);
855 }
856 }
857
top_collinear(Edge * left,Edge * right)858 static bool top_collinear(Edge* left, Edge* right) {
859 if (!left || !right) {
860 return false;
861 }
862 return left->fTop->fPoint == right->fTop->fPoint ||
863 !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
864 }
865
bottom_collinear(Edge * left,Edge * right)866 static bool bottom_collinear(Edge* left, Edge* right) {
867 if (!left || !right) {
868 return false;
869 }
870 return left->fBottom->fPoint == right->fBottom->fPoint ||
871 !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
872 }
873
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const874 void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
875 const Comparator& c) const {
876 for (;;) {
877 if (top_collinear(edge->fPrevEdgeAbove, edge)) {
878 this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
879 } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
880 this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c);
881 } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
882 this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
883 } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
884 this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c);
885 } else {
886 break;
887 }
888 }
889 SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
890 SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
891 SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
892 SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
893 }
894
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c)895 bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
896 const Comparator& c) {
897 if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
898 return false;
899 }
900 TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
901 edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
902 Vertex* top;
903 Vertex* bottom;
904 int winding = edge->fWinding;
905 // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
906 // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if
907 // v was clamped/rounded this relation doesn't always hold.
908 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
909 // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
910 // the new edge so that it winds as if it were p0->v.
911 top = v;
912 bottom = edge->fTop;
913 winding *= -1;
914 this->setTop(edge, v, activeEdges, current, c);
915 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
916 // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
917 // the new edge so that it winds as if it were v->p1.
918 top = edge->fBottom;
919 bottom = v;
920 winding *= -1;
921 this->setBottom(edge, v, activeEdges, current, c);
922 } else {
923 // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
924 // is valid for both edges.
925 top = v;
926 bottom = edge->fBottom;
927 this->setBottom(edge, v, activeEdges, current, c);
928 }
929 Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType);
930 newEdge->insertBelow(top, c);
931 newEdge->insertAbove(bottom, c);
932 this->mergeCollinearEdges(newEdge, activeEdges, current, c);
933 return true;
934 }
935
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c)936 bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges,
937 Vertex** current, const Comparator& c) {
938 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
939 return false;
940 }
941 if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
942 return false;
943 }
944
945 // Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the
946 // source of ground truth. It may suggest an intersection even if Edge::intersect() did not have
947 // the precision to check it. In this case we are explicitly correcting the edge topology to
948 // match the sided-ness checks.
949 Edge* split = nullptr;
950 Vertex* splitAt = nullptr;
951 if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
952 if (!left->isLeftOf(right->fTop)) {
953 split = left;
954 splitAt = right->fTop;
955 }
956 } else {
957 if (!right->isRightOf(left->fTop)) {
958 split = right;
959 splitAt = left->fTop;
960 }
961 }
962 if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
963 if (!left->isLeftOf(right->fBottom)) {
964 split = left;
965 splitAt = right->fBottom;
966 }
967 } else {
968 if (!right->isRightOf(left->fBottom)) {
969 split = right;
970 splitAt = left->fBottom;
971 }
972 }
973
974 if (!split) {
975 return false;
976 }
977
978 // Rewind to the top of the edge that is "moving" since this topology correction can change the
979 // geometry of the split edge.
