1 // Copyright 2018 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 //! Virtual machine architecture support code.
6
7 pub mod android;
8 pub mod pstore;
9 pub mod serial;
10
11 pub mod sys;
12
13 use std::collections::BTreeMap;
14 use std::error::Error as StdError;
15 use std::fs::File;
16 use std::io;
17 use std::io::Read;
18 use std::io::Seek;
19 use std::io::SeekFrom;
20 use std::ops::Deref;
21 use std::path::PathBuf;
22 use std::str::FromStr;
23 use std::sync::mpsc;
24 use std::sync::mpsc::SendError;
25 use std::sync::Arc;
26
27 use acpi_tables::sdt::SDT;
28 use base::syslog;
29 use base::AsRawDescriptor;
30 use base::AsRawDescriptors;
31 use base::Event;
32 use base::SendTube;
33 use base::Tube;
34 use devices::virtio::VirtioDevice;
35 use devices::BarRange;
36 use devices::Bus;
37 use devices::BusDevice;
38 use devices::BusDeviceObj;
39 use devices::BusError;
40 use devices::BusResumeDevice;
41 use devices::HotPlugBus;
42 use devices::IrqChip;
43 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
44 use devices::IrqChipAArch64 as IrqChipArch;
45 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
46 use devices::IrqChipX86_64 as IrqChipArch;
47 use devices::IrqEventSource;
48 use devices::PciAddress;
49 use devices::PciBus;
50 use devices::PciDevice;
51 use devices::PciDeviceError;
52 use devices::PciInterruptPin;
53 use devices::PciRoot;
54 use devices::PciRootCommand;
55 use devices::PreferredIrq;
56 #[cfg(unix)]
57 use devices::ProxyDevice;
58 use devices::SerialHardware;
59 use devices::SerialParameters;
60 use devices::VirtioMmioDevice;
61 #[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), feature = "gdb"))]
62 use gdbstub::arch::Arch;
63 #[cfg(all(target_arch = "aarch64", feature = "gdb"))]
64 use gdbstub_arch::aarch64::AArch64 as GdbArch;
65 #[cfg(all(target_arch = "x86_64", feature = "gdb"))]
66 use gdbstub_arch::x86::X86_64_SSE as GdbArch;
67 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
68 use hypervisor::CpuConfigAArch64 as CpuConfigArch;
69 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
70 use hypervisor::CpuConfigX86_64 as CpuConfigArch;
71 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
72 use hypervisor::Hypervisor as HypervisorArch;
73 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
74 use hypervisor::HypervisorX86_64 as HypervisorArch;
75 use hypervisor::IoEventAddress;
76 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
77 use hypervisor::VcpuAArch64 as VcpuArch;
78 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
79 use hypervisor::VcpuInitAArch64 as VcpuInitArch;
80 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
81 use hypervisor::VcpuInitX86_64 as VcpuInitArch;
82 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
83 use hypervisor::VcpuX86_64 as VcpuArch;
84 use hypervisor::Vm;
85 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
86 use hypervisor::VmAArch64 as VmArch;
87 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
88 use hypervisor::VmX86_64 as VmArch;
89 #[cfg(windows)]
90 use jail::FakeMinijailStub as Minijail;
91 #[cfg(unix)]
92 use minijail::Minijail;
93 use remain::sorted;
94 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
95 use resources::AddressRange;
96 use resources::SystemAllocator;
97 use resources::SystemAllocatorConfig;
98 use serde::de::Visitor;
99 use serde::Deserialize;
100 use serde::Serialize;
101 use serde_keyvalue::FromKeyValues;
102 pub use serial::add_serial_devices;
103 pub use serial::get_serial_cmdline;
104 pub use serial::set_default_serial_parameters;
105 pub use serial::GetSerialCmdlineError;
106 pub use serial::SERIAL_ADDR;
107 use sync::Mutex;
108 use thiserror::Error;
109 use vm_control::BatControl;
110 use vm_control::BatteryType;
111 use vm_control::PmResource;
112 use vm_memory::GuestAddress;
113 use vm_memory::GuestMemory;
114 use vm_memory::GuestMemoryError;
115 use vm_memory::MemoryRegionOptions;
116
117 pub enum VmImage {
118 Kernel(File),
119 Bios(File),
120 }
121
122 #[derive(Clone, Debug, Deserialize, Serialize, FromKeyValues, PartialEq, Eq)]
123 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
124 pub struct Pstore {
125 pub path: PathBuf,
126 pub size: u32,
127 }
128
129 /// Set of CPU cores.
130 #[derive(Clone, Debug, Default, PartialEq, Eq)]
131 pub struct CpuSet(Vec<usize>);
132
133 impl CpuSet {
new<I: IntoIterator<Item = usize>>(cpus: I) -> Self134 pub fn new<I: IntoIterator<Item = usize>>(cpus: I) -> Self {
135 CpuSet(cpus.into_iter().collect())
136 }
137
iter(&self) -> std::slice::Iter<'_, usize>138 pub fn iter(&self) -> std::slice::Iter<'_, usize> {
139 self.0.iter()
140 }
141 }
142
parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String>143 fn parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String> {
144 fn parse_cpu(s: &str) -> Result<usize, String> {
145 s.parse().map_err(|_| {
146 format!(
147 "invalid CPU index {} - index must be a non-negative integer",
148 s
149 )
150 })
151 }
152
153 let (first_cpu, last_cpu) = match s.split_once('-') {
154 Some((first_cpu, last_cpu)) => {
155 let first_cpu = parse_cpu(first_cpu)?;
156 let last_cpu = parse_cpu(last_cpu)?;
157
158 if last_cpu < first_cpu {
159 return Err(format!(
160 "invalid CPU range {} - ranges must be from low to high",
161 s
162 ));
163 }
164 (first_cpu, last_cpu)
165 }
166 None => {
167 let cpu = parse_cpu(s)?;
168 (cpu, cpu)
169 }
170 };
171
172 cpuset.extend(first_cpu..=last_cpu);
173
174 Ok(())
175 }
176
177 impl FromStr for CpuSet {
178 type Err = String;
179
from_str(s: &str) -> Result<Self, Self::Err>180 fn from_str(s: &str) -> Result<Self, Self::Err> {
181 let mut cpuset = Vec::new();
182 for part in s.split(',') {
183 parse_cpu_range(part, &mut cpuset)?;
184 }
185 Ok(CpuSet::new(cpuset))
186 }
187 }
188
189 impl Deref for CpuSet {
190 type Target = Vec<usize>;
191
deref(&self) -> &Self::Target192 fn deref(&self) -> &Self::Target {
193 &self.0
194 }
195 }
196
197 impl IntoIterator for CpuSet {
198 type Item = usize;
199 type IntoIter = std::vec::IntoIter<Self::Item>;
200
into_iter(self) -> Self::IntoIter201 fn into_iter(self) -> Self::IntoIter {
202 self.0.into_iter()
203 }
204 }
205
206 /// Deserializes a `CpuSet` from a sequence which elements can either be integers, or strings
207 /// representing CPU ranges (e.g. `5-8`).
