1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "aom/aom_image.h"
13 #include "config/aom_config.h"
14 #include "config/aom_scale_rtcd.h"
15
16 #include "aom_dsp/aom_dsp_common.h"
17 #include "aom_mem/aom_mem.h"
18 #include "av1/common/av1_loopfilter.h"
19 #include "av1/common/entropymode.h"
20 #include "av1/common/thread_common.h"
21 #include "av1/common/reconinter.h"
22 #include "av1/common/reconintra.h"
23
24 // Set up nsync by width.
get_sync_range(int width)25 static INLINE int get_sync_range(int width) {
26 // nsync numbers are picked by testing. For example, for 4k
27 // video, using 4 gives best performance.
28 if (width < 640)
29 return 1;
30 else if (width <= 1280)
31 return 2;
32 else if (width <= 4096)
33 return 4;
34 else
35 return 8;
36 }
37
get_lr_sync_range(int width)38 static INLINE int get_lr_sync_range(int width) {
39 #if 0
40 // nsync numbers are picked by testing. For example, for 4k
41 // video, using 4 gives best performance.
42 if (width < 640)
43 return 1;
44 else if (width <= 1280)
45 return 2;
46 else if (width <= 4096)
47 return 4;
48 else
49 return 8;
50 #else
51 (void)width;
52 return 1;
53 #endif
54 }
55
56 // Allocate memory for lf row synchronization
av1_loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)57 void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
58 int width, int num_workers) {
59 lf_sync->rows = rows;
60 #if CONFIG_MULTITHREAD
61 {
62 int i, j;
63
64 for (j = 0; j < MAX_MB_PLANE; j++) {
65 CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
66 aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
67 if (lf_sync->mutex_[j]) {
68 for (i = 0; i < rows; ++i) {
69 pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
70 }
71 }
72
73 CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
74 aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
75 if (lf_sync->cond_[j]) {
76 for (i = 0; i < rows; ++i) {
77 pthread_cond_init(&lf_sync->cond_[j][i], NULL);
78 }
79 }
80 }
81
82 CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
83 aom_malloc(sizeof(*(lf_sync->job_mutex))));
84 if (lf_sync->job_mutex) {
85 pthread_mutex_init(lf_sync->job_mutex, NULL);
86 }
87 }
88 #endif // CONFIG_MULTITHREAD
89 CHECK_MEM_ERROR(cm, lf_sync->lfdata,
90 aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
91 lf_sync->num_workers = num_workers;
92
93 for (int j = 0; j < MAX_MB_PLANE; j++) {
94 CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
95 aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
96 }
97 CHECK_MEM_ERROR(
98 cm, lf_sync->job_queue,
99 aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
100 // Set up nsync.
101 lf_sync->sync_range = get_sync_range(width);
102 }
103
104 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)105 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
106 if (lf_sync != NULL) {
107 int j;
108 #if CONFIG_MULTITHREAD
109 int i;
110 for (j = 0; j < MAX_MB_PLANE; j++) {
111 if (lf_sync->mutex_[j] != NULL) {
112 for (i = 0; i < lf_sync->rows; ++i) {
113 pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
114 }
115 aom_free(lf_sync->mutex_[j]);
116 }
117 if (lf_sync->cond_[j] != NULL) {
118 for (i = 0; i < lf_sync->rows; ++i) {
119 pthread_cond_destroy(&lf_sync->cond_[j][i]);
120 }
121 aom_free(lf_sync->cond_[j]);
122 }
123 }
124 if (lf_sync->job_mutex != NULL) {
125 pthread_mutex_destroy(lf_sync->job_mutex);
126 aom_free(lf_sync->job_mutex);
127 }
128 #endif // CONFIG_MULTITHREAD
129 aom_free(lf_sync->lfdata);
130 for (j = 0; j < MAX_MB_PLANE; j++) {
131 aom_free(lf_sync->cur_sb_col[j]);
132 }
133
134 aom_free(lf_sync->job_queue);
135 // clear the structure as the source of this call may be a resize in which
136 // case this call will be followed by an _alloc() which may fail.
