• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root-inl.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "instrumentation.h"
36 #include "interpreter/interpreter.h"
37 #include "interpreter/interpreter_common.h"
38 #include "interpreter/shadow_frame-inl.h"
39 #include "jit/jit.h"
40 #include "jit/jit_code_cache.h"
41 #include "linear_alloc.h"
42 #include "method_handles.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/dex_cache-inl.h"
45 #include "mirror/method.h"
46 #include "mirror/method_handle_impl.h"
47 #include "mirror/object-inl.h"
48 #include "mirror/object_array-inl.h"
49 #include "mirror/var_handle.h"
50 #include "oat.h"
51 #include "oat_file.h"
52 #include "oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60 
61 namespace art {
62 
63 extern "C" NO_RETURN void artDeoptimizeFromCompiledCode(DeoptimizationKind kind, Thread* self);
64 extern "C" NO_RETURN void artDeoptimize(Thread* self, bool skip_method_exit_callbacks);
65 
66 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
67 class QuickArgumentVisitor {
68   // Number of bytes for each out register in the caller method's frame.
69   static constexpr size_t kBytesStackArgLocation = 4;
70   // Frame size in bytes of a callee-save frame for RefsAndArgs.
71   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
72       RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
73   // Offset of first GPR arg.
74   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
75       RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76   // Offset of first FPR arg.
77   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
78       RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
79   // Offset of return address.
80   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
81       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
82 #if defined(__arm__)
83   // The callee save frame is pointed to by SP.
84   // | argN       |  |
85   // | ...        |  |
86   // | arg4       |  |
87   // | arg3 spill |  |  Caller's frame
88   // | arg2 spill |  |
89   // | arg1 spill |  |
90   // | Method*    | ---
91   // | LR         |
92   // | ...        |    4x6 bytes callee saves
93   // | R3         |
94   // | R2         |
95   // | R1         |
96   // | S15        |
97   // | :          |
98   // | S0         |
99   // |            |    4x2 bytes padding
100   // | Method*    |  <- sp
101   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102   static constexpr bool kAlignPairRegister = true;
103   static constexpr bool kQuickSoftFloatAbi = false;
104   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
105   static constexpr bool kQuickSkipOddFpRegisters = false;
106   static constexpr size_t kNumQuickGprArgs = 3;
107   static constexpr size_t kNumQuickFprArgs = 16;
108   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)109   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
110     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
111   }
112 #elif defined(__aarch64__)
113   // The callee save frame is pointed to by SP.
114   // | argN       |  |
115   // | ...        |  |
116   // | arg4       |  |
117   // | arg3 spill |  |  Caller's frame
118   // | arg2 spill |  |
119   // | arg1 spill |  |
120   // | Method*    | ---
121   // | LR         |
122   // | X29        |
123   // |  :         |
124   // | X20        |
125   // | X7         |
126   // | :          |
127   // | X1         |
128   // | D7         |
129   // |  :         |
130   // | D0         |
131   // |            |    padding
132   // | Method*    |  <- sp
133   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
134   static constexpr bool kAlignPairRegister = false;
135   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
136   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
137   static constexpr bool kQuickSkipOddFpRegisters = false;
138   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
139   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
140   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)141   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
142     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
143   }
144 #elif defined(__riscv)
145   // The callee save frame is pointed to by SP.
146   // | argN            |  |
147   // | ...             |  |
148   // | reg. arg spills |  |  Caller's frame
149   // | Method*         | ---
150   // | RA              |
151   // | S11/X27         |  callee-saved 11
152   // | S10/X26         |  callee-saved 10
153   // | S9/X25          |  callee-saved 9
154   // | S9/X24          |  callee-saved 8
155   // | S7/X23          |  callee-saved 7
156   // | S6/X22          |  callee-saved 6
157   // | S5/X21          |  callee-saved 5
158   // | S4/X20          |  callee-saved 4
159   // | S3/X19          |  callee-saved 3
160   // | S2/X18          |  callee-saved 2
161   // | A7/X17          |  arg 7
162   // | A6/X16          |  arg 6
163   // | A5/X15          |  arg 5
164   // | A4/X14          |  arg 4
165   // | A3/X13          |  arg 3
166   // | A2/X12          |  arg 2
167   // | A1/X11          |  arg 1 (A0 is the method => skipped)
168   // | S0/X8/FP        |  callee-saved 0 (S1 is TR => skipped)
169   // | FA7             |  float arg 8
170   // | FA6             |  float arg 7
171   // | FA5             |  float arg 6
172   // | FA4             |  float arg 5
173   // | FA3             |  float arg 4
174   // | FA2             |  float arg 3
175   // | FA1             |  float arg 2
176   // | FA0             |  float arg 1
177   // | A0/Method*      | <- sp
178   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
179   static constexpr bool kAlignPairRegister = false;
180   static constexpr bool kQuickSoftFloatAbi = false;
181   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
182   static constexpr bool kQuickSkipOddFpRegisters = false;
183   static constexpr size_t kNumQuickGprArgs = 7;
184   static constexpr size_t kNumQuickFprArgs = 8;
185   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)186   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
187     return (gpr_index + 1) * GetBytesPerGprSpillLocation(kRuntimeISA);  // skip S0/X8/FP
188   }
189 #elif defined(__i386__)
190   // The callee save frame is pointed to by SP.
191   // | argN        |  |
192   // | ...         |  |
193   // | arg4        |  |
194   // | arg3 spill  |  |  Caller's frame
195   // | arg2 spill  |  |
196   // | arg1 spill  |  |
197   // | Method*     | ---
198   // | Return      |
199   // | EBP,ESI,EDI |    callee saves
200   // | EBX         |    arg3
201   // | EDX         |    arg2
202   // | ECX         |    arg1
203   // | XMM3        |    float arg 4
204   // | XMM2        |    float arg 3
205   // | XMM1        |    float arg 2
206   // | XMM0        |    float arg 1
207   // | EAX/Method* |  <- sp
208   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
209   static constexpr bool kAlignPairRegister = false;
210   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
211   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
212   static constexpr bool kQuickSkipOddFpRegisters = false;
213   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
214   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
215   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)216   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
217     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
218   }
219 #elif defined(__x86_64__)
220   // The callee save frame is pointed to by SP.
221   // | argN            |  |
222   // | ...             |  |
223   // | reg. arg spills |  |  Caller's frame
224   // | Method*         | ---
225   // | Return          |
226   // | R15             |    callee save
227   // | R14             |    callee save
228   // | R13             |    callee save
229   // | R12             |    callee save
230   // | R9              |    arg5
231   // | R8              |    arg4
232   // | RSI/R6          |    arg1
233   // | RBP/R5          |    callee save
234   // | RBX/R3          |    callee save
235   // | RDX/R2          |    arg2
236   // | RCX/R1          |    arg3
237   // | XMM7            |    float arg 8
238   // | XMM6            |    float arg 7
239   // | XMM5            |    float arg 6
240   // | XMM4            |    float arg 5
241   // | XMM3            |    float arg 4
242   // | XMM2            |    float arg 3
243   // | XMM1            |    float arg 2
244   // | XMM0            |    float arg 1
245   // | Padding         |
246   // | RDI/Method*     |  <- sp
247   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
248   static constexpr bool kAlignPairRegister = false;
249   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
250   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
251   static constexpr bool kQuickSkipOddFpRegisters = false;
252   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
253   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
254   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)255   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
256     switch (gpr_index) {
257       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
258       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
259       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
260       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
261       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
262       default:
263       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
264       UNREACHABLE();
265     }
266   }
267 #else
268 #error "Unsupported architecture"
269 #endif
270 
271  public:
GetThisObjectReference(ArtMethod ** sp)272   static StackReference<mirror::Object>* GetThisObjectReference(ArtMethod** sp)
273       REQUIRES_SHARED(Locks::mutator_lock_) {
274     CHECK_GT(kNumQuickGprArgs, 0u);
275     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
276     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
277         GprIndexToGprOffset(kThisGprIndex);
278     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
279     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
280   }
281 
GetCallingMethodAndDexPc(ArtMethod ** sp,uint32_t * dex_pc)282   static ArtMethod* GetCallingMethodAndDexPc(ArtMethod** sp, uint32_t* dex_pc)
283       REQUIRES_SHARED(Locks::mutator_lock_) {
284     DCHECK((*sp)->IsCalleeSaveMethod());
285     return GetCalleeSaveMethodCallerAndDexPc(sp, CalleeSaveType::kSaveRefsAndArgs, dex_pc);
286   }
287 
GetCallingMethod(ArtMethod ** sp)288   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
289     uint32_t dex_pc;
290     return GetCallingMethodAndDexPc(sp, &dex_pc);
291   }
292 
GetOuterMethod(ArtMethod ** sp)293   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
294     DCHECK((*sp)->IsCalleeSaveMethod());
295     uint8_t* previous_sp =
296         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
297     return *reinterpret_cast<ArtMethod**>(previous_sp);
298   }
299 
GetCallingPcAddr(ArtMethod ** sp)300   static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
301     DCHECK((*sp)->IsCalleeSaveMethod());
302     uint8_t* return_adress_spill =
303         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
304     return return_adress_spill;
305   }
306 
307   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)308   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
309     return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
310   }
311 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)312   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
313                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
314           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
315           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
316           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
317           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
318               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
319           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
320           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
321     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
322                   "Number of Quick FPR arguments unexpected");
323     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
324                   "Double alignment unexpected");
325     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
326     // next register is even.
327     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
328                   "Number of Quick FPR arguments not even");
329     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
330   }
331 
~QuickArgumentVisitor()332   virtual ~QuickArgumentVisitor() {}
333 
334   virtual void Visit() = 0;
335 
GetParamPrimitiveType() const336   Primitive::Type GetParamPrimitiveType() const {
337     return cur_type_;
338   }
339 
GetParamAddress() const340   uint8_t* GetParamAddress() const {
341     if (!kQuickSoftFloatAbi) {
342       Primitive::Type type = GetParamPrimitiveType();
343       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
344         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
345           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
346             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
347           }
348         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
349           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
350         }
351         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
352       }
353     }
354     if (gpr_index_ < kNumQuickGprArgs) {
355       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
356     }
357     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
358   }
359 
IsSplitLongOrDouble() const360   bool IsSplitLongOrDouble() const {
361     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
362         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
363       return is_split_long_or_double_;
364     } else {
365       return false;  // An optimization for when GPR and FPRs are 64bit.
366     }
367   }
368 
IsParamAReference() const369   bool IsParamAReference() const {
370     return GetParamPrimitiveType() == Primitive::kPrimNot;
371   }
372 
IsParamALongOrDouble() const373   bool IsParamALongOrDouble() const {
374     Primitive::Type type = GetParamPrimitiveType();
375     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
376   }
377 
ReadSplitLongParam() const378   uint64_t ReadSplitLongParam() const {
379     // The splitted long is always available through the stack.