208 impl<'de> Deserialize<'de> for CpuSet {
deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de>,209 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
210 where
211 D: serde::Deserializer<'de>,
212 {
213 struct CpuSetVisitor;
214 impl<'de> Visitor<'de> for CpuSetVisitor {
215 type Value = CpuSet;
216
217 fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
218 formatter.write_str("CpuSet")
219 }
220
221 fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
222 where
223 A: serde::de::SeqAccess<'de>,
224 {
225 #[derive(Deserialize)]
226 #[serde(untagged)]
227 enum CpuSetValue<'a> {
228 Single(usize),
229 Range(&'a str),
230 }
231
232 let mut cpus = Vec::new();
233 while let Some(cpuset) = seq.next_element::<CpuSetValue>()? {
234 match cpuset {
235 CpuSetValue::Single(cpu) => cpus.push(cpu),
236 CpuSetValue::Range(range) => {
237 parse_cpu_range(range, &mut cpus).map_err(serde::de::Error::custom)?;
238 }
239 }
240 }
241
242 Ok(CpuSet::new(cpus))
243 }
244 }
245
246 deserializer.deserialize_seq(CpuSetVisitor)
247 }
248 }
249
250 /// Serializes a `CpuSet` into a sequence of integers and strings representing CPU ranges.
251 impl Serialize for CpuSet {
serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer,252 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
253 where
254 S: serde::Serializer,
255 {
256 use serde::ser::SerializeSeq;
257
258 let mut seq = serializer.serialize_seq(None)?;
259
260 // Factorize ranges into "a-b" strings.
261 let mut serialize_range = |start: usize, end: usize| -> Result<(), S::Error> {
262 if start == end {
263 seq.serialize_element(&start)?;
264 } else {
265 seq.serialize_element(&format!("{}-{}", start, end))?;
266 }
267
268 Ok(())
269 };
270
271 // Current range.
272 let mut range = None;
273 for core in &self.0 {
274 range = match range {
275 None => Some((core, core)),
276 Some((start, end)) if *end == *core - 1 => Some((start, core)),
277 Some((start, end)) => {
278 serialize_range(*start, *end)?;
279 Some((core, core))
280 }
281 };
282 }
283
284 if let Some((start, end)) = range {
285 serialize_range(*start, *end)?;
286 }
287
288 seq.end()
289 }
290 }
291
292 /// Mapping of guest VCPU threads to host CPU cores.
293 #[derive(Clone, Debug, Deserialize, PartialEq, Eq, Serialize)]
294 pub enum VcpuAffinity {
295 /// All VCPU threads will be pinned to the same set of host CPU cores.
296 Global(CpuSet),
297 /// Each VCPU may be pinned to a set of host CPU cores.
298 /// The map key is a guest VCPU index, and the corresponding value is the set of
299 /// host CPU indices that the VCPU thread will be allowed to run on.
300 /// If a VCPU index is not present in the map, its affinity will not be set.
301 PerVcpu(BTreeMap<usize, CpuSet>),
302 }
303
304 /// Holds the pieces needed to build a VM. Passed to `build_vm` in the `LinuxArch` trait below to
305 /// create a `RunnableLinuxVm`.
306 #[sorted]
307 pub struct VmComponents {
308 #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), unix))]
309 pub ac_adapter: bool,
310 pub acpi_sdts: Vec<SDT>,
311 pub android_fstab: Option<File>,
312 pub cpu_capacity: BTreeMap<usize, u32>,
313 pub cpu_clusters: Vec<CpuSet>,
314 pub delay_rt: bool,
315 #[cfg(feature = "direct")]
316 pub direct_fixed_evts: Vec<devices::ACPIPMFixedEvent>,
317 #[cfg(feature = "direct")]
318 pub direct_gpe: Vec<u32>,
319 pub dmi_path: Option<PathBuf>,
320 pub extra_kernel_params: Vec<String>,
321 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
322 pub force_s2idle: bool,
323 #[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), feature = "gdb"))]
324 pub gdb: Option<(u32, Tube)>, // port and control tube.
325 pub host_cpu_topology: bool,
326 pub hugepages: bool,
327 pub hv_cfg: hypervisor::Config,
328 pub initrd_image: Option<File>,
329 pub itmt: bool,
330 pub memory_size: u64,
331 pub no_i8042: bool,
332 pub no_rtc: bool,
333 pub no_smt: bool,
334 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
335 pub oem_strings: Vec<String>,
336 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
337 pub pci_low_start: Option<u64>,
338 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
339 pub pcie_ecam: Option<AddressRange>,
340 pub pflash_block_size: u32,
341 pub pflash_image: Option<File>,
342 pub pstore: Option<Pstore>,
343 /// A file to load as pVM firmware. Must be `Some` iff
344 /// `hv_cfg.protection_type == ProtectionType::UnprotectedWithFirmware`.
345 pub pvm_fw: Option<File>,
346 pub rt_cpus: CpuSet,
347 pub swiotlb: Option<u64>,
348 pub vcpu_affinity: Option<VcpuAffinity>,
349 pub vcpu_count: usize,
350 pub vm_image: VmImage,
351 }
352
353 /// Holds the elements needed to run a Linux VM. Created by `build_vm`.
354 #[sorted]
355 pub struct RunnableLinuxVm<V: VmArch, Vcpu: VcpuArch> {
356 pub bat_control: Option<BatControl>,
357 pub delay_rt: bool,
358 pub devices_thread: Option<std::thread::JoinHandle<()>>,
359 #[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), feature = "gdb"))]
360 pub gdb: Option<(u32, Tube)>,
361 pub has_bios: bool,
362 pub hotplug_bus: BTreeMap<u8, Arc<Mutex<dyn HotPlugBus>>>,
363 pub io_bus: Arc<Bus>,
364 pub irq_chip: Box<dyn IrqChipArch>,
365 pub mmio_bus: Arc<Bus>,
366 pub no_smt: bool,
367 pub pid_debug_label_map: BTreeMap<u32, String>,
368 #[cfg(unix)]
369 pub platform_devices: Vec<Arc<Mutex<dyn BusDevice>>>,
370 pub pm: Option<Arc<Mutex<dyn PmResource + Send>>>,
371 /// Devices to be notified before the system resumes from the S3 suspended state.
372 pub resume_notify_devices: Vec<Arc<Mutex<dyn BusResumeDevice>>>,
373 pub root_config: Arc<Mutex<PciRoot>>,
374 pub rt_cpus: CpuSet,
375 pub suspend_evt: Event,
376 pub vcpu_affinity: Option<VcpuAffinity>,
377 pub vcpu_count: usize,
378 pub vcpu_init: Vec<VcpuInitArch>,
379 /// If vcpus is None, then it's the responsibility of the vcpu thread to create vcpus.
380 /// If it's Some, then `build_vm` already created the vcpus.