137 av1_zero(*lf_sync);
138 }
139 }
140
av1_alloc_cdef_sync(AV1_COMMON * const cm,AV1CdefSync * cdef_sync,int num_workers)141 void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
142 int num_workers) {
143 if (num_workers < 1) return;
144 #if CONFIG_MULTITHREAD
145 if (cdef_sync->mutex_ == NULL) {
146 CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
147 aom_malloc(sizeof(*(cdef_sync->mutex_))));
148 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
149 }
150 #else
151 (void)cm;
152 (void)cdef_sync;
153 #endif // CONFIG_MULTITHREAD
154 }
155
av1_free_cdef_sync(AV1CdefSync * cdef_sync)156 void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
157 if (cdef_sync == NULL) return;
158 #if CONFIG_MULTITHREAD
159 if (cdef_sync->mutex_ != NULL) {
160 pthread_mutex_destroy(cdef_sync->mutex_);
161 aom_free(cdef_sync->mutex_);
162 }
163 #endif // CONFIG_MULTITHREAD
164 }
165
cdef_row_mt_sync_read(AV1CdefSync * const cdef_sync,int row)166 static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
167 int row) {
168 if (!row) return;
169 #if CONFIG_MULTITHREAD
170 AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
171 pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
172 while (cdef_row_mt[row - 1].is_row_done != 1)
173 pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
174 cdef_row_mt[row - 1].row_mutex_);
175 cdef_row_mt[row - 1].is_row_done = 0;
176 pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
177 #else
178 (void)cdef_sync;
179 #endif // CONFIG_MULTITHREAD
180 }
181
cdef_row_mt_sync_write(AV1CdefSync * const cdef_sync,int row)182 static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
183 int row) {
184 #if CONFIG_MULTITHREAD
185 AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
186 pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
187 pthread_cond_signal(cdef_row_mt[row].row_cond_);
188 cdef_row_mt[row].is_row_done = 1;
189 pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
190 #else
191 (void)cdef_sync;
192 (void)row;
193 #endif // CONFIG_MULTITHREAD
194 }
195
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)196 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
197 int plane) {
198 #if CONFIG_MULTITHREAD
199 const int nsync = lf_sync->sync_range;
200
201 if (r && !(c & (nsync - 1))) {
202 pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
203 pthread_mutex_lock(mutex);
204
205 while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
206 pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
207 }
208 pthread_mutex_unlock(mutex);
209 }
210 #else
211 (void)lf_sync;
212 (void)r;
213 (void)c;
214 (void)plane;
215 #endif // CONFIG_MULTITHREAD
216 }
217
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)218 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
219 const int sb_cols, int plane) {
220 #if CONFIG_MULTITHREAD
221 const int nsync = lf_sync->sync_range;
222 int cur;
223 // Only signal when there are enough filtered SB for next row to run.
224 int sig = 1;
225
226 if (c < sb_cols - 1) {
227 cur = c;
228 if (c % nsync) sig = 0;
229 } else {
230 cur = sb_cols + nsync;
231 }
232
233 if (sig) {
234 pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
235
236 lf_sync->cur_sb_col[plane][r] = cur;
237
238 pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
239 pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
240 }
241 #else
242 (void)lf_sync;
243 (void)r;
244 (void)c;
245 (void)sb_cols;
246 (void)plane;
247 #endif // CONFIG_MULTITHREAD
248 }
249
250 // One job of row loopfiltering.