380     return *reinterpret_cast<uint64_t*>(stack_args_
381         + stack_index_ * kBytesStackArgLocation);
382   }
383 
IncGprIndex()384   void IncGprIndex() {
385     gpr_index_++;
386     if (kGprFprLockstep) {
387       fpr_index_++;
388     }
389   }
390 
IncFprIndex()391   void IncFprIndex() {
392     fpr_index_++;
393     if (kGprFprLockstep) {
394       gpr_index_++;
395     }
396   }
397 
VisitArguments()398   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
399     // (a) 'stack_args_' should point to the first method's argument
400     // (b) whatever the argument type it is, the 'stack_index_' should
401     //     be moved forward along with every visiting.
402     gpr_index_ = 0;
403     fpr_index_ = 0;
404     if (kQuickDoubleRegAlignedFloatBackFilled) {
405       fpr_double_index_ = 0;
406     }
407     stack_index_ = 0;
408     if (!is_static_) {  // Handle this.
409       cur_type_ = Primitive::kPrimNot;
410       is_split_long_or_double_ = false;
411       Visit();
412       stack_index_++;
413       if (kNumQuickGprArgs > 0) {
414         IncGprIndex();
415       }
416     }
417     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
418       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
419       switch (cur_type_) {
420         case Primitive::kPrimNot:
421         case Primitive::kPrimBoolean:
422         case Primitive::kPrimByte:
423         case Primitive::kPrimChar:
424         case Primitive::kPrimShort:
425         case Primitive::kPrimInt:
426           is_split_long_or_double_ = false;
427           Visit();
428           stack_index_++;
429           if (gpr_index_ < kNumQuickGprArgs) {
430             IncGprIndex();
431           }
432           break;
433         case Primitive::kPrimFloat:
434           is_split_long_or_double_ = false;
435           Visit();
436           stack_index_++;
437           if (kQuickSoftFloatAbi) {
438             if (gpr_index_ < kNumQuickGprArgs) {
439               IncGprIndex();
440             }
441           } else {
442             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
443               IncFprIndex();
444               if (kQuickDoubleRegAlignedFloatBackFilled) {
445                 // Double should not overlap with float.
446                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
447                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
448                 // Float should not overlap with double.
449                 if (fpr_index_ % 2 == 0) {
450                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
451                 }
452               } else if (kQuickSkipOddFpRegisters) {
453                 IncFprIndex();
454               }
455             }
456           }
457           break;
458         case Primitive::kPrimDouble:
459         case Primitive::kPrimLong:
460           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
461             if (cur_type_ == Primitive::kPrimLong &&
462                 gpr_index_ == 0 &&
463                 kAlignPairRegister) {
464               // Currently, this is only for ARM, where we align long parameters with
465               // even-numbered registers by skipping R1 and using R2 instead.
466               IncGprIndex();
467             }
468             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
469                 ((gpr_index_ + 1) == kNumQuickGprArgs);
470             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
471               // We don't want to split this. Pass over this register.
472               gpr_index_++;
473               is_split_long_or_double_ = false;
474             }
475             Visit();
476             if (kBytesStackArgLocation == 4) {
477               stack_index_+= 2;
478             } else {
479               CHECK_EQ(kBytesStackArgLocation, 8U);
480               stack_index_++;
481             }
482             if (gpr_index_ < kNumQuickGprArgs) {
483               IncGprIndex();
484               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
485                 if (gpr_index_ < kNumQuickGprArgs) {
486                   IncGprIndex();
487                 }
488               }
489             }
490           } else {
491             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
492                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
493             Visit();
494             if (kBytesStackArgLocation == 4) {
495               stack_index_+= 2;
496             } else {
497               CHECK_EQ(kBytesStackArgLocation, 8U);
498               stack_index_++;
499             }
500             if (kQuickDoubleRegAlignedFloatBackFilled) {
501               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
502                 fpr_double_index_ += 2;
503                 // Float should not overlap with double.
504                 if (fpr_index_ % 2 == 0) {
505                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
506                 }
507               }
508             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
509               IncFprIndex();
510               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
511                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
512                   IncFprIndex();
513                 }
514               }
515             }
516           }
517           break;
518         default:
519           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
520       }
521     }
522   }
523 
524  protected:
525   const bool is_static_;
526   const char* const shorty_;
527   const uint32_t shorty_len_;
528 
529  private:
530   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
531   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
532   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
533   uint32_t gpr_index_;  // Index into spilled GPRs.
534   // Index into spilled FPRs.
535   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
536   // holds a higher register number.
537   uint32_t fpr_index_;
538   // Index into spilled FPRs for aligned double.
539   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
540   // terms of singles, may be behind fpr_index.
541   uint32_t fpr_double_index_;
542   uint32_t stack_index_;  // Index into arguments on the stack.
543   // The current type of argument during VisitArguments.
544   Primitive::Type cur_type_;
545   // Does a 64bit parameter straddle the register and stack arguments?
546   bool is_split_long_or_double_;
547 };
548 
549 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
550 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)551 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
552     REQUIRES_SHARED(Locks::mutator_lock_) {
553   DCHECK((*sp)->IsProxyMethod());
554   return QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr();
555 }
556 
557 // Visits arguments on the stack placing them into the shadow frame.
558 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
559  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)560   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
561                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
562       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
563 
564   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
565 
566  private:
567   ShadowFrame* const sf_;
568   uint32_t cur_reg_;
569 
570   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
571 };
572 
Visit()573 void BuildQuickShadowFrameVisitor::Visit() {
574   Primitive::Type type = GetParamPrimitiveType();
575   switch (type) {
576     case Primitive::kPrimLong:  // Fall-through.
577     case Primitive::kPrimDouble:
578       if (IsSplitLongOrDouble()) {
579         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
580       } else {
581         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
582       }
583       ++cur_reg_;
584       break;
585     case Primitive::kPrimNot: {
586         StackReference<mirror::Object>* stack_ref =
587             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
588         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
589       }
590       break;
591     case Primitive::kPrimBoolean:  // Fall-through.
592     case Primitive::kPrimByte:     // Fall-through.
593     case Primitive::kPrimChar:     // Fall-through.
594     case Primitive::kPrimShort:    // Fall-through.
595     case Primitive::kPrimInt:      // Fall-through.
596     case Primitive::kPrimFloat:
597       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
598       break;
599     case Primitive::kPrimVoid:
600       LOG(FATAL) << "UNREACHABLE";
601       UNREACHABLE();
602   }
603   ++cur_reg_;
604 }
605 
606 // Don't inline. See b/65159206.
607 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)608 static void HandleDeoptimization(JValue* result,
609                                  ArtMethod* method,
610                                  ShadowFrame* deopt_frame,
611                                  ManagedStack* fragment)
612     REQUIRES_SHARED(Locks::mutator_lock_) {
613   // Coming from partial-fragment deopt.
614   Thread* self = Thread::Current();
615   if (kIsDebugBuild) {
616     // Consistency-check: are the methods as expected? We check that the last shadow frame
617     // (the bottom of the call-stack) corresponds to the called method.
618     ShadowFrame* linked = deopt_frame;
619     while (linked->GetLink() != nullptr) {
620       linked = linked->GetLink();
621     }
622     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
623         << ArtMethod::PrettyMethod(linked->GetMethod());
624   }
625 
626   if (VLOG_IS_ON(deopt)) {
627     // Print out the stack to verify that it was a partial-fragment deopt.
628     LOG(INFO) << "Continue-ing from deopt. Stack is:";
629     QuickExceptionHandler::DumpFramesWithType(self, true);
630   }
631 
632   ObjPtr<mirror::Throwable> pending_exception;
633   bool from_code = false;
634   DeoptimizationMethodType method_type;
635   self->PopDeoptimizationContext(/* out */ result,
636                                  /* out */ &pending_exception,
637                                  /* out */ &from_code,
638                                  /* out */ &method_type);
639 
640   // Push a transition back into managed code onto the linked list in thread.
641   self->PushManagedStackFragment(fragment);
642 
643   // Ensure that the stack is still in order.
644   if (kIsDebugBuild) {
645     class EntireStackVisitor : public StackVisitor {
646      public:
647       explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
648           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
649 
650       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
651         // Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
652         // logic. Just always say we want to continue.
653         return true;
654       }
655     };
656     EntireStackVisitor esv(self);
657     esv.WalkStack();
658   }
659 
660   // Restore the exception that was pending before deoptimization then interpret the
661   // deoptimized frames.
662   if (pending_exception != nullptr) {
663     self->SetException(pending_exception);
664   }
665   interpreter::EnterInterpreterFromDeoptimize(self,
666                                               deopt_frame,
667                                               result,
668                                               from_code,
669                                               method_type);
670 }
671 
672 NO_STACK_PROTECTOR
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)673 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
674     REQUIRES_SHARED(Locks::mutator_lock_) {
675   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
676   // frame.
677   ScopedQuickEntrypointChecks sqec(self);
678 
679   if (UNLIKELY(!method->IsInvokable())) {
680     method->ThrowInvocationTimeError(
681         method->IsStatic()
682             ? nullptr
683             : QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr());
684     return 0;
685   }
686 
687   DCHECK(!method->IsNative()) << method->PrettyMethod();
688 
689   JValue result;
690 
691   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
692   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
693   uint32_t shorty_len = 0;
694   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
695 
696   ManagedStack fragment;
697   ShadowFrame* deopt_frame = self->MaybePopDeoptimizedStackedShadowFrame();
698   if (UNLIKELY(deopt_frame != nullptr)) {
699     HandleDeoptimization(&result, method, deopt_frame, &fragment);
700   } else {
701     CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
702     const char* old_cause = self->StartAssertNoThreadSuspension(
703         "Building interpreter shadow frame");
704     uint16_t num_regs = accessor.RegistersSize();
705     // No last shadow coming from quick.
706     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
707         CREATE_SHADOW_FRAME(num_regs, method, /* dex_pc= */ 0);
708     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
709     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
710     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
711                                                       shadow_frame, first_arg_reg);
712     shadow_frame_builder.VisitArguments();
713     self->EndAssertNoThreadSuspension(old_cause);
714 
715     // Potentially run <clinit> before pushing the shadow frame. We do not want
716     // to have the called method on the stack if there is an exception.
717     if (!EnsureInitialized(self, shadow_frame)) {
718       DCHECK(self->IsExceptionPending());
719       return 0;
720     }
721 
722     // Push a transition back into managed code onto the linked list in thread.