381 pub vcpus: Option<Vec<Vcpu>>,
382 pub vm: V,
383 pub vm_request_tube: Option<Tube>,
384 }
385
386 /// The device and optional jail.
387 pub struct VirtioDeviceStub {
388 pub dev: Box<dyn VirtioDevice>,
389 pub jail: Option<Minijail>,
390 }
391
392 /// Trait which is implemented for each Linux Architecture in order to
393 /// set up the memory, cpus, and system devices and to boot the kernel.
394 pub trait LinuxArch {
395 type Error: StdError;
396
397 /// Returns a Vec of the valid memory addresses as pairs of address and length. These should be
398 /// used to configure the `GuestMemory` structure for the platform.
399 ///
400 /// # Arguments
401 ///
402 /// * `components` - Parts used to determine the memory layout.
guest_memory_layout( components: &VmComponents, hypervisor: &impl hypervisor::Hypervisor, ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>403 fn guest_memory_layout(
404 components: &VmComponents,
405 hypervisor: &impl hypervisor::Hypervisor,
406 ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>;
407
408 /// Gets the configuration for a new `SystemAllocator` that fits the given `Vm`'s memory layout.
409 ///
410 /// This is the per-architecture template for constructing the `SystemAllocator`. Platform
411 /// agnostic modifications may be made to this configuration, but the final `SystemAllocator`
412 /// will be at least as strict as this configuration.
413 ///
414 /// # Arguments
415 ///
416 /// * `vm` - The virtual machine to be used as a template for the `SystemAllocator`.
get_system_allocator_config<V: Vm>(vm: &V) -> SystemAllocatorConfig417 fn get_system_allocator_config<V: Vm>(vm: &V) -> SystemAllocatorConfig;
418
419 /// Takes `VmComponents` and generates a `RunnableLinuxVm`.
420 ///
421 /// # Arguments
422 ///
423 /// * `components` - Parts to use to build the VM.
424 /// * `vm_evt_wrtube` - Tube used by sub-devices to request that crosvm exit because guest
425 /// wants to stop/shut down or requested reset.
426 /// * `system_allocator` - Allocator created by this trait's implementation of
427 /// `get_system_allocator_config`.
428 /// * `serial_parameters` - Definitions for how the serial devices should be configured.
429 /// * `serial_jail` - Jail used for serial devices created here.
430 /// * `battery` - Defines what battery device will be created.
431 /// * `vm` - A VM implementation to build upon.
432 /// * `ramoops_region` - Region allocated for ramoops.
433 /// * `devices` - The devices to be built into the VM.
434 /// * `irq_chip` - The IRQ chip implemention for the VM.
435 /// * `debugcon_jail` - Jail used for debugcon devices created here.
436 /// * `pflash_jail` - Jail used for pflash device created here.
build_vm<V, Vcpu>( components: VmComponents, vm_evt_wrtube: &SendTube, system_allocator: &mut SystemAllocator, serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>, serial_jail: Option<Minijail>, battery: (Option<BatteryType>, Option<Minijail>), vm: V, ramoops_region: Option<pstore::RamoopsRegion>, devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>, irq_chip: &mut dyn IrqChipArch, vcpu_ids: &mut Vec<usize>, dump_device_tree_blob: Option<PathBuf>, debugcon_jail: Option<Minijail>, #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] pflash_jail: Option<Minijail>, #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>, ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error> where V: VmArch, Vcpu: VcpuArch437 fn build_vm<V, Vcpu>(
438 components: VmComponents,
439 vm_evt_wrtube: &SendTube,
440 system_allocator: &mut SystemAllocator,
441 serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
442 serial_jail: Option<Minijail>,
443 battery: (Option<BatteryType>, Option<Minijail>),
444 vm: V,
445 ramoops_region: Option<pstore::RamoopsRegion>,
446 devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>,
447 irq_chip: &mut dyn IrqChipArch,
448 vcpu_ids: &mut Vec<usize>,
449 dump_device_tree_blob: Option<PathBuf>,
450 debugcon_jail: Option<Minijail>,
451 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] pflash_jail: Option<Minijail>,
452 #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>,
453 ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error>
454 where
455 V: VmArch,
456 Vcpu: VcpuArch;
457
458 /// Configures the vcpu and should be called once per vcpu from the vcpu's thread.
459 ///
460 /// # Arguments
461 ///
462 /// * `vm` - The virtual machine object.
463 /// * `hypervisor` - The `Hypervisor` that created the vcpu.
464 /// * `irq_chip` - The `IrqChip` associated with this vm.
465 /// * `vcpu` - The VCPU object to configure.
466 /// * `vcpu_init` - The data required to initialize VCPU registers and other state.
467 /// * `vcpu_id` - The id of the given `vcpu`.
468 /// * `num_cpus` - Number of virtual CPUs the guest will have.
469 /// * `has_bios` - Whether the `VmImage` is a `Bios` image
470 /// * `cpu_config` - CPU feature configurations.
configure_vcpu<V: Vm>( vm: &V, hypervisor: &dyn HypervisorArch, irq_chip: &mut dyn IrqChipArch, vcpu: &mut dyn VcpuArch, vcpu_init: VcpuInitArch, vcpu_id: usize, num_cpus: usize, has_bios: bool, cpu_config: Option<CpuConfigArch>, ) -> Result<(), Self::Error>471 fn configure_vcpu<V: Vm>(
472 vm: &V,
473 hypervisor: &dyn HypervisorArch,
474 irq_chip: &mut dyn IrqChipArch,
475 vcpu: &mut dyn VcpuArch,
476 vcpu_init: VcpuInitArch,
477 vcpu_id: usize,
478 num_cpus: usize,
479 has_bios: bool,
480 cpu_config: Option<CpuConfigArch>,
481 ) -> Result<(), Self::Error>;
482
483 /// Configures and add a pci device into vm
register_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, device: Box<dyn PciDevice>, #[cfg(unix)] minijail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>, ) -> Result<PciAddress, Self::Error>484 fn register_pci_device<V: VmArch, Vcpu: VcpuArch>(
485 linux: &mut RunnableLinuxVm<V, Vcpu>,
486 device: Box<dyn PciDevice>,
487 #[cfg(unix)] minijail: Option<Minijail>,
488 resources: &mut SystemAllocator,
489 hp_control_tube: &mpsc::Sender<PciRootCommand>,
490 #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>,
491 ) -> Result<PciAddress, Self::Error>;
492 }
493
494 #[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), feature = "gdb"))]
495 pub trait GdbOps<T: VcpuArch> {
496 type Error: StdError;
497
498 /// Reads vCPU's registers.
read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>499 fn read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>;
500
501 /// Writes vCPU's registers.
write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>502 fn write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>;
503
504 /// Reads bytes from the guest memory.
read_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, len: usize, ) -> Result<Vec<u8>, Self::Error>505 fn read_memory(
506 vcpu: &T,
507 guest_mem: &GuestMemory,
508 vaddr: GuestAddress,
509 len: usize,
510 ) -> Result<Vec<u8>, Self::Error>;
511
512 /// Writes bytes to the specified guest memory.