980 rewind(activeEdges, current, split->fTop, c);
981 return this->splitEdge(split, splitAt, activeEdges, current, c);
982 }
983
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale)984 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
985 const Comparator& c, int windingScale) {
986 if (!prev || !next || prev->fPoint == next->fPoint) {
987 return nullptr;
988 }
989 Edge* edge = this->makeEdge(prev, next, type, c);
990 edge->insertBelow(edge->fTop, c);
991 edge->insertAbove(edge->fBottom, c);
992 edge->fWinding *= windingScale;
993 this->mergeCollinearEdges(edge, nullptr, nullptr, c);
994 return edge;
995 }
996
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const997 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
998 const Comparator& c) const {
999 TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
1000 src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
1001 dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
1002 if (src->fPartner) {
1003 src->fPartner->fPartner = dst;
1004 }
1005 while (Edge* edge = src->fFirstEdgeAbove) {
1006 this->setBottom(edge, dst, nullptr, nullptr, c);
1007 }
1008 while (Edge* edge = src->fFirstEdgeBelow) {
1009 this->setTop(edge, dst, nullptr, nullptr, c);
1010 }
1011 mesh->remove(src);
1012 dst->fSynthetic = true;
1013 }
1014
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const1015 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
1016 Vertex* reference, const Comparator& c) const {
1017 Vertex* prevV = reference;
1018 while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1019 prevV = prevV->fPrev;
1020 }
1021 Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1022 while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1023 prevV = nextV;
1024 nextV = nextV->fNext;
1025 }
1026 Vertex* v;
1027 if (prevV && coincident(prevV->fPoint, p)) {
1028 v = prevV;
1029 } else if (nextV && coincident(nextV->fPoint, p)) {
1030 v = nextV;
1031 } else {
1032 v = fAlloc->make<Vertex>(p, alpha);
1033 #if TRIANGULATOR_LOGGING
1034 if (!prevV) {
1035 v->fID = mesh->fHead->fID - 1.0f;
1036 } else if (!nextV) {
1037 v->fID = mesh->fTail->fID + 1.0f;
1038 } else {
1039 v->fID = (prevV->fID + nextV->fID) * 0.5f;
1040 }
1041 #endif
1042 mesh->insert(v, prevV, nextV);
1043 }
1044 return v;
1045 }
1046
1047 // Clamps x and y coordinates independently, so the returned point will lie within the bounding
1048 // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
1049 // imposed by 'c').
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)1050 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
1051 if (c.fDirection == Comparator::Direction::kHorizontal) {
1052 // With horizontal sorting, we know min.x <= max.x, but there's no relation between
1053 // Y components unless min.x == max.x.
1054 return {SkTPin(p.fX, min.fX, max.fX),
1055 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
1056 : SkTPin(p.fY, max.fY, min.fY)};
1057 } else {
1058 // And with vertical sorting, we know Y's relation but not necessarily X's.
1059 return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
1060 : SkTPin(p.fX, max.fX, min.fX),
1061 SkTPin(p.fY, min.fY, max.fY)};
1062 }
1063 }
1064
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const1065 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
1066 SkASSERT(fEmitCoverage); // Edge-AA only!
1067 Line line1 = edge1->fLine;
1068 Line line2 = edge2->fLine;
1069 line1.normalize();
1070 line2.normalize();
1071 double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1072 if (cosAngle > 0.999) {
1073 return;
1074 }
1075 line1.fC += edge1->fWinding > 0 ? -1 : 1;
1076 line2.fC += edge2->fWinding > 0 ? -1 : 1;
1077 SkPoint p;
1078 if (line1.intersect(line2, &p)) {
1079 uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
1080 v->fPartner = fAlloc->make<Vertex>(p, alpha);
1081 TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1082 }
1083 }
1084
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c)1085 bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges,
1086 Vertex** current, VertexList* mesh,
1087 const Comparator& c) {
1088 if (!left || !right) {
1089 return false;
1090 }
1091 SkPoint p;
1092 uint8_t alpha;
1093 if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1094 Vertex* v;
1095 TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1096 Vertex* top = *current;
1097 // If the intersection point is above the current vertex, rewind to the vertex above the
1098 // intersection.
1099 while (top && c.sweep_lt(p, top->fPoint)) {
1100 top = top->fPrev;
1101 }
1102
1103 // Always clamp the intersection to lie between the vertices of each segment, since
1104 // in theory that's where the intersection is, but in reality, floating point error may
1105 // have computed an intersection beyond a vertex's component(s).
1106 p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1107 p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1108
1109 if (coincident(p, left->fTop->fPoint)) {
1110 v = left->fTop;
1111 } else if (coincident(p, left->fBottom->fPoint)) {
1112 v = left->fBottom;
1113 } else if (coincident(p, right->fTop->fPoint)) {
1114 v = right->fTop;
1115 } else if (coincident(p, right->fBottom->fPoint)) {
1116 v = right->fBottom;
1117 } else {
1118 v = this->makeSortedVertex(p, alpha, mesh, top, c);