723     self->PushManagedStackFragment(&fragment);
724     self->PushShadowFrame(shadow_frame);
725     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
726   }
727 
728   // Pop transition.
729   self->PopManagedStackFragment(fragment);
730 
731   // Check if caller needs to be deoptimized for instrumentation reasons.
732   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
733   if (UNLIKELY(instr->ShouldDeoptimizeCaller(self, sp))) {
734     ArtMethod* caller = QuickArgumentVisitor::GetOuterMethod(sp);
735     uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
736     DCHECK(Runtime::Current()->IsAsyncDeoptimizeable(caller, caller_pc));
737     DCHECK(caller != nullptr);
738     DCHECK(self->GetException() != Thread::GetDeoptimizationException());
739     // Push the context of the deoptimization stack so we can restore the return value and the
740     // exception before executing the deoptimized frames.
741     self->PushDeoptimizationContext(result,
742                                     shorty[0] == 'L' || shorty[0] == '[', /* class or array */
743                                     self->GetException(),
744                                     /* from_code= */ false,
745                                     DeoptimizationMethodType::kDefault);
746 
747     // Set special exception to cause deoptimization.
748     self->SetException(Thread::GetDeoptimizationException());
749   }
750 
751   // No need to restore the args since the method has already been run by the interpreter.
752   return result.GetJ();
753 }
754 
755 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
756 // to jobjects.
757 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
758  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)759   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
760                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
761       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
762 
763   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
764 
765  private:
766   ScopedObjectAccessUnchecked* const soa_;
767   std::vector<jvalue>* const args_;
768 
769   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
770 };
771 
Visit()772 void BuildQuickArgumentVisitor::Visit() {
773   jvalue val;
774   Primitive::Type type = GetParamPrimitiveType();
775   switch (type) {
776     case Primitive::kPrimNot: {
777       StackReference<mirror::Object>* stack_ref =
778           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
779       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
780       break;
781     }
782     case Primitive::kPrimLong:  // Fall-through.
783     case Primitive::kPrimDouble:
784       if (IsSplitLongOrDouble()) {
785         val.j = ReadSplitLongParam();
786       } else {
787         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
788       }
789       break;
790     case Primitive::kPrimBoolean:  // Fall-through.
791     case Primitive::kPrimByte:     // Fall-through.
792     case Primitive::kPrimChar:     // Fall-through.
793     case Primitive::kPrimShort:    // Fall-through.
794     case Primitive::kPrimInt:      // Fall-through.
795     case Primitive::kPrimFloat:
796       val.i = *reinterpret_cast<jint*>(GetParamAddress());
797       break;
798     case Primitive::kPrimVoid:
799       LOG(FATAL) << "UNREACHABLE";
800       UNREACHABLE();
801   }
802   args_->push_back(val);
803 }
804 
805 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
806 // which is responsible for recording callee save registers. We explicitly place into jobjects the
807 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
808 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)809 extern "C" uint64_t artQuickProxyInvokeHandler(
810     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
811     REQUIRES_SHARED(Locks::mutator_lock_) {
812   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
813   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
814   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
815   const char* old_cause =
816       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
817   // Register the top of the managed stack, making stack crawlable.
818   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
819   self->VerifyStack();
820   // Start new JNI local reference state.
821   JNIEnvExt* env = self->GetJniEnv();
822   ScopedObjectAccessUnchecked soa(env);
823   ScopedJniEnvLocalRefState env_state(env);
824   // Create local ref. copies of proxy method and the receiver.
825   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
826 
827   // Placing arguments into args vector and remove the receiver.
828   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
829   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
830                                        << non_proxy_method->PrettyMethod();
831   std::vector<jvalue> args;
832   uint32_t shorty_len = 0;
833   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
834   BuildQuickArgumentVisitor local_ref_visitor(
835       sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
836 
837   local_ref_visitor.VisitArguments();
838   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
839   args.erase(args.begin());
840 
841   // Convert proxy method into expected interface method.
842   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
843   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
844   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
845   self->EndAssertNoThreadSuspension(old_cause);
846   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
847   DCHECK(!Runtime::Current()->IsActiveTransaction());
848   ObjPtr<mirror::Method> interface_reflect_method =
849       mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
850   if (interface_reflect_method == nullptr) {
851     soa.Self()->AssertPendingOOMException();
852     return 0;
853   }
854   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
855 
856   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
857   // that performs allocations or instrumentation events.
858   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
859   if (instr->HasMethodEntryListeners()) {
860     instr->MethodEnterEvent(soa.Self(), proxy_method);
861     if (soa.Self()->IsExceptionPending()) {
862       instr->MethodUnwindEvent(self,
863                                proxy_method,
864                                0);
865       return 0;
866     }
867   }
868   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
869   if (soa.Self()->IsExceptionPending()) {
870     if (instr->HasMethodUnwindListeners()) {
871       instr->MethodUnwindEvent(self,
872                                proxy_method,
873                                0);
874     }
875   } else if (instr->HasMethodExitListeners()) {
876     instr->MethodExitEvent(self,
877                            proxy_method,
878                            {},
879                            result);
880   }
881   return result.GetJ();
882 }
883 
884 // Visitor returning a reference argument at a given position in a Quick stack frame.
885 // NOTE: Only used for testing purposes.
886 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
887  public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)888   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
889                                      const char* shorty,
890                                      uint32_t shorty_len,
891                                      size_t arg_pos)
892       : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
893         cur_pos_(0u),
894         arg_pos_(arg_pos),
895         ref_arg_(nullptr) {
896           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
897         }
898 
Visit()899   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
900     if (cur_pos_ == arg_pos_) {
901       Primitive::Type type = GetParamPrimitiveType();
902       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
903       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
904     }
905     ++cur_pos_;
906   }
907 
GetReferenceArgument()908   StackReference<mirror::Object>* GetReferenceArgument() {
909     return ref_arg_;
910   }
911 
912  private:
913   // The position of the currently visited argument.
914   size_t cur_pos_;
915   // The position of the searched argument.
916   const size_t arg_pos_;
917   // The reference argument, if found.
918   StackReference<mirror::Object>* ref_arg_;
919 
920   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
921 };
922 
923 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
924 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)925 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
926                                                                                ArtMethod** sp)
927     REQUIRES_SHARED(Locks::mutator_lock_) {
928   ArtMethod* proxy_method = *sp;
929   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
930   CHECK(!non_proxy_method->IsStatic())
931       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
932   uint32_t shorty_len = 0;
933   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
934   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
935   ref_arg_visitor.VisitArguments();
936   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
937   return ref_arg;
938 }
939 
940 // Visitor returning all the reference arguments in a Quick stack frame.
941 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
942  public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)943   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
944                                     bool is_static,
945                                     const char* shorty,
946                                     uint32_t shorty_len)
947       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
948 
Visit()949   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
950     Primitive::Type type = GetParamPrimitiveType();
951     if (type == Primitive::kPrimNot) {
952       StackReference<mirror::Object>* ref_arg =
953           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
954       ref_args_.push_back(ref_arg);
955     }
956   }
957 
GetReferenceArguments()958   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
959     return ref_args_;
960   }
961 
962  private:
963   // The reference arguments.
964   std::vector<StackReference<mirror::Object>*> ref_args_;
965 
966   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
967 };
968 
969 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)970 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
971     REQUIRES_SHARED(Locks::mutator_lock_) {
972   ArtMethod* proxy_method = *sp;
973   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
974   CHECK(!non_proxy_method->IsStatic())
975       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
976   uint32_t shorty_len = 0;
977   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
978   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
979   ref_args_visitor.VisitArguments();
980   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
981   return ref_args;
982 }
983 
984 // Read object references held in arguments from quick frames and place in a JNI local references,
985 // so they don't get garbage collected.
986 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
987  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)988   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
989                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
990       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
991 
992   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
993 
994   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
995 
996  private:
997   ScopedObjectAccessUnchecked* const soa_;
998   // References which we must update when exiting in case the GC moved the objects.
999   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1000 
1001   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1002 };
1003 
Visit()1004 void RememberForGcArgumentVisitor::Visit() {
1005   if (IsParamAReference()) {
1006     StackReference<mirror::Object>* stack_ref =
1007         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1008     jobject reference =
1009         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1010     references_.push_back(std::make_pair(reference, stack_ref));
1011   }
1012 }
1013 
FixupReferences()1014 void RememberForGcArgumentVisitor::FixupReferences() {
1015   // Fixup any references which may have changed.
1016   for (const auto& pair : references_) {
1017     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1018     soa_->Env()->DeleteLocalRef(pair.first);
1019   }
1020 }
1021 
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1022 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1023     REQUIRES_SHARED(Locks::mutator_lock_) {
1024   if (dex_pc == static_cast<uint32_t>(-1)) {
1025     CHECK(method == WellKnownClasses::java_lang_String_charAt);
1026     return "<native>";
1027   } else {
1028     CodeItemInstructionAccessor accessor = method->DexInstructions();
1029     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1030     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1031   }
1032 }
1033 
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1034 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1035     REQUIRES_SHARED(Locks::mutator_lock_) {
1036   std::string storage;
1037   const char* descriptor = klass->GetDescriptor(&storage);
1038   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1039   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1040   if (oat_dex_file != nullptr) {
1041     const OatFile* oat_file = oat_dex_file->GetOatFile();
1042     const char* dex2oat_cmdline =
1043         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1044     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1045         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1046   }
1047 }
1048 
DumpB74410240DebugData(ArtMethod ** sp)1049 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1050   // Mimick the search for the caller and dump some data while doing so.
1051   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1052 
1053   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1054   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1055 
1056   constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1057   auto** caller_sp = reinterpret_cast<ArtMethod**>(
1058       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1059   constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1060   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1061       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1062   ArtMethod* outer_method = *caller_sp;
1063 
1064   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1065   CHECK(current_code != nullptr);
1066   CHECK(current_code->IsOptimized());
1067   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1068   CodeInfo code_info(current_code);
1069   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1070   CHECK(stack_map.IsValid());
1071   uint32_t dex_pc = stack_map.GetDexPc();
1072 
1073   // Log the outer method and its associated dex file and class table pointer which can be used
1074   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1075   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1076   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1077       << " native pc: " << caller_pc
1078       << " dex pc: " << dex_pc
1079       << " dex file: " << outer_method->GetDexFile()->GetLocation()
1080       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1081   DumpB74410240ClassData(outer_method->GetDeclaringClass());
1082   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1083 
1084   ArtMethod* caller = outer_method;
1085   BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1086   for (InlineInfo inline_info : inline_infos) {
1087     const char* tag = "";
1088     dex_pc = inline_info.GetDexPc();
1089     if (inline_info.EncodesArtMethod()) {
1090       tag = "encoded ";
1091       caller = inline_info.GetArtMethod();
1092     } else {
1093       uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1094       if (dex_pc == static_cast<uint32_t>(-1)) {
1095         tag = "special ";
1096         CHECK(inline_info.Equals(inline_infos.back()));
1097         caller = WellKnownClasses::java_lang_String_charAt;
1098         CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1099       } else {
1100         ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1101         ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1102         caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1103         CHECK(caller != nullptr);
1104       }
1105     }
1106     LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1107         << ": " << tag << caller->PrettyMethod()
1108         << " dex pc: " << dex_pc
1109         << " dex file: " << caller->GetDexFile()->GetLocation()
1110         << " class table: "
1111         << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1112     DumpB74410240ClassData(caller->GetDeclaringClass());
1113     LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1114   }
1115 }
1116 
1117 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1118 extern "C" const void* artQuickResolutionTrampoline(
1119     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1120     REQUIRES_SHARED(Locks::mutator_lock_) {
1121   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1122   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1123   // does not have the same stack layout as the callee-save method).