write_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, buf: &[u8], ) -> Result<(), Self::Error>513 fn write_memory(
514 vcpu: &T,
515 guest_mem: &GuestMemory,
516 vaddr: GuestAddress,
517 buf: &[u8],
518 ) -> Result<(), Self::Error>;
519
520 /// Reads bytes from the guest register.
read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>521 fn read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>;
522
523 /// Writes bytes to the specified guest register.
write_register( vcpu: &T, reg_id: <GdbArch as Arch>::RegId, data: &[u8], ) -> Result<(), Self::Error>524 fn write_register(
525 vcpu: &T,
526 reg_id: <GdbArch as Arch>::RegId,
527 data: &[u8],
528 ) -> Result<(), Self::Error>;
529
530 /// Make the next vCPU's run single-step.
enable_singlestep(vcpu: &T) -> Result<(), Self::Error>531 fn enable_singlestep(vcpu: &T) -> Result<(), Self::Error>;
532
533 /// Get maximum number of hardware breakpoints.
get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>534 fn get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>;
535
536 /// Set hardware breakpoints at the given addresses.
set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>537 fn set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>;
538 }
539
540 /// Errors for device manager.
541 #[sorted]
542 #[derive(Error, Debug)]
543 pub enum DeviceRegistrationError {
544 /// No more MMIO space available.
545 #[error("no more addresses are available")]
546 AddrsExhausted,
547 /// Could not allocate device address space for the device.
548 #[error("Allocating device addresses: {0}")]
549 AllocateDeviceAddrs(PciDeviceError),
550 /// Could not allocate IO space for the device.
551 #[error("Allocating IO addresses: {0}")]
552 AllocateIoAddrs(PciDeviceError),
553 /// Could not allocate MMIO or IO resource for the device.
554 #[error("Allocating IO resource: {0}")]
555 AllocateIoResource(resources::Error),
556 /// Could not allocate an IRQ number.
557 #[error("Allocating IRQ number")]
558 AllocateIrq,
559 /// Could not allocate IRQ resource for the device.
560 #[cfg(unix)]
561 #[error("Allocating IRQ resource: {0}")]
562 AllocateIrqResource(devices::vfio::VfioError),
563 /// Broken pci topology
564 #[error("pci topology is broken")]
565 BrokenPciTopology,
566 /// Unable to clone a jail for the device.
567 #[cfg(unix)]
568 #[error("failed to clone jail: {0}")]
569 CloneJail(minijail::Error),
570 /// Appending to kernel command line failed.
571 #[error("unable to add device to kernel command line: {0}")]
572 Cmdline(kernel_cmdline::Error),
573 /// Configure window size failed.
574 #[error("failed to configure window size: {0}")]
575 ConfigureWindowSize(PciDeviceError),
576 // Unable to create a pipe.
577 #[error("failed to create pipe: {0}")]
578 CreatePipe(base::Error),
579 // Unable to create serial device from serial parameters
580 #[error("failed to create serial device: {0}")]
581 CreateSerialDevice(devices::SerialError),
582 // Unable to create tube
583 #[error("failed to create tube: {0}")]
584 CreateTube(base::TubeError),
585 /// Could not clone an event.
586 #[error("failed to clone event: {0}")]
587 EventClone(base::Error),
588 /// Could not create an event.
589 #[error("failed to create event: {0}")]
590 EventCreate(base::Error),
591 /// Failed to generate ACPI content.
592 #[error("failed to generate ACPI content")]
593 GenerateAcpi,
594 /// No more IRQs are available.
595 #[error("no more IRQs are available")]
596 IrqsExhausted,
597 /// Missing a required serial device.
598 #[error("missing required serial device {0}")]
599 MissingRequiredSerialDevice(u8),
600 /// Could not add a device to the mmio bus.
601 #[error("failed to add to mmio bus: {0}")]
602 MmioInsert(BusError),
603 #[cfg(unix)]
604 /// Failed to initialize proxy device for jailed device.
605 #[error("failed to create proxy device: {0}")]
606 ProxyDeviceCreation(devices::ProxyError),
607 #[cfg(unix)]
608 /// Failed to register battery device.
609 #[error("failed to register battery device to VM: {0}")]
610 RegisterBattery(devices::BatteryError),
611 /// Could not register PCI device to pci root bus
612 #[error("failed to register PCI device to pci root bus")]
613 RegisterDevice(SendError<PciRootCommand>),
614 /// Could not register PCI device capabilities.
615 #[error("could not register PCI device capabilities: {0}")]
616 RegisterDeviceCapabilities(PciDeviceError),
617 /// Failed to register ioevent with VM.
618 #[error("failed to register ioevent to VM: {0}")]
619 RegisterIoevent(base::Error),
620 /// Failed to register irq event with VM.
621 #[error("failed to register irq event to VM: {0}")]
622 RegisterIrqfd(base::Error),
623 /// Could not setup VFIO platform IRQ for the device.
624 #[error("Setting up VFIO platform IRQ: {0}")]
625 SetupVfioPlatformIrq(anyhow::Error),
626 }
627
628 /// Config a PCI device for used by this vm.
configure_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, mut device: Box<dyn PciDevice>, #[cfg(unix)] jail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>, ) -> Result<PciAddress, DeviceRegistrationError>629 pub fn configure_pci_device<V: VmArch, Vcpu: VcpuArch>(
630 linux: &mut RunnableLinuxVm<V, Vcpu>,
631 mut device: Box<dyn PciDevice>,
632 #[cfg(unix)] jail: Option<Minijail>,
633 resources: &mut SystemAllocator,
634 hp_control_tube: &mpsc::Sender<PciRootCommand>,
635 #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>,
636 ) -> Result<PciAddress, DeviceRegistrationError> {
637 // Allocate PCI device address before allocating BARs.
638 let pci_address = device
639 .allocate_address(resources)
640 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
641
642 // Allocate ranges that may need to be in the low MMIO region (MmioType::Low).
643 let mmio_ranges = device
644 .allocate_io_bars(resources)
645 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
646
647 // Allocate device ranges that may be in low or high MMIO after low-only ranges.
648 let device_ranges = device
649 .allocate_device_bars(resources)
650 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
651
652 // If device is a pcie bridge, add its pci bus to pci root
653 if let Some(pci_bus) = device.get_new_pci_bus() {
654 hp_control_tube
655 .send(PciRootCommand::AddBridge(pci_bus))
656 .map_err(DeviceRegistrationError::RegisterDevice)?;
657 let bar_ranges = Vec::new();
658 device
659 .configure_bridge_window(resources, &bar_ranges)
660 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
661 }
662
663 // Do not suggest INTx for hot-plug devices.