1119 if (left->fTop->fPartner) {
1120 SkASSERT(fEmitCoverage); // Edge-AA only!
1121 v->fSynthetic = true;
1122 this->computeBisector(left, right, v);
1123 }
1124 }
1125 rewind(activeEdges, current, top ? top : v, c);
1126 this->splitEdge(left, v, activeEdges, current, c);
1127 this->splitEdge(right, v, activeEdges, current, c);
1128 v->fAlpha = std::max(v->fAlpha, alpha);
1129 return true;
1130 }
1131 return this->intersectEdgePair(left, right, activeEdges, current, c);
1132 }
1133
sanitizeContours(VertexList * contours,int contourCnt) const1134 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1135 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1136 SkASSERT(contour->fHead);
1137 Vertex* prev = contour->fTail;
1138 prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1139 prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1140 if (fRoundVerticesToQuarterPixel) {
1141 round(&prev->fPoint);
1142 }
1143 for (Vertex* v = contour->fHead; v;) {
1144 v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1145 v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1146 if (fRoundVerticesToQuarterPixel) {
1147 round(&v->fPoint);
1148 }
1149 Vertex* next = v->fNext;
1150 Vertex* nextWrap = next ? next : contour->fHead;
1151 if (coincident(prev->fPoint, v->fPoint)) {
1152 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1153 contour->remove(v);
1154 } else if (!v->fPoint.isFinite()) {
1155 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1156 contour->remove(v);
1157 } else if (!fPreserveCollinearVertices &&
1158 Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1159 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1160 contour->remove(v);
1161 } else {
1162 prev = v;
1163 }
1164 v = next;
1165 }
1166 }
1167 }
1168
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1169 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1170 if (!mesh->fHead) {
1171 return false;
1172 }
1173 bool merged = false;
1174 for (Vertex* v = mesh->fHead->fNext; v;) {
1175 Vertex* next = v->fNext;
1176 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1177 v->fPoint = v->fPrev->fPoint;
1178 }
1179 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1180 this->mergeVertices(v, v->fPrev, mesh, c);
1181 merged = true;
1182 }
1183 v = next;
1184 }
1185 return merged;
1186 }
1187
1188 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1189
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1190 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1191 const Comparator& c) {
1192 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1193 Vertex* prev = contour->fTail;
1194 for (Vertex* v = contour->fHead; v;) {
1195 Vertex* next = v->fNext;
1196 this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1197 mesh->append(v);
1198 prev = v;
1199 v = next;
1200 }
1201 }
1202 }
1203
1204 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1205 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1206 Vertex* a = front->fHead;
1207 Vertex* b = back->fHead;
1208 while (a && b) {
1209 if (sweep_lt(a->fPoint, b->fPoint)) {
1210 front->remove(a);
1211 result->append(a);
1212 a = front->fHead;
1213 } else {
1214 back->remove(b);
1215 result->append(b);
1216 b = back->fHead;
1217 }
1218 }
1219 result->append(*front);
1220 result->append(*back);
1221 }
1222
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1223 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1224 const Comparator& c) {
1225 if (c.fDirection == Comparator::Direction::kHorizontal) {
1226 sorted_merge<sweep_lt_horiz>(front, back, result);
1227 } else {
1228 sorted_merge<sweep_lt_vert>(front, back, result);
1229 }
1230 #if TRIANGULATOR_LOGGING
1231 float id = 0.0f;
1232 for (Vertex* v = result->fHead; v; v = v->fNext) {
1233 v->fID = id++;
1234 }
1235 #endif
1236 }
1237
1238 // Stage 3: sort the vertices by increasing sweep direction.