1124   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1125   // Start new JNI local reference state
1126   JNIEnvExt* env = self->GetJniEnv();
1127   ScopedObjectAccessUnchecked soa(env);
1128   ScopedJniEnvLocalRefState env_state(env);
1129   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1130 
1131   // Compute details about the called method (avoid GCs)
1132   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1133   InvokeType invoke_type;
1134   MethodReference called_method(nullptr, 0);
1135   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1136   ArtMethod* caller = nullptr;
1137   if (!called_method_known_on_entry) {
1138     uint32_t dex_pc;
1139     caller = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
1140     called_method.dex_file = caller->GetDexFile();
1141 
1142     {
1143       CodeItemInstructionAccessor accessor(caller->DexInstructions());
1144       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1145       const Instruction& instr = accessor.InstructionAt(dex_pc);
1146       Instruction::Code instr_code = instr.Opcode();
1147       bool is_range;
1148       switch (instr_code) {
1149         case Instruction::INVOKE_DIRECT:
1150           invoke_type = kDirect;
1151           is_range = false;
1152           break;
1153         case Instruction::INVOKE_DIRECT_RANGE:
1154           invoke_type = kDirect;
1155           is_range = true;
1156           break;
1157         case Instruction::INVOKE_STATIC:
1158           invoke_type = kStatic;
1159           is_range = false;
1160           break;
1161         case Instruction::INVOKE_STATIC_RANGE:
1162           invoke_type = kStatic;
1163           is_range = true;
1164           break;
1165         case Instruction::INVOKE_SUPER:
1166           invoke_type = kSuper;
1167           is_range = false;
1168           break;
1169         case Instruction::INVOKE_SUPER_RANGE:
1170           invoke_type = kSuper;
1171           is_range = true;
1172           break;
1173         case Instruction::INVOKE_VIRTUAL:
1174           invoke_type = kVirtual;
1175           is_range = false;
1176           break;
1177         case Instruction::INVOKE_VIRTUAL_RANGE:
1178           invoke_type = kVirtual;
1179           is_range = true;
1180           break;
1181         case Instruction::INVOKE_INTERFACE:
1182           invoke_type = kInterface;
1183           is_range = false;
1184           break;
1185         case Instruction::INVOKE_INTERFACE_RANGE:
1186           invoke_type = kInterface;
1187           is_range = true;
1188           break;
1189         default:
1190           DumpB74410240DebugData(sp);
1191           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1192           UNREACHABLE();
1193       }
1194       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1195       VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1196                 << called_method.index;
1197     }
1198   } else {
1199     invoke_type = kStatic;
1200     called_method.dex_file = called->GetDexFile();
1201     called_method.index = called->GetDexMethodIndex();
1202   }
1203   uint32_t shorty_len;
1204   const char* shorty =
1205       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1206   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1207   visitor.VisitArguments();
1208   self->EndAssertNoThreadSuspension(old_cause);
1209   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1210   // Resolve method filling in dex cache.
1211   if (!called_method_known_on_entry) {
1212     StackHandleScope<1> hs(self);
1213     mirror::Object* fake_receiver = nullptr;
1214     HandleWrapper<mirror::Object> h_receiver(
1215         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
1216     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1217     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1218         self, called_method.index, caller, invoke_type);
1219   }
1220   const void* code = nullptr;
1221   if (LIKELY(!self->IsExceptionPending())) {
1222     // Incompatible class change should have been handled in resolve method.
1223     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1224         << called->PrettyMethod() << " " << invoke_type;
1225     if (virtual_or_interface || invoke_type == kSuper) {
1226       // Refine called method based on receiver for kVirtual/kInterface, and
1227       // caller for kSuper.
1228       ArtMethod* orig_called = called;
1229       if (invoke_type == kVirtual) {
1230         CHECK(receiver != nullptr) << invoke_type;
1231         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1232       } else if (invoke_type == kInterface) {
1233         CHECK(receiver != nullptr) << invoke_type;
1234         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1235       } else {
1236         DCHECK_EQ(invoke_type, kSuper);
1237         CHECK(caller != nullptr) << invoke_type;
1238         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1239             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1240         if (ref_class->IsInterface()) {
1241           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1242         } else {
1243           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1244               called->GetMethodIndex(), kRuntimePointerSize);
1245         }
1246       }
1247 
1248       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1249                                << mirror::Object::PrettyTypeOf(receiver) << " "
1250                                << invoke_type << " " << orig_called->GetVtableIndex();
1251     }
1252     // Now that we know the actual target, update .bss entry in oat file, if
1253     // any.
1254     if (!called_method_known_on_entry) {
1255       // We only put non copied methods in the BSS. Putting a copy can lead to an
1256       // odd situation where the ArtMethod being executed is unrelated to the
1257       // receiver of the method.
1258       called = called->GetCanonicalMethod();
1259       if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
1260         if (called->GetDexFile() == called_method.dex_file) {
1261           called_method.index = called->GetDexMethodIndex();
1262         } else {
1263           called_method.index = called->FindDexMethodIndexInOtherDexFile(
1264               *called_method.dex_file, called_method.index);
1265           DCHECK_NE(called_method.index, dex::kDexNoIndex);
1266         }
1267       }
1268       ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
1269       MaybeUpdateBssMethodEntry(called, called_method, outer_method);
1270     }
1271 
1272     // Static invokes need class initialization check but instance invokes can proceed even if
1273     // the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
1274     bool success = true;
1275     if (called->StillNeedsClinitCheck()) {
1276       // Ensure that the called method's class is initialized.
1277       StackHandleScope<1> hs(soa.Self());
1278       Handle<mirror::Class> h_called_class = hs.NewHandle(called->GetDeclaringClass());
1279       success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
1280     }
1281     if (success) {
1282       // When the clinit check is at entry of the AOT/nterp code, we do the clinit check
1283       // before doing the suspend check. To ensure the code sees the latest
1284       // version of the class (the code doesn't do a read barrier to reduce
1285       // size), do a suspend check now.
1286       self->CheckSuspend();
1287       instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1288       // Check if we need instrumented code here. Since resolution stubs could suspend, it is
1289       // possible that we instrumented the entry points after we started executing the resolution
1290       // stub.
1291       code = instrumentation->GetMaybeInstrumentedCodeForInvoke(called);
1292     } else {
1293       DCHECK(called->GetDeclaringClass()->IsErroneous());
1294       DCHECK(self->IsExceptionPending());
1295     }
1296   }
1297   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1298   // Fixup any locally saved objects may have moved during a GC.
1299   visitor.FixupReferences();
1300   // Place called method in callee-save frame to be placed as first argument to quick method.
1301   *sp = called;
1302 
1303   return code;
1304 }
1305 
1306 /*
1307  * This class uses a couple of observations to unite the different calling conventions through
1308  * a few constants.
1309  *
1310  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1311  *    possible alignment.
1312  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1313  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1314  *    when we have to split things
1315  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1316  *    and we can use Int handling directly.
1317  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1318  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1319  *    extension should be compatible with Aarch64, which mandates copying the available bits
1320  *    into LSB and leaving the rest unspecified.
1321  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1322  *    the stack.
1323  * 6) There is only little endian.
1324  *
1325  *
1326  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1327  * follows:
1328  *
1329  * void PushGpr(uintptr_t):   Add a value for the next GPR
1330  *
1331  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1332  *                            padding, that is, think the architecture is 32b and aligns 64b.
1333  *
1334  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1335  *                            split this if necessary. The current state will have aligned, if
1336  *                            necessary.
1337  *
1338  * void PushStack(uintptr_t): Push a value to the stack.
1339  */
1340 template<class T> class BuildNativeCallFrameStateMachine {
1341  public:
1342 #if defined(__arm__)
1343   static constexpr bool kNativeSoftFloatAbi = true;
1344   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1345   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1346 
1347   static constexpr size_t kRegistersNeededForLong = 2;
1348   static constexpr size_t kRegistersNeededForDouble = 2;
1349   static constexpr bool kMultiRegistersAligned = true;
1350   static constexpr bool kMultiGPRegistersWidened = false;
1351   static constexpr bool kAlignLongOnStack = true;
1352   static constexpr bool kAlignDoubleOnStack = true;
1353   static constexpr bool kNaNBoxing = false;
1354 #elif defined(__aarch64__)
1355   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1356   static constexpr size_t kNumNativeGprArgs = 8;  // 8 arguments passed in GPRs.
1357   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1358 
1359   static constexpr size_t kRegistersNeededForLong = 1;
1360   static constexpr size_t kRegistersNeededForDouble = 1;
1361   static constexpr bool kMultiRegistersAligned = false;
1362   static constexpr bool kMultiGPRegistersWidened = false;
1363   static constexpr bool kAlignLongOnStack = false;
1364   static constexpr bool kAlignDoubleOnStack = false;
1365   static constexpr bool kNaNBoxing = false;
1366 #elif defined(__riscv)
1367   static constexpr bool kNativeSoftFloatAbi = false;
1368   static constexpr size_t kNumNativeGprArgs = 8;
1369   static constexpr size_t kNumNativeFprArgs = 8;
1370 
1371   static constexpr size_t kRegistersNeededForLong = 1;
1372   static constexpr size_t kRegistersNeededForDouble = 1;
1373   static constexpr bool kMultiRegistersAligned = false;
1374   static constexpr bool kMultiGPRegistersWidened = true;
1375   static constexpr bool kAlignLongOnStack = false;
1376   static constexpr bool kAlignDoubleOnStack = false;
1377   static constexpr bool kNaNBoxing = true;
1378 #elif defined(__i386__)
1379   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1380   static constexpr size_t kNumNativeGprArgs = 0;  // 0 arguments passed in GPRs.