664 let intx_event = devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
665
666 if let PreferredIrq::Fixed { pin, gsi } = device.preferred_irq() {
667 resources.reserve_irq(gsi);
668
669 device.assign_irq(
670 intx_event
671 .try_clone()
672 .map_err(DeviceRegistrationError::EventClone)?,
673 pin,
674 gsi,
675 );
676
677 linux
678 .irq_chip
679 .as_irq_chip_mut()
680 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(&device))
681 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
682 }
683
684 let mut keep_rds = device.keep_rds();
685 syslog::push_descriptors(&mut keep_rds);
686 cros_tracing::push_descriptors!(&mut keep_rds);
687
688 device
689 .register_device_capabilities()
690 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
691 for (event, addr, datamatch) in device.ioevents() {
692 let io_addr = IoEventAddress::Mmio(addr);
693 linux
694 .vm
695 .register_ioevent(event, io_addr, datamatch)
696 .map_err(DeviceRegistrationError::RegisterIoevent)?;
697 keep_rds.push(event.as_raw_descriptor());
698 }
699
700 #[cfg(unix)]
701 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
702 let proxy = ProxyDevice::new(
703 device,
704 jail,
705 keep_rds,
706 #[cfg(feature = "swap")]
707 swap_controller,
708 )
709 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
710 linux
711 .pid_debug_label_map
712 .insert(proxy.pid() as u32, proxy.debug_label());
713 Arc::new(Mutex::new(proxy))
714 } else {
715 device.on_sandboxed();
716 Arc::new(Mutex::new(device))
717 };
718
719 #[cfg(windows)]
720 let arced_dev = {
721 device.on_sandboxed();
722 Arc::new(Mutex::new(device))
723 };
724
725 #[cfg(unix)]
726 hp_control_tube
727 .send(PciRootCommand::Add(pci_address, arced_dev.clone()))
728 .map_err(DeviceRegistrationError::RegisterDevice)?;
729
730 for range in &mmio_ranges {
731 linux
732 .mmio_bus
733 .insert(arced_dev.clone(), range.addr, range.size)
734 .map_err(DeviceRegistrationError::MmioInsert)?;
735 }
736
737 for range in &device_ranges {
738 linux
739 .mmio_bus
740 .insert(arced_dev.clone(), range.addr, range.size)
741 .map_err(DeviceRegistrationError::MmioInsert)?;
742 }
743
744 Ok(pci_address)
745 }
746
747 /// Creates Virtio MMIO devices for use by this Vm.
generate_virtio_mmio_bus( devices: Vec<(VirtioMmioDevice, Option<Minijail>)>, irq_chip: &mut dyn IrqChip, mmio_bus: &Bus, resources: &mut SystemAllocator, vm: &mut impl Vm, sdts: Vec<SDT>, #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>, ) -> Result<(BTreeMap<u32, String>, Vec<SDT>), DeviceRegistrationError>748 pub fn generate_virtio_mmio_bus(
749 devices: Vec<(VirtioMmioDevice, Option<Minijail>)>,
750 irq_chip: &mut dyn IrqChip,
751 mmio_bus: &Bus,
752 resources: &mut SystemAllocator,
753 vm: &mut impl Vm,
754 sdts: Vec<SDT>,
755 #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>,
756 ) -> Result<(BTreeMap<u32, String>, Vec<SDT>), DeviceRegistrationError> {
757 #[cfg_attr(windows, allow(unused_mut))]
758 let mut pid_labels = BTreeMap::new();
759
760 // sdts can be updated only on x86 platforms.
761 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
762 let mut sdts = sdts;
763 for dev_value in devices.into_iter() {
764 #[cfg(unix)]
765 let (mut device, jail) = dev_value;
766 #[cfg(windows)]
767 let (mut device, _) = dev_value;
768
769 let ranges = device
770 .allocate_regions(resources)
771 .map_err(DeviceRegistrationError::AllocateIoResource)?;
772
773 let mut keep_rds = device.keep_rds();
774 syslog::push_descriptors(&mut keep_rds);
775 cros_tracing::push_descriptors!(&mut keep_rds);
776
777 let irq_num = resources
778 .allocate_irq()
779 .ok_or(DeviceRegistrationError::AllocateIrq)?;
780 let irq_evt = devices::IrqEdgeEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
781 irq_chip
782 .register_edge_irq_event(irq_num, &irq_evt, IrqEventSource::from_device(&device))
783 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
784 device.assign_irq(&irq_evt, irq_num);
785 keep_rds.extend(irq_evt.as_raw_descriptors());
786
787 for (event, addr, datamatch) in device.ioevents() {
788 let io_addr = IoEventAddress::Mmio(addr);
789 vm.register_ioevent(event, io_addr, datamatch)
790 .map_err(DeviceRegistrationError::RegisterIoevent)?;
791 keep_rds.push(event.as_raw_descriptor());
792 }
793
794 #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
795 {
796 sdts = device
797 .generate_acpi(sdts)
798 .ok_or(DeviceRegistrationError::GenerateAcpi)?;
799 }
800
801 #[cfg(unix)]
802 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
803 let proxy = ProxyDevice::new(
804 device,
805 jail,
806 keep_rds,
807 #[cfg(feature = "swap")]
808 swap_controller,
809 )
810 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
811 pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
812 Arc::new(Mutex::new(proxy))
813 } else {
814 device.on_sandboxed();
815 Arc::new(Mutex::new(device))
816 };
817
818 #[cfg(windows)]
819 let arced_dev = {
820 device.on_sandboxed();
821 Arc::new(Mutex::new(device))
822 };
823
824 for range in &ranges {
825 mmio_bus
826 .insert(arced_dev.clone(), range.0, range.1)
827 .map_err(DeviceRegistrationError::MmioInsert)?;
828 }
829 }
830 Ok((pid_labels, sdts))
831 }
832
833 // Generate pci topology starting from parent bus
generate_pci_topology( parent_bus: Arc<Mutex<PciBus>>, resources: &mut SystemAllocator, io_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_addrs: &[PciAddress], devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>, ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError>834 pub fn generate_pci_topology(
835 parent_bus: Arc<Mutex<PciBus>>,
836 resources: &mut SystemAllocator,
837 io_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
838 device_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
839 device_addrs: &[PciAddress],
840 devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
841 ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError> {
842 let mut bar_ranges = Vec::new();
843 let bus_num = parent_bus.lock().get_bus_num();
844 let mut subordinate_bus = bus_num;
845 for (dev_idx, addr) in device_addrs.iter().enumerate() {
846 // Only target for devices that located on this bus
847 if addr.bus == bus_num {
848 // If this device is a pci bridge (a.k.a., it has a pci bus structure),
849 // create its topology recursively
850 if let Some(child_bus) = devices[dev_idx].0.get_new_pci_bus() {
851 let (child_bar_ranges, child_sub_bus) = generate_pci_topology(
852 child_bus.clone(),
853 resources,
854 io_ranges,
855 device_ranges,
856 device_addrs,
857 devices,
858 )?;
859 let device = &mut devices[dev_idx].0;
860 parent_bus
861 .lock()
862 .add_child_bus(child_bus.clone())
863 .map_err(|_| DeviceRegistrationError::BrokenPciTopology)?;
864 let bridge_window = device
865 .configure_bridge_window(resources, &child_bar_ranges)
866 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
867 bar_ranges.extend(bridge_window);
868
869 let ranges = device
870 .allocate_io_bars(resources)
871 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
872 io_ranges.insert(dev_idx, ranges.clone());
873 bar_ranges.extend(ranges);
874
875 let ranges = device
876 .allocate_device_bars(resources)
877 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
878 device_ranges.insert(dev_idx, ranges.clone());
879 bar_ranges.extend(ranges);
880
881 device.set_subordinate_bus(child_sub_bus);
882
883 subordinate_bus = std::cmp::max(subordinate_bus, child_sub_bus);
884 }
885 }
886 }
887
888 for (dev_idx, addr) in device_addrs.iter().enumerate() {
889 if addr.bus == bus_num {
890 let device = &mut devices[dev_idx].0;
891 // Allocate MMIO for non-bridge devices
892 if device.get_new_pci_bus().is_none() {
893 let ranges = device
894 .allocate_io_bars(resources)
895 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
896 io_ranges.insert(dev_idx, ranges.clone());
897 bar_ranges.extend(ranges);
898
899 let ranges = device
900 .allocate_device_bars(resources)
901 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
902 device_ranges.insert(dev_idx, ranges.clone());
903 bar_ranges.extend(ranges);
904 }
905 }
906 }
907 Ok((bar_ranges, subordinate_bus))
908 }
909
910 /// Ensure all PCI devices have an assigned PCI address.