1239
1240 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1241 static void merge_sort(VertexList* vertices) {
1242 Vertex* slow = vertices->fHead;
1243 if (!slow) {
1244 return;
1245 }
1246 Vertex* fast = slow->fNext;
1247 if (!fast) {
1248 return;
1249 }
1250 do {
1251 fast = fast->fNext;
1252 if (fast) {
1253 fast = fast->fNext;
1254 slow = slow->fNext;
1255 }
1256 } while (fast);
1257 VertexList front(vertices->fHead, slow);
1258 VertexList back(slow->fNext, vertices->fTail);
1259 front.fTail->fNext = back.fHead->fPrev = nullptr;
1260
1261 merge_sort<sweep_lt>(&front);
1262 merge_sort<sweep_lt>(&back);
1263
1264 vertices->fHead = vertices->fTail = nullptr;
1265 sorted_merge<sweep_lt>(&front, &back, vertices);
1266 }
1267
1268 #if TRIANGULATOR_LOGGING
dump() const1269 void VertexList::dump() const {
1270 for (Vertex* v = fHead; v; v = v->fNext) {
1271 TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1272 if (Vertex* p = v->fPartner) {
1273 TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1274 p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1275 } else {
1276 TESS_LOG(", null partner\n");
1277 }
1278 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1279 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1280 }
1281 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1282 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1283 }
1284 }
1285 }
1286 #endif
1287
1288 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1289 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1290 if (!left || !right) {
1291 return;
1292 }
1293 if (left->fTop == right->fTop) {
1294 SkASSERT(left->isLeftOf(right->fBottom));
1295 SkASSERT(right->isRightOf(left->fBottom));
1296 } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1297 SkASSERT(left->isLeftOf(right->fTop));
1298 } else {
1299 SkASSERT(right->isRightOf(left->fTop));
1300 }
1301 if (left->fBottom == right->fBottom) {
1302 SkASSERT(left->isLeftOf(right->fTop));
1303 SkASSERT(right->isRightOf(left->fTop));
1304 } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1305 SkASSERT(left->isLeftOf(right->fBottom));
1306 } else {
1307 SkASSERT(right->isRightOf(left->fBottom));
1308 }
1309 }
1310
validate_edge_list(EdgeList * edges,const Comparator & c)1311 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1312 Edge* left = edges->fHead;
1313 if (!left) {
1314 return;
1315 }
1316 for (Edge* right = left->fRight; right; right = right->fRight) {
1317 validate_edge_pair(left, right, c);
1318 left = right;
1319 }
1320 }
1321 #endif
1322
1323 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1324
simplify(VertexList * mesh,const Comparator & c)1325 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1326 const Comparator& c) {
1327 TESS_LOG("simplifying complex polygons\n");
1328
1329 int initialNumEdges = fNumEdges;
1330
1331 EdgeList activeEdges;
1332 auto result = SimplifyResult::kAlreadySimple;
1333 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1334 if (!v->isConnected()) {
1335 continue;
1336 }
1337
1338 // The max increase across all skps, svgs and gms with only the triangulating and SW path
1339 // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is
1340 // 17x.
1341 if (fNumEdges > 170*initialNumEdges) {
1342 return SimplifyResult::kFailed;
1343 }
1344
1345 Edge* leftEnclosingEdge;
1346 Edge* rightEnclosingEdge;
1347 bool restartChecks;
1348 do {
1349 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1350 v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1351 restartChecks = false;
1352 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1353 v->fLeftEnclosingEdge = leftEnclosingEdge;
1354 v->fRightEnclosingEdge = rightEnclosingEdge;
1355 if (v->fFirstEdgeBelow) {
1356 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1357 if (this->checkForIntersection(
1358 leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) ||
1359 this->checkForIntersection(
1360 edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) {
1361 result = SimplifyResult::kFoundSelfIntersection;
1362 restartChecks = true;
1363 break;
1364 }
1365 }
1366 } else {
1367 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges,
1368 &v, mesh, c)) {
1369 result = SimplifyResult::kFoundSelfIntersection;
1370 restartChecks = true;
1371 }
1372
1373 }
1374 } while (restartChecks);
1375 #ifdef SK_DEBUG
1376 validate_edge_list(&activeEdges, c);
1377 #endif
1378 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1379 activeEdges.remove(e);
1380 }
1381 Edge* leftEdge = leftEnclosingEdge;
1382 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1383 activeEdges.insert(e, leftEdge);
1384 leftEdge = e;
1385 }
1386 }
1387 SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1388 return result;
1389 }
1390
1391 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1392