1381   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1382 
1383   static constexpr size_t kRegistersNeededForLong = 2;
1384   static constexpr size_t kRegistersNeededForDouble = 2;
1385   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1386   static constexpr bool kMultiGPRegistersWidened = false;
1387   static constexpr bool kAlignLongOnStack = false;
1388   static constexpr bool kAlignDoubleOnStack = false;
1389   static constexpr bool kNaNBoxing = false;
1390 #elif defined(__x86_64__)
1391   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1392   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1393   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1394 
1395   static constexpr size_t kRegistersNeededForLong = 1;
1396   static constexpr size_t kRegistersNeededForDouble = 1;
1397   static constexpr bool kMultiRegistersAligned = false;
1398   static constexpr bool kMultiGPRegistersWidened = false;
1399   static constexpr bool kAlignLongOnStack = false;
1400   static constexpr bool kAlignDoubleOnStack = false;
1401   static constexpr bool kNaNBoxing = false;
1402 #else
1403 #error "Unsupported architecture"
1404 #endif
1405 
1406  public:
BuildNativeCallFrameStateMachine(T * delegate)1407   explicit BuildNativeCallFrameStateMachine(T* delegate)
1408       : gpr_index_(kNumNativeGprArgs),
1409         fpr_index_(kNumNativeFprArgs),
1410         stack_entries_(0),
1411         delegate_(delegate) {
1412     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1413     // the next register is even; counting down is just to make the compiler happy...
1414     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1415     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1416   }
1417 
~BuildNativeCallFrameStateMachine()1418   virtual ~BuildNativeCallFrameStateMachine() {}
1419 
HavePointerGpr() const1420   bool HavePointerGpr() const {
1421     return gpr_index_ > 0;
1422   }
1423 
AdvancePointer(const void * val)1424   void AdvancePointer(const void* val) {
1425     if (HavePointerGpr()) {
1426       gpr_index_--;
1427       PushGpr(reinterpret_cast<uintptr_t>(val));
1428     } else {
1429       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1430       PushStack(reinterpret_cast<uintptr_t>(val));
1431       gpr_index_ = 0;
1432     }
1433   }
1434 
HaveIntGpr() const1435   bool HaveIntGpr() const {
1436     return gpr_index_ > 0;
1437   }
1438 
AdvanceInt(uint32_t val)1439   void AdvanceInt(uint32_t val) {
1440     if (HaveIntGpr()) {
1441       gpr_index_--;
1442       if (kMultiGPRegistersWidened) {
1443         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1444         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1445       } else {
1446         PushGpr(val);
1447       }
1448     } else {
1449       stack_entries_++;
1450       if (kMultiGPRegistersWidened) {
1451         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1452         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1453       } else {
1454         PushStack(val);
1455       }
1456       gpr_index_ = 0;
1457     }
1458   }
1459 
HaveLongGpr() const1460   bool HaveLongGpr() const {
1461     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1462   }
1463 
LongGprNeedsPadding() const1464   bool LongGprNeedsPadding() const {
1465     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1466         kAlignLongOnStack &&                  // and when it needs alignment
1467         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1468   }
1469 
LongStackNeedsPadding() const1470   bool LongStackNeedsPadding() const {
1471     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1472         kAlignLongOnStack &&                  // and when it needs 8B alignment
1473         (stack_entries_ & 1) == 1;            // counter is odd
1474   }
1475 
AdvanceLong(uint64_t val)1476   void AdvanceLong(uint64_t val) {
1477     if (HaveLongGpr()) {
1478       if (LongGprNeedsPadding()) {
1479         PushGpr(0);
1480         gpr_index_--;
1481       }
1482       if (kRegistersNeededForLong == 1) {
1483         PushGpr(static_cast<uintptr_t>(val));
1484       } else {
1485         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1486         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1487       }
1488       gpr_index_ -= kRegistersNeededForLong;
1489     } else {
1490       if (LongStackNeedsPadding()) {
1491         PushStack(0);
1492         stack_entries_++;
1493       }
1494       if (kRegistersNeededForLong == 1) {
1495         PushStack(static_cast<uintptr_t>(val));
1496         stack_entries_++;
1497       } else {
1498         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1499         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1500         stack_entries_ += 2;
1501       }
1502       gpr_index_ = 0;
1503     }
1504   }
1505 
HaveFloatFpr() const1506   bool HaveFloatFpr() const {
1507     return fpr_index_ > 0;
1508   }
1509 
AdvanceFloat(float val)1510   void AdvanceFloat(float val) {
1511     if (kNativeSoftFloatAbi) {
1512       AdvanceInt(bit_cast<uint32_t, float>(val));
1513     } else {
1514       if (HaveFloatFpr()) {
1515         fpr_index_--;
1516         if (kRegistersNeededForDouble == 1) {
1517           if (kNaNBoxing) {
1518             // NaN boxing: no widening, just use the bits, but reset upper bits to 1s.
1519             // See e.g. RISC-V manual, D extension, section "NaN Boxing of Narrower Values".
1520             PushFpr8(0xFFFFFFFF00000000lu | static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1521           } else {
1522             // No widening, just use the bits.
1523             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1524           }
1525         } else {
1526           PushFpr4(val);
1527         }
1528       } else {
1529         stack_entries_++;
1530         PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1531         fpr_index_ = 0;
1532       }
1533     }
1534   }
1535 
HaveDoubleFpr() const1536   bool HaveDoubleFpr() const {
1537     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1538   }
1539 
DoubleFprNeedsPadding() const1540   bool DoubleFprNeedsPadding() const {
1541     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1542         kAlignDoubleOnStack &&                  // and when it needs alignment
1543         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1544   }
1545 
DoubleStackNeedsPadding() const1546   bool DoubleStackNeedsPadding() const {
1547     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1548         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1549         (stack_entries_ & 1) == 1;              // counter is odd
1550   }
1551 
AdvanceDouble(uint64_t val)1552   void AdvanceDouble(uint64_t val) {
1553     if (kNativeSoftFloatAbi) {
1554       AdvanceLong(val);
1555     } else {
1556       if (HaveDoubleFpr()) {
1557         if (DoubleFprNeedsPadding()) {
1558           PushFpr4(0);
1559           fpr_index_--;
1560         }
1561         PushFpr8(val);
1562         fpr_index_ -= kRegistersNeededForDouble;
1563       } else {
1564         if (DoubleStackNeedsPadding()) {
1565           PushStack(0);
1566           stack_entries_++;
1567         }
1568         if (kRegistersNeededForDouble == 1) {
1569           PushStack(static_cast<uintptr_t>(val));
1570           stack_entries_++;
1571         } else {
1572           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1573           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1574           stack_entries_ += 2;
1575         }
1576         fpr_index_ = 0;
1577       }
1578     }
1579   }
1580 
GetStackEntries() const1581   uint32_t GetStackEntries() const {
1582     return stack_entries_;
1583   }
1584 
GetNumberOfUsedGprs() const1585   uint32_t GetNumberOfUsedGprs() const {
1586     return kNumNativeGprArgs - gpr_index_;
1587   }
1588 
GetNumberOfUsedFprs() const1589   uint32_t GetNumberOfUsedFprs() const {
1590     return kNumNativeFprArgs - fpr_index_;
1591   }
1592 
1593  private:
PushGpr(uintptr_t val)1594   void PushGpr(uintptr_t val) {
1595     delegate_->PushGpr(val);
1596   }
PushFpr4(float val)1597   void PushFpr4(float val) {
1598     delegate_->PushFpr4(val);
1599   }
PushFpr8(uint64_t val)1600   void PushFpr8(uint64_t val) {
1601     delegate_->PushFpr8(val);
1602   }
PushStack(uintptr_t val)1603   void PushStack(uintptr_t val) {
1604     delegate_->PushStack(val);
1605   }
1606 
1607   uint32_t gpr_index_;      // Number of free GPRs
1608   uint32_t fpr_index_;      // Number of free FPRs
1609   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1610                             // extended
1611   T* const delegate_;             // What Push implementation gets called
1612 };
1613 
1614 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1615 // in subclasses.
1616 //
1617 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1618 // them with handles.
1619 class ComputeNativeCallFrameSize {
1620  public:
ComputeNativeCallFrameSize()1621   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1622 
~ComputeNativeCallFrameSize()1623   virtual ~ComputeNativeCallFrameSize() {}
1624 
GetStackSize() const1625   uint32_t GetStackSize() const {
1626     return num_stack_entries_ * sizeof(uintptr_t);
1627   }
1628 
LayoutStackArgs(uint8_t * sp8) const1629   uint8_t* LayoutStackArgs(uint8_t* sp8) const {
1630     sp8 -= GetStackSize();
1631     // Align by kStackAlignment; it is at least as strict as native stack alignment.
1632     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1633     return sp8;
1634   }
1635 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1636   virtual void WalkHeader(
1637       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1638       REQUIRES_SHARED(Locks::mutator_lock_) {
1639   }
1640 
Walk(const char * shorty,uint32_t shorty_len)1641   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1642     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1643 
1644     WalkHeader(&sm);
1645 
1646     for (uint32_t i = 1; i < shorty_len; ++i) {
1647       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1648       switch (cur_type_) {
1649         case Primitive::kPrimNot:
1650           sm.AdvancePointer(nullptr);
1651           break;
1652         case Primitive::kPrimBoolean:
1653         case Primitive::kPrimByte:
1654         case Primitive::kPrimChar:
1655         case Primitive::kPrimShort:
1656         case Primitive::kPrimInt:
1657           sm.AdvanceInt(0);
1658           break;
1659         case Primitive::kPrimFloat:
1660           sm.AdvanceFloat(0);
1661           break;
1662         case Primitive::kPrimDouble:
1663           sm.AdvanceDouble(0);
1664           break;
1665         case Primitive::kPrimLong:
1666           sm.AdvanceLong(0);
1667           break;
1668         default:
1669           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1670           UNREACHABLE();
1671       }
1672     }
1673 
1674     num_stack_entries_ = sm.GetStackEntries();
1675   }
1676 
PushGpr(uintptr_t)1677   void PushGpr(uintptr_t /* val */) {
1678     // not optimizing registers, yet
1679   }
1680 
PushFpr4(float)1681   void PushFpr4(float /* val */) {
1682     // not optimizing registers, yet
1683   }
1684 
PushFpr8(uint64_t)1685   void PushFpr8(uint64_t /* val */) {
1686     // not optimizing registers, yet
1687   }
1688 
PushStack(uintptr_t)1689   void PushStack(uintptr_t /* val */) {
1690     // counting is already done in the superclass
1691   }
1692 
1693  protected:
1694   uint32_t num_stack_entries_;
1695 };
1696 
1697 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1698  public:
ComputeGenericJniFrameSize(bool critical_native)1699   explicit ComputeGenericJniFrameSize(bool critical_native)
1700     : critical_native_(critical_native) {}
1701 
ComputeLayout(ArtMethod ** managed_sp,const char * shorty,uint32_t shorty_len)1702   uintptr_t* ComputeLayout(ArtMethod** managed_sp, const char* shorty, uint32_t shorty_len)
1703       REQUIRES_SHARED(Locks::mutator_lock_) {
1704     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1705 
1706     Walk(shorty, shorty_len);
1707 
1708     // Add space for cookie.