assign_pci_addresses( devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)], resources: &mut SystemAllocator, ) -> Result<(), DeviceRegistrationError>911 pub fn assign_pci_addresses(
912 devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)],
913 resources: &mut SystemAllocator,
914 ) -> Result<(), DeviceRegistrationError> {
915 // First allocate devices with a preferred address.
916 for pci_device in devices
917 .iter_mut()
918 .filter_map(|(device, _jail)| device.as_pci_device_mut())
919 .filter(|pci_device| pci_device.preferred_address().is_some())
920 {
921 let _ = pci_device
922 .allocate_address(resources)
923 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
924 }
925
926 // Then allocate addresses for the remaining devices.
927 for pci_device in devices
928 .iter_mut()
929 .filter_map(|(device, _jail)| device.as_pci_device_mut())
930 .filter(|pci_device| pci_device.preferred_address().is_none())
931 {
932 let _ = pci_device
933 .allocate_address(resources)
934 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
935 }
936
937 Ok(())
938 }
939
940 /// Creates a root PCI device for use by this Vm.
generate_pci_root( mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>, irq_chip: &mut dyn IrqChip, mmio_bus: Arc<Bus>, io_bus: Arc<Bus>, resources: &mut SystemAllocator, vm: &mut impl Vm, max_irqs: usize, vcfg_base: Option<u64>, #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>, ) -> Result< ( PciRoot, Vec<(PciAddress, u32, PciInterruptPin)>, BTreeMap<u32, String>, BTreeMap<PciAddress, Vec<u8>>, ), DeviceRegistrationError, >941 pub fn generate_pci_root(
942 mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
943 irq_chip: &mut dyn IrqChip,
944 mmio_bus: Arc<Bus>,
945 io_bus: Arc<Bus>,
946 resources: &mut SystemAllocator,
947 vm: &mut impl Vm,
948 max_irqs: usize,
949 vcfg_base: Option<u64>,
950 #[cfg(feature = "swap")] swap_controller: Option<&swap::SwapController>,
951 ) -> Result<
952 (
953 PciRoot,
954 Vec<(PciAddress, u32, PciInterruptPin)>,
955 BTreeMap<u32, String>,
956 BTreeMap<PciAddress, Vec<u8>>,
957 ),
958 DeviceRegistrationError,
959 > {
960 let mut device_addrs = Vec::new();
961
962 for (device, _jail) in devices.iter_mut() {
963 let address = device
964 .allocate_address(resources)
965 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
966 device_addrs.push(address);
967 }
968
969 let mut device_ranges = BTreeMap::new();
970 let mut io_ranges = BTreeMap::new();
971 let root_bus = Arc::new(Mutex::new(PciBus::new(0, 0, false)));
972
973 generate_pci_topology(
974 root_bus.clone(),
975 resources,
976 &mut io_ranges,
977 &mut device_ranges,
978 &device_addrs,
979 &mut devices,
980 )?;
981
982 let mut root = PciRoot::new(Arc::downgrade(&mmio_bus), Arc::downgrade(&io_bus), root_bus);
983 #[cfg_attr(windows, allow(unused_mut))]
984 let mut pid_labels = BTreeMap::new();
985
986 // Allocate legacy INTx
987 let mut pci_irqs = Vec::new();
988 let mut irqs: Vec<u32> = Vec::new();
989
990 // Mapping of (bus, dev, pin) -> IRQ number.
991 let mut dev_pin_irq = BTreeMap::new();
992
993 for (dev_idx, (device, _jail)) in devices.iter_mut().enumerate() {
994 let pci_address = device_addrs[dev_idx];
995
996 let irq = match device.preferred_irq() {
997 PreferredIrq::Fixed { pin, gsi } => {
998 // The device reported a preferred IRQ, so use that rather than allocating one.
999 resources.reserve_irq(gsi);
1000 Some((pin, gsi))
1001 }
1002 PreferredIrq::Any => {
1003 // The device did not provide a preferred IRQ but requested one, so allocate one.
1004
1005 // Choose a pin based on the slot's function number. Function 0 must always use
1006 // INTA# for single-function devices per the PCI spec, and we choose to use INTA#
1007 // for function 0 on multifunction devices and distribute the remaining functions
1008 // evenly across the other pins.
1009 let pin = match pci_address.func % 4 {
1010 0 => PciInterruptPin::IntA,
1011 1 => PciInterruptPin::IntB,
1012 2 => PciInterruptPin::IntC,
1013 _ => PciInterruptPin::IntD,
1014 };
1015
1016 // If an IRQ number has already been assigned for a different function with this
1017 // (bus, device, pin) combination, use it. Otherwise allocate a new one and insert
1018 // it into the map.
1019 let pin_key = (pci_address.bus, pci_address.dev, pin);
1020 let irq_num = if let Some(irq_num) = dev_pin_irq.get(&pin_key) {
1021 *irq_num
1022 } else {
1023 // If we have allocated fewer than `max_irqs` total, add a new irq to the `irqs`
1024 // pool. Otherwise, share one of the existing `irqs`.
1025 let irq_num = if irqs.len() < max_irqs {
1026 let irq_num = resources
1027 .allocate_irq()
1028 .ok_or(DeviceRegistrationError::AllocateIrq)?;
1029 irqs.push(irq_num);
1030 irq_num
1031 } else {
1032 // Pick one of the existing IRQs to share, using `dev_idx` to distribute IRQ
1033 // sharing evenly across devices.