tessellate(const VertexList & vertices,const Comparator &)1393 std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) {
1394 TESS_LOG("\ntessellating simple polygons\n");
1395 EdgeList activeEdges;
1396 Poly* polys = nullptr;
1397 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1398 if (!v->isConnected()) {
1399 continue;
1400 }
1401 #if TRIANGULATOR_LOGGING
1402 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1403 #endif
1404 Edge* leftEnclosingEdge;
1405 Edge* rightEnclosingEdge;
1406 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1407 Poly* leftPoly;
1408 Poly* rightPoly;
1409 if (v->fFirstEdgeAbove) {
1410 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1411 rightPoly = v->fLastEdgeAbove->fRightPoly;
1412 } else {
1413 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1414 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1415 }
1416 #if TRIANGULATOR_LOGGING
1417 TESS_LOG("edges above:\n");
1418 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1419 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1420 e->fTop->fID, e->fBottom->fID,
1421 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1422 e->fRightPoly ? e->fRightPoly->fID : -1);
1423 }
1424 TESS_LOG("edges below:\n");
1425 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1426 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1427 e->fTop->fID, e->fBottom->fID,
1428 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1429 e->fRightPoly ? e->fRightPoly->fID : -1);
1430 }
1431 #endif
1432 if (v->fFirstEdgeAbove) {
1433 if (leftPoly) {
1434 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this);
1435 }
1436 if (rightPoly) {
1437 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this);
1438 }
1439 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1440 Edge* rightEdge = e->fNextEdgeAbove;
1441 activeEdges.remove(e);
1442 if (e->fRightPoly) {
1443 e->fRightPoly->addEdge(e, kLeft_Side, this);
1444 }
1445 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1446 rightEdge->fLeftPoly->addEdge(e, kRight_Side, this);
1447 }
1448 }
1449 activeEdges.remove(v->fLastEdgeAbove);
1450 if (!v->fFirstEdgeBelow) {
1451 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1452 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1453 rightPoly->fPartner = leftPoly;
1454 leftPoly->fPartner = rightPoly;
1455 }
1456 }
1457 }
1458 if (v->fFirstEdgeBelow) {
1459 if (!v->fFirstEdgeAbove) {
1460 if (leftPoly && rightPoly) {
1461 if (leftPoly == rightPoly) {
1462 if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1463 leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1464 leftPoly->fWinding);
1465 leftEnclosingEdge->fRightPoly = leftPoly;
1466 } else {
1467 rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1468 rightPoly->fWinding);
1469 rightEnclosingEdge->fLeftPoly = rightPoly;
1470 }
1471 }
1472 Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner);
1473 leftPoly = leftPoly->addEdge(join, kRight_Side, this);
1474 rightPoly = rightPoly->addEdge(join, kLeft_Side, this);
1475 }
1476 }
1477 Edge* leftEdge = v->fFirstEdgeBelow;
1478 leftEdge->fLeftPoly = leftPoly;
1479 activeEdges.insert(leftEdge, leftEnclosingEdge);
1480 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1481 rightEdge = rightEdge->fNextEdgeBelow) {
1482 activeEdges.insert(rightEdge, leftEdge);
1483 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1484 winding += leftEdge->fWinding;
1485 if (winding != 0) {
1486 Poly* poly = this->makePoly(&polys, v, winding);
1487 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1488 }
1489 leftEdge = rightEdge;
1490 }
1491 v->fLastEdgeBelow->fRightPoly = rightPoly;
1492 }
1493 #if TRIANGULATOR_LOGGING
1494 TESS_LOG("\nactive edges:\n");
1495 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1496 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1497 e->fTop->fID, e->fBottom->fID,
1498 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1499 e->fRightPoly ? e->fRightPoly->fID : -1);
1500 }
1501 #endif
1502 }
1503 return { polys, true };
1504 }
1505
1506 // This is a driver function that calls stages 2-5 in turn.
1507
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1508 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1509 const Comparator& c) {
1510 #if TRIANGULATOR_LOGGING
1511 for (int i = 0; i < contourCnt; ++i) {
1512 Vertex* v = contours[i].fHead;
1513 SkASSERT(v);
1514 TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1515 for (v = v->fNext; v; v = v->fNext) {
1516 TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1517 }
1518 }
1519 #endif
1520 this->sanitizeContours(contours, contourCnt);
1521 this->buildEdges(contours, contourCnt, mesh, c);
1522 }
1523
SortMesh(VertexList * vertices,const Comparator & c)1524 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1525 if (!vertices || !vertices->fHead) {
1526 return;
1527 }
1528
1529 // Sort vertices in Y (secondarily in X).