1709     DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
1710     static_assert(sizeof(uintptr_t) >= sizeof(jni::LRTSegmentState));
1711     uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
1712 
1713     // Layout stack arguments.
1714     sp8 = LayoutStackArgs(sp8);
1715 
1716     // Return the new bottom.
1717     DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
1718     return reinterpret_cast<uintptr_t*>(sp8);
1719   }
1720 
GetStartGprRegs(uintptr_t * reserved_area)1721   static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
1722     return reserved_area;
1723   }
1724 
GetStartFprRegs(uintptr_t * reserved_area)1725   static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
1726     constexpr size_t num_gprs =
1727         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1728     return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
1729   }
1730 
GetHiddenArgSlot(uintptr_t * reserved_area)1731   static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
1732     // Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
1733     // FP register size (it is actually 0 on all supported 32-bit architectures).
1734     constexpr size_t num_fprs =
1735         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1736     return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
1737   }
1738 
GetOutArgsSpSlot(uintptr_t * reserved_area)1739   static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
1740     return GetHiddenArgSlot(reserved_area) + 1;
1741   }
1742 
1743   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1744   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
1745       REQUIRES_SHARED(Locks::mutator_lock_);
1746 
1747  private:
1748   const bool critical_native_;
1749 };
1750 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1751 void ComputeGenericJniFrameSize::WalkHeader(
1752     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1753   // First 2 parameters are always excluded for @CriticalNative.
1754   if (UNLIKELY(critical_native_)) {
1755     return;
1756   }
1757 
1758   // JNIEnv
1759   sm->AdvancePointer(nullptr);
1760 
1761   // Class object or this as first argument
1762   sm->AdvancePointer(nullptr);
1763 }
1764 
1765 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1766 // the template requirements of BuildGenericJniFrameStateMachine.
1767 class FillNativeCall {
1768  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1769   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1770       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1771 
~FillNativeCall()1772   virtual ~FillNativeCall() {}
1773 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1774   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1775     cur_gpr_reg_ = gpr_regs;
1776     cur_fpr_reg_ = fpr_regs;
1777     cur_stack_arg_ = stack_args;
1778   }
1779 
PushGpr(uintptr_t val)1780   void PushGpr(uintptr_t val) {
1781     *cur_gpr_reg_ = val;
1782     cur_gpr_reg_++;
1783   }
1784 
PushFpr4(float val)1785   void PushFpr4(float val) {
1786     *cur_fpr_reg_ = val;
1787     cur_fpr_reg_++;
1788   }
1789 
PushFpr8(uint64_t val)1790   void PushFpr8(uint64_t val) {
1791     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1792     *tmp = val;
1793     cur_fpr_reg_ += 2;
1794   }
1795 
PushStack(uintptr_t val)1796   void PushStack(uintptr_t val) {
1797     *cur_stack_arg_ = val;
1798     cur_stack_arg_++;
1799   }
1800 
1801  private:
1802   uintptr_t* cur_gpr_reg_;
1803   uint32_t* cur_fpr_reg_;
1804   uintptr_t* cur_stack_arg_;
1805 };
1806 
1807 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1808 // of transitioning into native code.
1809 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
1810  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod ** managed_sp,uintptr_t * reserved_area)1811   BuildGenericJniFrameVisitor(Thread* self,
1812                               bool is_static,
1813                               bool critical_native,
1814                               const char* shorty,
1815                               uint32_t shorty_len,
1816                               ArtMethod** managed_sp,
1817                               uintptr_t* reserved_area)
1818       : QuickArgumentVisitor(managed_sp, is_static, shorty, shorty_len),
1819         jni_call_(nullptr, nullptr, nullptr),
1820         sm_(&jni_call_),
1821         current_vreg_(nullptr) {
1822     DCHECK_ALIGNED(managed_sp, kStackAlignment);
1823     DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
1824 
1825     ComputeGenericJniFrameSize fsc(critical_native);
1826     uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty, shorty_len);
1827 
1828     // Store hidden argument for @CriticalNative.
1829     uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
1830     constexpr uintptr_t kGenericJniTag = 1u;
1831     ArtMethod* method = *managed_sp;
1832     *hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
1833                                        : 0xebad6a89u;  // Bad value.
1834 
1835     // Set out args SP.
1836     uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
1837     *out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
1838 
1839     // Prepare vreg pointer for spilling references.
1840     static constexpr size_t frame_size =
1841         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
1842     current_vreg_ = reinterpret_cast<uint32_t*>(
1843         reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
1844 
1845     jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
1846                     fsc.GetStartFprRegs(reserved_area),
1847                     out_args_sp);
1848 
1849     // First 2 parameters are always excluded for CriticalNative methods.
1850     if (LIKELY(!critical_native)) {
1851       // jni environment is always first argument
1852       sm_.AdvancePointer(self->GetJniEnv());
1853 
1854       if (is_static) {
1855         // The `jclass` is a pointer to the method's declaring class.
1856         // The declaring class must be marked.
1857         auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
1858             method->GetDeclaringClassAddressWithoutBarrier());
1859         if (gUseReadBarrier) {
1860           artJniReadBarrier(method);
1861         }
1862         sm_.AdvancePointer(declaring_class);
1863       }  // else "this" reference is already handled by QuickArgumentVisitor.
1864     }
1865   }
1866 
1867   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1868 
1869  private:
1870   FillNativeCall jni_call_;
1871   BuildNativeCallFrameStateMachine<FillNativeCall> sm_;
1872 
1873   // Pointer to the current vreg in caller's reserved out vreg area.
1874   // Used for spilling reference arguments.
1875   uint32_t* current_vreg_;
1876 
1877   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1878 };
1879 
Visit()1880 void BuildGenericJniFrameVisitor::Visit() {
1881   Primitive::Type type = GetParamPrimitiveType();
1882   switch (type) {
1883     case Primitive::kPrimLong: {
1884       jlong long_arg;
1885       if (IsSplitLongOrDouble()) {
1886         long_arg = ReadSplitLongParam();
1887       } else {
1888         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1889       }
1890       sm_.AdvanceLong(long_arg);
1891       current_vreg_ += 2u;
1892       break;
1893     }
1894     case Primitive::kPrimDouble: {
1895       uint64_t double_arg;
1896       if (IsSplitLongOrDouble()) {
1897         // Read into union so that we don't case to a double.
1898         double_arg = ReadSplitLongParam();
1899       } else {
1900         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1901       }
1902       sm_.AdvanceDouble(double_arg);
1903       current_vreg_ += 2u;
1904       break;
1905     }
1906     case Primitive::kPrimNot: {
1907       mirror::Object* obj =
1908           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
1909       StackReference<mirror::Object>* spill_ref =
1910           reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
1911       spill_ref->Assign(obj);
1912       sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
1913       current_vreg_ += 1u;
1914       break;
1915     }
1916     case Primitive::kPrimFloat:
1917       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1918       current_vreg_ += 1u;
1919       break;
1920     case Primitive::kPrimBoolean:  // Fall-through.
1921     case Primitive::kPrimByte:     // Fall-through.
1922     case Primitive::kPrimChar:     // Fall-through.
1923     case Primitive::kPrimShort:    // Fall-through.
1924     case Primitive::kPrimInt:      // Fall-through.
1925       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1926       current_vreg_ += 1u;
1927       break;
1928     case Primitive::kPrimVoid:
1929       LOG(FATAL) << "UNREACHABLE";
1930       UNREACHABLE();
1931   }
1932 }
1933 
1934 /*
1935  * Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
1936  *
1937  * On entry, the stack has a standard callee-save frame above `managed_sp`,
1938  * and the reserved area below it. Starting below `managed_sp`, we reserve space
1939  * for local reference cookie (not present for @CriticalNative), HandleScope
1940  * (not present for @CriticalNative) and stack args (if args do not fit into
1941  * registers). At the bottom of the reserved area, there is space for register
1942  * arguments, hidden arg (for @CriticalNative) and the SP for the native call
1943  * (i.e. pointer to the stack args area), which the calling stub shall load
1944  * to perform the native call. We fill all these fields, perform class init
1945  * check (for static methods) and/or locking (for synchronized methods) if
1946  * needed and return to the stub.
1947  *
1948  * The return value is the pointer to the native code, null on failure.
1949  *
1950  * NO_THREAD_SAFETY_ANALYSIS: Depending on the use case, the trampoline may
1951  * or may not lock a synchronization object and transition out of Runnable.
1952  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** managed_sp,uintptr_t * reserved_area)1953 extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
1954                                                     ArtMethod** managed_sp,
1955                                                     uintptr_t* reserved_area)
1956     REQUIRES_SHARED(Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS {
1957   // Note: We cannot walk the stack properly until fixed up below.
1958   ArtMethod* called = *managed_sp;
1959   DCHECK(called->IsNative()) << called->PrettyMethod(true);
1960   Runtime* runtime = Runtime::Current();
1961   uint32_t shorty_len = 0;
1962   const char* shorty = called->GetShorty(&shorty_len);
1963   bool critical_native = called->IsCriticalNative();
1964   bool fast_native = called->IsFastNative();
1965   bool normal_native = !critical_native && !fast_native;
1966 
1967   // Run the visitor and update sp.
1968   BuildGenericJniFrameVisitor visitor(self,
1969                                       called->IsStatic(),
1970                                       critical_native,
1971                                       shorty,
1972                                       shorty_len,
1973                                       managed_sp,
1974                                       reserved_area);
1975   {
1976     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
1977     visitor.VisitArguments();
1978   }
1979 
1980   // Fix up managed-stack things in Thread. After this we can walk the stack.
1981   self->SetTopOfStackGenericJniTagged(managed_sp);
1982 
1983   self->VerifyStack();
1984 
1985   // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
1986   jit::Jit* jit = runtime->GetJit();
1987   if (jit != nullptr) {
1988     jit->MethodEntered(self, called);
1989   }
1990 
1991   // We can set the entrypoint of a native method to generic JNI even when the
1992   // class hasn't been initialized, so we need to do the initialization check
1993   // before invoking the native code.
1994   if (called->StillNeedsClinitCheck()) {
1995     // Ensure static method's class is initialized.