1034 irqs[dev_idx % max_irqs]
1035 };
1036
1037 dev_pin_irq.insert(pin_key, irq_num);
1038 irq_num
1039 };
1040 Some((pin, irq_num))
1041 }
1042 PreferredIrq::None => {
1043 // The device does not want an INTx# IRQ.
1044 None
1045 }
1046 };
1047
1048 if let Some((pin, gsi)) = irq {
1049 let intx_event =
1050 devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
1051
1052 device.assign_irq(
1053 intx_event
1054 .try_clone()
1055 .map_err(DeviceRegistrationError::EventClone)?,
1056 pin,
1057 gsi,
1058 );
1059
1060 irq_chip
1061 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(device))
1062 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
1063
1064 pci_irqs.push((pci_address, gsi, pin));
1065 }
1066 }
1067
1068 // To prevent issues where device's on_sandbox may spawn thread before all
1069 // sandboxed devices are sandboxed we partition iterator to go over sandboxed
1070 // first. This is needed on linux platforms. On windows, this is a no-op since
1071 // jails are always None, even for sandboxed devices.
1072 let devices = {
1073 let (sandboxed, non_sandboxed): (Vec<_>, Vec<_>) = devices
1074 .into_iter()
1075 .enumerate()
1076 .partition(|(_, (_, jail))| jail.is_some());
1077 sandboxed.into_iter().chain(non_sandboxed.into_iter())
1078 };
1079
1080 let mut amls = BTreeMap::new();
1081 for (dev_idx, dev_value) in devices {
1082 #[cfg(unix)]
1083 let (mut device, jail) = dev_value;
1084 #[cfg(windows)]
1085 let (mut device, _) = dev_value;
1086 let address = device_addrs[dev_idx];
1087
1088 let mut keep_rds = device.keep_rds();
1089 syslog::push_descriptors(&mut keep_rds);
1090 cros_tracing::push_descriptors!(&mut keep_rds);
1091 keep_rds.append(&mut vm.get_memory().as_raw_descriptors());
1092
1093 let ranges = io_ranges.remove(&dev_idx).unwrap_or_default();
1094 let device_ranges = device_ranges.remove(&dev_idx).unwrap_or_default();
1095 device
1096 .register_device_capabilities()
1097 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
1098 for (event, addr, datamatch) in device.ioevents() {
1099 let io_addr = IoEventAddress::Mmio(addr);
1100 vm.register_ioevent(event, io_addr, datamatch)
1101 .map_err(DeviceRegistrationError::RegisterIoevent)?;
1102 keep_rds.push(event.as_raw_descriptor());
1103 }
1104
1105 if let Some(vcfg_base) = vcfg_base {
1106 let (methods, shm) = device.generate_acpi_methods();
1107 if !methods.is_empty() {
1108 amls.insert(address, methods);
1109 }
1110 if let Some((offset, mmap)) = shm {
1111 let _ = vm.add_memory_region(
1112 GuestAddress(vcfg_base + offset as u64),
1113 Box::new(mmap),
1114 false,
1115 false,
1116 );
1117 }
1118 }
1119
1120 #[cfg(unix)]
1121 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
1122 let proxy = ProxyDevice::new(
1123 device,
1124 jail,
1125 keep_rds,
1126 #[cfg(feature = "swap")]
1127 swap_controller,
1128 )
1129 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
1130 pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
1131 Arc::new(Mutex::new(proxy))
1132 } else {
1133 device.on_sandboxed();
1134 Arc::new(Mutex::new(device))
1135 };
1136 #[cfg(windows)]
1137 let arced_dev = {
1138 device.on_sandboxed();
1139 Arc::new(Mutex::new(device))
1140 };
1141 root.add_device(address, arced_dev.clone());
1142 for range in &ranges {
1143 mmio_bus
1144 .insert(arced_dev.clone(), range.addr, range.size)
1145 .map_err(DeviceRegistrationError::MmioInsert)?;
1146 }
1147
1148 for range in &device_ranges {
1149 mmio_bus
1150 .insert(arced_dev.clone(), range.addr, range.size)
1151 .map_err(DeviceRegistrationError::MmioInsert)?;
1152 }
1153 }
1154
1155 Ok((root, pci_irqs, pid_labels, amls))
1156 }
1157
1158 /// Errors for image loading.
1159 #[sorted]
1160 #[derive(Error, Debug)]
1161 pub enum LoadImageError {
1162 #[error("Alignment not a power of two: {0}")]
1163 BadAlignment(u64),
1164 #[error("Image size too large: {0}")]
1165 ImageSizeTooLarge(u64),
1166 #[error("Reading image into memory failed: {0}")]
1167 ReadToMemory(GuestMemoryError),
1168 #[error("Seek failed: {0}")]
1169 Seek(io::Error),
1170 }
1171
1172 /// Load an image from a file into guest memory.
1173 ///
1174 /// # Arguments
1175 ///
1176 /// * `guest_mem` - The memory to be used by the guest.
1177 /// * `guest_addr` - The starting address to load the image in the guest memory.
1178 /// * `max_size` - The amount of space in bytes available in the guest memory for the image.
1179 /// * `image` - The file containing the image to be loaded.
1180 ///
1181 /// The size in bytes of the loaded image is returned.
load_image<F>( guest_mem: &GuestMemory, image: &mut F, guest_addr: GuestAddress, max_size: u64, ) -> Result<usize, LoadImageError> where F: Read + Seek + AsRawDescriptor,1182 pub fn load_image<F>(
1183 guest_mem: &GuestMemory,
1184 image: &mut F,
1185 guest_addr: GuestAddress,
1186 max_size: u64,
1187 ) -> Result<usize, LoadImageError>
1188 where
1189 F: Read + Seek + AsRawDescriptor,
1190 {
1191 let size = image.seek(SeekFrom::End(0)).map_err(LoadImageError::Seek)?;
1192
1193 if size > usize::max_value() as u64 || size > max_size {
1194 return Err(LoadImageError::ImageSizeTooLarge(size));
1195 }
1196
1197 // This is safe due to the bounds check above.
1198 let size = size as usize;
1199
1200 image
1201 .seek(SeekFrom::Start(0))
1202 .map_err(LoadImageError::Seek)?;
1203
1204 guest_mem
1205 .read_to_memory(guest_addr, image, size)
1206 .map_err(LoadImageError::ReadToMemory)?;
1207
1208 Ok(size)
1209 }
1210
1211 /// Load an image from a file into guest memory at the highest possible address.
1212 ///
1213 /// # Arguments
1214 ///
1215 /// * `guest_mem` - The memory to be used by the guest.
1216 /// * `image` - The file containing the image to be loaded.
1217 /// * `min_guest_addr` - The minimum address of the start of the image.
1218 /// * `max_guest_addr` - The address to load the last byte of the image.
1219 /// * `align` - The minimum alignment of the start address of the image in bytes
1220 /// (must be a power of two).