1530 if (c.fDirection == Comparator::Direction::kHorizontal) {
1531 merge_sort<sweep_lt_horiz>(vertices);
1532 } else {
1533 merge_sort<sweep_lt_vert>(vertices);
1534 }
1535 #if TRIANGULATOR_LOGGING
1536 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1537 static float gID = 0.0f;
1538 v->fID = gID++;
1539 }
1540 #endif
1541 }
1542
contoursToPolys(VertexList * contours,int contourCnt)1543 std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) {
1544 const SkRect& pathBounds = fPath.getBounds();
1545 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1546 : Comparator::Direction::kVertical);
1547 VertexList mesh;
1548 this->contoursToMesh(contours, contourCnt, &mesh, c);
1549 TESS_LOG("\ninitial mesh:\n");
1550 DUMP_MESH(mesh);
1551 SortMesh(&mesh, c);
1552 TESS_LOG("\nsorted mesh:\n");
1553 DUMP_MESH(mesh);
1554 this->mergeCoincidentVertices(&mesh, c);
1555 TESS_LOG("\nsorted+merged mesh:\n");
1556 DUMP_MESH(mesh);
1557 auto result = this->simplify(&mesh, c);
1558 if (result == SimplifyResult::kFailed) {
1559 return { nullptr, false };
1560 }
1561 TESS_LOG("\nsimplified mesh:\n");
1562 DUMP_MESH(mesh);
1563 return this->tessellate(mesh, c);
1564 }
1565
1566 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,SkPathFillType overrideFillType,skgpu::VertexWriter data) const1567 skgpu::VertexWriter GrTriangulator::polysToTriangles(Poly* polys,
1568 SkPathFillType overrideFillType,
1569 skgpu::VertexWriter data) const {
1570 for (Poly* poly = polys; poly; poly = poly->fNext) {
1571 if (apply_fill_type(overrideFillType, poly)) {
1572 data = this->emitPoly(poly, std::move(data));
1573 }
1574 }
1575 return data;
1576 }
1577
get_contour_count(const SkPath & path,SkScalar tolerance)1578 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1579 // We could theoretically be more aggressive about not counting empty contours, but we need to
1580 // actually match the exact number of contour linked lists the tessellator will create later on.
1581 int contourCnt = 1;
1582 bool hasPoints = false;
1583
1584 SkPath::Iter iter(path, false);
1585 SkPath::Verb verb;
1586 SkPoint pts[4];
1587 bool first = true;
1588 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1589 switch (verb) {
1590 case SkPath::kMove_Verb:
1591 if (!first) {
1592 ++contourCnt;
1593 }
1594 [[fallthrough]];
1595 case SkPath::kLine_Verb:
1596 case SkPath::kConic_Verb:
1597 case SkPath::kQuad_Verb:
1598 case SkPath::kCubic_Verb:
1599 hasPoints = true;
1600 break;
1601 default:
1602 break;
1603 }
1604 first = false;
1605 }
1606 if (!hasPoints) {
1607 return 0;
1608 }
1609 return contourCnt;
1610 }
1611
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear)1612 std::tuple<Poly*, bool> GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) {
1613 int contourCnt = get_contour_count(fPath, tolerance);
1614 if (contourCnt <= 0) {
1615 *isLinear = true;
1616 return { nullptr, true };
1617 }
1618
1619 if (SkPathFillType_IsInverse(fPath.getFillType())) {
1620 contourCnt++;
1621 }
1622 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1623
1624 this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1625 return this->contoursToPolys(contours.get(), contourCnt);
1626 }
1627
CountPoints(Poly * polys,SkPathFillType overrideFillType)1628 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1629 int64_t count = 0;
1630 for (Poly* poly = polys; poly; poly = poly->fNext) {
1631 if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1632 count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1633 }
1634 }
1635 return count;
1636 }
1637
1638 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1639
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1640 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1641 int64_t count64 = CountPoints(polys, fPath.getFillType());
1642 if (0 == count64 || count64 > SK_MaxS32) {
1643 return 0;
1644 }
1645 int count = count64;
1646
1647 size_t vertexStride = sizeof(SkPoint);
1648 if (fEmitCoverage) {
1649 vertexStride += sizeof(float);
1650 }
1651 skgpu::VertexWriter verts = vertexAllocator->lockWriter(vertexStride, count);
1652 if (!verts) {
1653 SkDebugf("Could not allocate vertices\n");
1654 return 0;
1655 }
1656
1657 TESS_LOG("emitting %d verts\n", count);
1658
1659 skgpu::BufferWriter::Mark start = verts.mark();
1660 verts = this->polysToTriangles(polys, fPath.getFillType(), std::move(verts));
1661
1662 int actualCount = static_cast<int>((verts.mark() - start) / vertexStride);
1663 SkASSERT(actualCount <= count);
1664 vertexAllocator->unlock(actualCount);
1665 return actualCount;
1666 }
1667
1668 #endif // SK_ENABLE_OPTIMIZE_SIZE
1669