1996     StackHandleScope<1> hs(self);
1997     Handle<mirror::Class> h_class = hs.NewHandle(called->GetDeclaringClass());
1998     if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
1999       DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
2000       return nullptr;  // Report error.
2001     }
2002   }
2003 
2004   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2005   if (UNLIKELY(instr->HasMethodEntryListeners())) {
2006     instr->MethodEnterEvent(self, called);
2007     if (self->IsExceptionPending()) {
2008       return nullptr;
2009     }
2010   }
2011 
2012   // Skip calling `artJniMethodStart()` for @CriticalNative and @FastNative.
2013   if (LIKELY(normal_native)) {
2014     // Start JNI.
2015     if (called->IsSynchronized()) {
2016       ObjPtr<mirror::Object> lock = GetGenericJniSynchronizationObject(self, called);
2017       DCHECK(lock != nullptr);
2018       lock->MonitorEnter(self);
2019       if (self->IsExceptionPending()) {
2020         return nullptr;  // Report error.
2021       }
2022     }
2023     if (UNLIKELY(self->ReadFlag(ThreadFlag::kMonitorJniEntryExit))) {
2024       artJniMonitoredMethodStart(self);
2025     } else {
2026       artJniMethodStart(self);
2027     }
2028   } else {
2029     DCHECK(!called->IsSynchronized())
2030         << "@FastNative/@CriticalNative and synchronize is not supported";
2031   }
2032 
2033   // Skip pushing IRT frame for @CriticalNative.
2034   if (LIKELY(!critical_native)) {
2035     // Push local reference frame.
2036     JNIEnvExt* env = self->GetJniEnv();
2037     DCHECK(env != nullptr);
2038     uint32_t cookie = bit_cast<uint32_t>(env->GetLocalRefCookie());
2039     env->SetLocalRefCookie(env->GetLocalsSegmentState());
2040 
2041     // Save the cookie on the stack.
2042     uint32_t* sp32 = reinterpret_cast<uint32_t*>(managed_sp);
2043     *(sp32 - 1) = cookie;
2044   }
2045 
2046   // Retrieve the stored native code.
2047   // Note that it may point to the lookup stub or trampoline.
2048   // FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
2049   // does not handle that case. Calls from compiled stubs are also broken.
2050   void const* nativeCode = called->GetEntryPointFromJni();
2051 
2052   VLOG(third_party_jni) << "GenericJNI: "
2053                         << called->PrettyMethod()
2054                         << " -> "
2055                         << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2056 
2057   // Return native code.
2058   return nativeCode;
2059 }
2060 
2061 // Defined in quick_jni_entrypoints.cc.
2062 extern uint64_t GenericJniMethodEnd(Thread* self,
2063                                     uint32_t saved_local_ref_cookie,
2064                                     jvalue result,
2065                                     uint64_t result_f,
2066                                     ArtMethod* called);
2067 
2068 /*
2069  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2070  * unlocking.
2071  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2072 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2073                                                     jvalue result,
2074                                                     uint64_t result_f) {
2075   // We're here just back from a native call. We don't have the shared mutator lock at this point
2076   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2077   // anything that requires a mutator lock before that would cause problems as GC may have the
2078   // exclusive mutator lock and may be moving objects, etc.
2079   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2080   DCHECK(self->GetManagedStack()->GetTopQuickFrameGenericJniTag());
2081   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2082   ArtMethod* called = *sp;
2083   uint32_t cookie = *(sp32 - 1);
2084   return GenericJniMethodEnd(self, cookie, result, result_f, called);
2085 }
2086 
2087 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2088 // for the method pointer.
2089 //
2090 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2091 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2092 
2093 template <InvokeType type>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2094 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2095                                      ObjPtr<mirror::Object> this_object,
2096                                      Thread* self,
2097                                      ArtMethod** sp) {
2098   ScopedQuickEntrypointChecks sqec(self);
2099   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2100   uint32_t dex_pc;
2101   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2102   CodeItemInstructionAccessor accessor(caller_method->DexInstructions());
2103   DCHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
2104   const Instruction& instr = accessor.InstructionAt(dex_pc);
2105   bool string_init = false;
2106   ArtMethod* method = FindMethodToCall<type>(
2107       self, caller_method, &this_object, instr, /* only_lookup_tls_cache= */ true, &string_init);
2108 
2109   if (UNLIKELY(method == nullptr)) {
2110     if (self->IsExceptionPending()) {
2111       // Return a failure if the first lookup threw an exception.
2112       return GetTwoWordFailureValue();  // Failure.
2113     }
2114     const DexFile* dex_file = caller_method->GetDexFile();
2115     uint32_t shorty_len;
2116     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2117     {
2118       // Remember the args in case a GC happens in FindMethodToCall.
2119       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2120       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2121       visitor.VisitArguments();
2122 
2123       method = FindMethodToCall<type>(self,
2124                                       caller_method,
2125                                       &this_object,
2126                                       instr,
2127                                       /* only_lookup_tls_cache= */ false,
2128                                       &string_init);
2129 
2130       visitor.FixupReferences();
2131     }
2132 
2133     if (UNLIKELY(method == nullptr)) {
2134       CHECK(self->IsExceptionPending());
2135       return GetTwoWordFailureValue();  // Failure.
2136     }
2137   }
2138   DCHECK(!self->IsExceptionPending());
2139   const void* code = method->GetEntryPointFromQuickCompiledCode();
2140 
2141   // When we return, the caller will branch to this address, so it had better not be 0!
2142   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2143                           << " location: "
2144                           << method->GetDexFile()->GetLocation();
2145 
2146   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2147                                 reinterpret_cast<uintptr_t>(method));
2148 }
2149 
2150 // Explicit artInvokeCommon template function declarations to please analysis tool.
2151 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type)                                            \
2152   template REQUIRES_SHARED(Locks::mutator_lock_)                                              \
2153   TwoWordReturn artInvokeCommon<type>(                                                        \
2154       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2155 
2156 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual);
2157 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface);
2158 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect);
2159 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic);
2160 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper);
2161 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2162 
2163 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2164 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2165     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2166     REQUIRES_SHARED(Locks::mutator_lock_) {
2167   return artInvokeCommon<kInterface>(method_idx, this_object, self, sp);
2168 }
2169 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2170 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2171     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2172     REQUIRES_SHARED(Locks::mutator_lock_) {
2173   return artInvokeCommon<kDirect>(method_idx, this_object, self, sp);
2174 }
2175 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2176 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2177     uint32_t method_idx,
2178     mirror::Object* this_object ATTRIBUTE_UNUSED,
2179     Thread* self,
2180     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2181   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2182   // it doesn't cause ObjPtr alignment failure check.
2183   return artInvokeCommon<kStatic>(method_idx, nullptr, self, sp);
2184 }
2185 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2186 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2187     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2188     REQUIRES_SHARED(Locks::mutator_lock_) {
2189   return artInvokeCommon<kSuper>(method_idx, this_object, self, sp);
2190 }
2191 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2192 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2193     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2194     REQUIRES_SHARED(Locks::mutator_lock_) {
2195   return artInvokeCommon<kVirtual>(method_idx, this_object, self, sp);
2196 }
2197 
2198 // Determine target of interface dispatch. The interface method and this object are known non-null.
2199 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2200 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2201                                                       mirror::Object* raw_this_object,
2202                                                       Thread* self,
2203                                                       ArtMethod** sp)
2204     REQUIRES_SHARED(Locks::mutator_lock_) {
2205   ScopedQuickEntrypointChecks sqec(self);
2206 
2207   Runtime* runtime = Runtime::Current();
2208   bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
2209   if (UNLIKELY(resolve_method)) {
2210     // The interface method is unresolved, so resolve it in the dex file of the caller.
2211     // Fetch the dex_method_idx of the target interface method from the caller.
2212     StackHandleScope<1> hs(self);
2213     Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2214     uint32_t dex_pc;
2215     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2216     uint32_t dex_method_idx;
2217     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2218     Instruction::Code instr_code = instr.Opcode();
2219     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2220            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2221         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2222     if (instr_code == Instruction::INVOKE_INTERFACE) {
2223       dex_method_idx = instr.VRegB_35c();
2224     } else {
2225       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2226       dex_method_idx = instr.VRegB_3rc();
2227     }
2228 
2229     const DexFile& dex_file = *caller_method->GetDexFile();
2230     uint32_t shorty_len;
2231     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2232                                                   &shorty_len);
2233     {
2234       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2235       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2236       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2237       visitor.VisitArguments();
2238       ClassLinker* class_linker = runtime->GetClassLinker();
2239       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2240           self, dex_method_idx, caller_method, kInterface);
2241       visitor.FixupReferences();
2242     }
2243 
2244     if (UNLIKELY(interface_method == nullptr)) {
2245       CHECK(self->IsExceptionPending());
2246       return GetTwoWordFailureValue();  // Failure.
2247     }
2248     ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
2249     MaybeUpdateBssMethodEntry(
2250         interface_method, MethodReference(&dex_file, dex_method_idx), outer_method);
2251 
2252     // Refresh `raw_this_object` which may have changed after resolution.
2253     raw_this_object = this_object.Get();
2254   }
2255 
2256   // The compiler and interpreter make sure the conflict trampoline is never
2257   // called on a method that resolves to j.l.Object.
2258   DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
2259   DCHECK(interface_method->GetDeclaringClass()->IsInterface());
2260   DCHECK(!interface_method->IsRuntimeMethod());
2261   DCHECK(!interface_method->IsCopied());
2262 
2263   ObjPtr<mirror::Object> obj_this = raw_this_object;
2264   ObjPtr<mirror::Class> cls = obj_this->GetClass();
2265   uint32_t imt_index = interface_method->GetImtIndex();
2266   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2267   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2268   DCHECK(conflict_method->IsRuntimeMethod());
2269 
2270   if (UNLIKELY(resolve_method)) {
2271     // Now that we know the interface method, look it up in the conflict table.
2272     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2273     DCHECK(current_table != nullptr);
2274     ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
2275     if (method != nullptr) {
2276       return GetTwoWordSuccessValue(
2277           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2278           reinterpret_cast<uintptr_t>(method));
2279     }
2280     // Interface method is not in the conflict table. Continue looking up in the
2281     // iftable.
2282   }
2283 
2284   ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2285   if (UNLIKELY(method == nullptr)) {
2286     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2287     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2288         interface_method, obj_this.Ptr(), caller_method);
2289     return GetTwoWordFailureValue();
2290   }
2291 
2292   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2293   // We create a new table with the new pair { interface_method, method }.
2294 
2295   // Classes in the boot image should never need to update conflict methods in
2296   // their IMT.