1221 ///
1222 /// The guest address and size in bytes of the loaded image are returned.
load_image_high<F>( guest_mem: &GuestMemory, image: &mut F, min_guest_addr: GuestAddress, max_guest_addr: GuestAddress, align: u64, ) -> Result<(GuestAddress, usize), LoadImageError> where F: Read + Seek + AsRawDescriptor,1223 pub fn load_image_high<F>(
1224 guest_mem: &GuestMemory,
1225 image: &mut F,
1226 min_guest_addr: GuestAddress,
1227 max_guest_addr: GuestAddress,
1228 align: u64,
1229 ) -> Result<(GuestAddress, usize), LoadImageError>
1230 where
1231 F: Read + Seek + AsRawDescriptor,
1232 {
1233 if !align.is_power_of_two() {
1234 return Err(LoadImageError::BadAlignment(align));
1235 }
1236
1237 let max_size = max_guest_addr.offset_from(min_guest_addr) & !(align - 1);
1238 let size = image.seek(SeekFrom::End(0)).map_err(LoadImageError::Seek)?;
1239
1240 if size > usize::max_value() as u64 || size > max_size {
1241 return Err(LoadImageError::ImageSizeTooLarge(size));
1242 }
1243
1244 image
1245 .seek(SeekFrom::Start(0))
1246 .map_err(LoadImageError::Seek)?;
1247
1248 // Load image at the maximum aligned address allowed.
1249 // The subtraction cannot underflow because of the size checks above.
1250 let guest_addr = GuestAddress((max_guest_addr.offset() - size) & !(align - 1));
1251
1252 // This is safe due to the bounds check above.
1253 let size = size as usize;
1254
1255 guest_mem
1256 .read_to_memory(guest_addr, image, size)
1257 .map_err(LoadImageError::ReadToMemory)?;
1258
1259 Ok((guest_addr, size))
1260 }
1261
1262 /// Read and write permissions setting
1263 ///
1264 /// Wrap read_allow and write_allow to store them in MsrHandlers level.
1265 #[derive(Clone, Copy, Debug, Deserialize, PartialEq, Eq, Serialize)]
1266 pub enum MsrRWType {
1267 #[serde(rename = "r")]
1268 ReadOnly,
1269 #[serde(rename = "w")]
1270 WriteOnly,
1271 #[serde(rename = "rw", alias = "wr")]
1272 ReadWrite,
1273 }
1274
1275 /// Handler types for userspace-msr
1276 #[derive(Clone, Copy, Debug, Deserialize, PartialEq, Eq, Serialize)]
1277 pub enum MsrAction {
1278 /// Read and write from host directly, and the control of MSR will
1279 /// take effect on host.
1280 #[serde(rename = "pass")]
1281 MsrPassthrough,
1282 /// Store the dummy value for msr (copy from host or custom values),
1283 /// and the control(WRMSR) of MSR won't take effect on host.
1284 #[serde(rename = "emu")]
1285 MsrEmulate,
1286 }
1287
1288 /// Source CPU of MSR value
1289 ///
1290 /// Indicate which CPU that user get/set MSRs from/to.
1291 #[derive(Clone, Copy, Debug, Deserialize, PartialEq, Eq, Serialize)]
1292 pub enum MsrValueFrom {
1293 /// Read/write MSR value from/into CPU 0.
1294 /// The MSR source CPU always be CPU 0.
1295 #[serde(rename = "cpu0")]
1296 RWFromCPU0,
1297 /// Read/write MSR value from/into the running CPU.
1298 /// If vCPU migrates to another pcpu, the MSR source CPU will also change.
1299 #[serde(skip)]
1300 RWFromRunningCPU,
1301 }
1302
1303 /// Whether to force KVM-filtered MSRs.
1304 #[derive(Clone, Copy, Debug, Deserialize, PartialEq, Eq, Serialize)]
1305 pub enum MsrFilter {
1306 /// Leave it to hypervisor (KVM) default.
1307 #[serde(rename = "no")]
1308 Default,
1309 /// Don't let KVM do the default thing and use our userspace MSR
1310 /// implementation.
1311 #[serde(rename = "yes")]
1312 Override,
1313 }
1314
1315 /// Config option for userspace-msr handing
1316 ///
1317 /// MsrConfig will be collected with its corresponding MSR's index.
1318 /// eg, (msr_index, msr_config)
1319 #[derive(Clone, Serialize, Deserialize)]
1320 pub struct MsrConfig {
1321 /// If support RDMSR/WRMSR emulation in crosvm?
1322 pub rw_type: MsrRWType,
1323 /// Handlers should be used to handling MSR.
1324 pub action: MsrAction,
1325 /// MSR source CPU.
1326 pub from: MsrValueFrom,
1327 /// Whether to override KVM MSR emulation.
1328 pub filter: MsrFilter,
1329 }
1330
1331 #[sorted]
1332 #[derive(Error, Debug)]
1333 pub enum MsrExitHandlerError {
1334 #[error("Fail to create MSR handler")]
1335 HandlerCreateFailed,
1336 }
1337
1338 #[cfg(test)]
1339 mod tests {
1340 use serde_keyvalue::from_key_values;
1341
1342 use super::*;
1343
1344 #[test]
parse_pstore()1345 fn parse_pstore() {
1346 let res: Pstore = from_key_values("path=/some/path,size=16384").unwrap();
1347 assert_eq!(
1348 res,
1349 Pstore {
1350 path: "/some/path".into(),
1351 size: 16384,
1352 }
1353 );
1354
1355 let res = from_key_values::<Pstore>("path=/some/path");
1356 assert!(res.is_err());
1357
1358 let res = from_key_values::<Pstore>("size=16384");
1359 assert!(res.is_err());
1360
1361 let res = from_key_values::<Pstore>("");
1362 assert!(res.is_err());
1363 }
1364
1365 #[test]
deserialize_cpuset_serde_kv()1366 fn deserialize_cpuset_serde_kv() {
1367 let res: CpuSet = from_key_values("[0,4,7]").unwrap();
1368 assert_eq!(res, CpuSet::new(vec![0, 4, 7]));
1369
1370 let res: CpuSet = from_key_values("[9-12]").unwrap();
1371 assert_eq!(res, CpuSet::new(vec![9, 10, 11, 12]));
1372
1373 let res: CpuSet = from_key_values("[0,4,7,9-12,15]").unwrap();
1374 assert_eq!(res, CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]));
1375 }
1376
1377 #[test]
deserialize_serialize_cpuset_json()1378 fn deserialize_serialize_cpuset_json() {
1379 let json_str = "[0,4,7]";
1380 let cpuset = CpuSet::new(vec![0, 4, 7]);
1381 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1382 assert_eq!(res, cpuset);
1383 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1384
1385 let json_str = r#"["9-12"]"#;
1386 let cpuset = CpuSet::new(vec![9, 10, 11, 12]);
1387 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1388 assert_eq!(res, cpuset);
1389 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1390
1391 let json_str = r#"[0,4,7,"9-12",15]"#;
1392 let cpuset = CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]);
1393 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1394 assert_eq!(res, cpuset);
1395 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1396 }
1397 }
1398