2297   CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
2298   ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
2299       cls.Ptr(),
2300       conflict_method,
2301       interface_method,
2302       method);
2303   if (new_conflict_method != conflict_method) {
2304     // Update the IMT if we create a new conflict method. No fence needed here, as the
2305     // data is consistent.
2306     imt->Set(imt_index,
2307              new_conflict_method,
2308              kRuntimePointerSize);
2309   }
2310 
2311   const void* code = method->GetEntryPointFromQuickCompiledCode();
2312 
2313   // When we return, the caller will branch to this address, so it had better not be 0!
2314   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2315                           << " location: " << method->GetDexFile()->GetLocation();
2316 
2317   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2318                                 reinterpret_cast<uintptr_t>(method));
2319 }
2320 
2321 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2322 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2323     REQUIRES_SHARED(Locks::mutator_lock_) {
2324   ScopedQuickEntrypointChecks sqec(self);
2325   DCHECK(raw_receiver != nullptr);
2326   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2327 
2328   // Start new JNI local reference state
2329   JNIEnvExt* env = self->GetJniEnv();
2330   ScopedObjectAccessUnchecked soa(env);
2331   ScopedJniEnvLocalRefState env_state(env);
2332   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2333 
2334   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2335   uint32_t dex_pc;
2336   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2337   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2338   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2339          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2340   const dex::ProtoIndex proto_idx(inst.VRegH());
2341   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2342   const size_t shorty_length = strlen(shorty);
2343   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2344   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2345   gc_visitor.VisitArguments();
2346 
2347   // Wrap raw_receiver in a Handle for safety.
2348   StackHandleScope<3> hs(self);
2349   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2350   raw_receiver = nullptr;
2351   self->EndAssertNoThreadSuspension(old_cause);
2352 
2353   // Resolve method.
2354   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2355   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2356       self, inst.VRegB(), caller_method, kVirtual);
2357 
2358   Handle<mirror::MethodType> method_type(
2359       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2360   if (UNLIKELY(method_type.IsNull())) {
2361     // This implies we couldn't resolve one or more types in this method handle.
2362     CHECK(self->IsExceptionPending());
2363     return 0UL;
2364   }
2365 
2366   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2367   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2368 
2369   // Fix references before constructing the shadow frame.
2370   gc_visitor.FixupReferences();
2371 
2372   // Construct shadow frame placing arguments consecutively from |first_arg|.
2373   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2374   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2375   const size_t first_arg = 0;
2376   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2377       CREATE_SHADOW_FRAME(num_vregs, resolved_method, dex_pc);
2378   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2379   ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2380   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2381                                                     kMethodIsStatic,
2382                                                     shorty,
2383                                                     strlen(shorty),
2384                                                     shadow_frame,
2385                                                     first_arg);
2386   shadow_frame_builder.VisitArguments();
2387 
2388   // Push a transition back into managed code onto the linked list in thread.
2389   ManagedStack fragment;
2390   self->PushManagedStackFragment(&fragment);
2391 
2392   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2393   // consecutive order.
2394   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2395   Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2396   JValue result;
2397   bool success = false;
2398   if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2399     Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2400         ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2401     if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2402       success = MethodHandleInvokeExact(self,
2403                                         *shadow_frame,
2404                                         method_handle,
2405                                         method_type,
2406                                         &operands,
2407                                         &result);
2408     } else {
2409       DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2410                 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2411       success = MethodHandleInvoke(self,
2412                                    *shadow_frame,
2413                                    method_handle,
2414                                    method_type,
2415                                    &operands,
2416                                    &result);
2417     }
2418   } else {
2419     DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2420     Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2421         ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2422     mirror::VarHandle::AccessMode access_mode =
2423         mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2424     success = VarHandleInvokeAccessor(self,
2425                                       *shadow_frame,
2426                                       var_handle,
2427                                       method_type,
2428                                       access_mode,
2429                                       &operands,
2430                                       &result);
2431   }
2432 
2433   DCHECK(success || self->IsExceptionPending());
2434 
2435   // Pop transition record.
2436   self->PopManagedStackFragment(fragment);
2437 
2438   bool is_ref = (shorty[0] == 'L');
2439   Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2440       self, DeoptimizationMethodType::kDefault, is_ref, result);
2441 
2442   return result.GetJ();
2443 }
2444 
2445 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2446 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2447     REQUIRES_SHARED(Locks::mutator_lock_) {
2448   ScopedQuickEntrypointChecks sqec(self);
2449   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2450 
2451   // invoke-custom is effectively a static call (no receiver).
2452   static constexpr bool kMethodIsStatic = true;
2453 
2454   // Start new JNI local reference state
2455   JNIEnvExt* env = self->GetJniEnv();
2456   ScopedObjectAccessUnchecked soa(env);
2457   ScopedJniEnvLocalRefState env_state(env);
2458 
2459   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2460 
2461   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2462   uint32_t dex_pc;
2463   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2464   const DexFile* dex_file = caller_method->GetDexFile();
2465   const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2466   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2467   const uint32_t shorty_len = strlen(shorty);
2468 
2469   // Construct the shadow frame placing arguments consecutively from |first_arg|.
2470   const size_t first_arg = 0;
2471   const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2472   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2473       CREATE_SHADOW_FRAME(num_vregs, caller_method, dex_pc);
2474   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2475   ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2476   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2477                                                     kMethodIsStatic,
2478                                                     shorty,
2479                                                     shorty_len,
2480                                                     shadow_frame,
2481                                                     first_arg);
2482   shadow_frame_builder.VisitArguments();
2483 
2484   // Push a transition back into managed code onto the linked list in thread.
2485   ManagedStack fragment;
2486   self->PushManagedStackFragment(&fragment);
2487   self->EndAssertNoThreadSuspension(old_cause);
2488 
2489   // Perform the invoke-custom operation.
2490   RangeInstructionOperands operands(first_arg, num_vregs);
2491   JValue result;
2492   bool success =
2493       interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2494   DCHECK(success || self->IsExceptionPending());
2495 
2496   // Pop transition record.
2497   self->PopManagedStackFragment(fragment);
2498 
2499   bool is_ref = (shorty[0] == 'L');
2500   Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2501       self, DeoptimizationMethodType::kDefault, is_ref, result);
2502 
2503   return result.GetJ();
2504 }
2505 
artJniMethodEntryHook(Thread * self)2506 extern "C" void artJniMethodEntryHook(Thread* self)
2507     REQUIRES_SHARED(Locks::mutator_lock_) {
2508   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2509   ArtMethod* method = *self->GetManagedStack()->GetTopQuickFrame();
2510   instr->MethodEnterEvent(self, method);
2511 }
2512 
artMethodEntryHook(ArtMethod * method,Thread * self,ArtMethod ** sp)2513 extern "C" void artMethodEntryHook(ArtMethod* method, Thread* self, ArtMethod** sp)
2514     REQUIRES_SHARED(Locks::mutator_lock_) {
2515   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2516   if (instr->HasMethodEntryListeners()) {
2517     instr->MethodEnterEvent(self, method);
2518     // MethodEnter callback could have requested a deopt for ex: by setting a breakpoint, so
2519     // check if we need a deopt here.
2520     if (instr->ShouldDeoptimizeCaller(self, sp) || instr->IsDeoptimized(method)) {
2521       // Instrumentation can request deoptimizing only a particular method (for ex: when
2522       // there are break points on the method). In such cases deoptimize only this method.
2523       // FullFrame deoptimizations are handled on method exits.
2524       artDeoptimizeFromCompiledCode(DeoptimizationKind::kDebugging, self);
2525     }
2526   } else {
2527     DCHECK(!instr->IsDeoptimized(method));
2528   }
2529 }
2530 
artMethodExitHook(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result,uint32_t frame_size)2531 extern "C" void artMethodExitHook(Thread* self,
2532                                   ArtMethod** sp,
2533                                   uint64_t* gpr_result,
2534                                   uint64_t* fpr_result,
2535                                   uint32_t frame_size)
2536   REQUIRES_SHARED(Locks::mutator_lock_) {
2537   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
2538   // Instrumentation exit stub must not be entered with a pending exception.
2539   CHECK(!self->IsExceptionPending())
2540       << "Enter instrumentation exit stub with pending exception " << self->GetException()->Dump();
2541 
2542   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2543   DCHECK(instr->RunExitHooks());
2544 
2545   bool is_ref = false;
2546   ArtMethod* method = *sp;
2547   if (instr->HasMethodExitListeners()) {
2548     StackHandleScope<1> hs(self);
2549 
2550     CHECK(gpr_result != nullptr);
2551     CHECK(fpr_result != nullptr);
2552 
2553     JValue return_value = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2554     MutableHandle<mirror::Object> res(hs.NewHandle<mirror::Object>(nullptr));
2555     if (is_ref) {
2556       // Take a handle to the return value so we won't lose it if we suspend.
2557       res.Assign(return_value.GetL());
2558     }
2559     DCHECK(!method->IsRuntimeMethod());
2560 
2561     // If we need a deoptimization MethodExitEvent will be called by the interpreter when it
2562     // re-executes the return instruction. For native methods we have to process method exit
2563     // events here since deoptimization just removes the native frame.
2564     instr->MethodExitEvent(self, method, /* frame= */ {}, return_value);
2565 
2566     if (is_ref) {
2567       // Restore the return value if it's a reference since it might have moved.
2568       *reinterpret_cast<mirror::Object**>(gpr_result) = res.Get();
2569       return_value.SetL(res.Get());
2570     }
2571   }
2572 
2573   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
2574     // The exception was thrown from the method exit callback. We should not call method unwind
2575     // callbacks for this case.
2576     self->QuickDeliverException(/* is_method_exit_exception= */ true);
2577     UNREACHABLE();
2578   }
2579 
2580   // We should deoptimize here if the caller requires a deoptimization or if the current method
2581   // needs a deoptimization. We may need deoptimization for the current method if method exit
2582   // hooks requested this frame to be popped. IsForcedInterpreterNeededForUpcall checks for that.
2583   const bool deoptimize = instr->ShouldDeoptimizeCaller(self, sp, frame_size) ||
2584                           Dbg::IsForcedInterpreterNeededForUpcall(self, method);
2585   if (deoptimize) {
2586     JValue ret_val = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2587     DeoptimizationMethodType deopt_method_type = instr->GetDeoptimizationMethodType(method);
2588     self->PushDeoptimizationContext(
2589         ret_val, is_ref, self->GetException(), false, deopt_method_type);
2590     // Method exit callback has already been run for this method. So tell the deoptimizer to skip
2591     // callbacks for this frame.
2592     artDeoptimize(self, /*skip_method_exit_callbacks = */ true);
2593     UNREACHABLE();
2594   }
2595 }
2596 
2597 }  // namespace art
2598