av1_thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,int mi_row,int plane,int dir,int lpf_opt_level,AV1LfSync * const lf_sync,AV1_DEBLOCKING_PARAMETERS * params_buf,TX_SIZE * tx_buf,int num_mis_in_lpf_unit_height_log2)251 void av1_thread_loop_filter_rows(
252 const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
253 struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
254 int dir, int lpf_opt_level, AV1LfSync *const lf_sync,
255 AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf,
256 int num_mis_in_lpf_unit_height_log2) {
257 const int sb_cols =
258 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2);
259 const int r = mi_row >> num_mis_in_lpf_unit_height_log2;
260 int mi_col, c;
261
262 const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y;
263 const int num_planes = joint_filter_chroma ? 2 : 1;
264 assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U));
265
266 if (dir == 0) {
267 for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
268 c = mi_col >> MAX_MIB_SIZE_LOG2;
269
270 av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
271 mi_row, mi_col, plane, plane + num_planes);
272 if (lpf_opt_level) {
273 if (plane == AOM_PLANE_Y) {
274 av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row,
275 mi_col, params_buf, tx_buf,
276 num_mis_in_lpf_unit_height_log2);
277 } else {
278 av1_filter_block_plane_vert_opt_chroma(
279 cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
280 joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
281 }
282 } else {
283 av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
284 mi_col);
285 }
286 if (lf_sync != NULL) {
287 sync_write(lf_sync, r, c, sb_cols, plane);
288 }
289 }
290 } else if (dir == 1) {
291 for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
292 c = mi_col >> MAX_MIB_SIZE_LOG2;
293
294 if (lf_sync != NULL) {
295 // Wait for vertical edge filtering of the top-right block to be
296 // completed
297 sync_read(lf_sync, r, c, plane);
298
299 // Wait for vertical edge filtering of the right block to be completed
300 sync_read(lf_sync, r + 1, c, plane);
301 }
302
303 av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
304 mi_row, mi_col, plane, plane + num_planes);
305 if (lpf_opt_level) {
306 if (plane == AOM_PLANE_Y) {
307 av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row,
308 mi_col, params_buf, tx_buf,
309 num_mis_in_lpf_unit_height_log2);
310 } else {
311 av1_filter_block_plane_horz_opt_chroma(
312 cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
313 joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
314 }
315 } else {
316 av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
317 mi_col);
318 }
319 }
320 }
321 }
322
323 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)324 static int loop_filter_row_worker(void *arg1, void *arg2) {
325 AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
326 LFWorkerData *const lf_data = (LFWorkerData *)arg2;
327 AV1LfMTInfo *cur_job_info;
328 while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
329 const int lpf_opt_level = cur_job_info->lpf_opt_level;
330 av1_thread_loop_filter_rows(
331 lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
332 cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
333 lpf_opt_level, lf_sync, lf_data->params_buf, lf_data->tx_buf,
334 MAX_MIB_SIZE_LOG2);
335 }
336 return 1;
337 }
338
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[3],AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)339 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
340 MACROBLOCKD *xd, int start, int stop,
341 const int planes_to_lf[3], AVxWorker *workers,
342 int num_workers, AV1LfSync *lf_sync,
343 int lpf_opt_level) {
344 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
345 int i;
346 loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync,
347 lpf_opt_level, MAX_MIB_SIZE_LOG2);
348
349 // Set up loopfilter thread data.
350 for (i = num_workers - 1; i >= 0; --i) {
351 AVxWorker *const worker = &workers[i];
352 LFWorkerData *const lf_data = &lf_sync->lfdata[i];
353
354 worker->hook = loop_filter_row_worker;
355 worker->data1 = lf_sync;
356 worker->data2 = lf_data;
357
358 // Loopfilter data
359 loop_filter_data_reset(lf_data, frame, cm, xd);
360
361 // Start loopfiltering
362 if (i == 0) {
363 winterface->execute(worker);
364 } else {
365 winterface->launch(worker);
366 }
367 }
368
369 // Wait till all rows are finished
370 for (i = 1; i < num_workers; ++i) {
371 winterface->sync(&workers[i]);
372 }
373 }
374
loop_filter_rows(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[3],int lpf_opt_level)375 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
376 MACROBLOCKD *xd, int start, int stop,
377 const int planes_to_lf[3], int lpf_opt_level) {
378 // Filter top rows of all planes first, in case the output can be partially
379 // reconstructed row by row.
380 int mi_row, plane, dir;
381
382 AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE];
383 TX_SIZE tx_buf[MAX_MIB_SIZE];
384 for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
385 for (plane = 0; plane < 3; ++plane) {
386 if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
387 continue;
388 }
389
390 for (dir = 0; dir < 2; ++dir) {
391 av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane,
392 dir, lpf_opt_level, /*lf_sync=*/NULL,
393 params_buf, tx_buf, MAX_MIB_SIZE_LOG2);
394 }
395 }
396 }
397 }
398
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)399 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
400 MACROBLOCKD *xd, int plane_start, int plane_end,
401 int partial_frame, AVxWorker *workers,
402 int num_workers, AV1LfSync *lf_sync,
403 int lpf_opt_level) {
404 int start_mi_row, end_mi_row, mi_rows_to_filter;
405 int planes_to_lf[3];
406
407 if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start,
408 plane_end))
409 return;
410
411 start_mi_row = 0;
412 mi_rows_to_filter = cm->mi_params.mi_rows;
413 if (partial_frame && cm->mi_params.mi_rows > 8) {
414 start_mi_row = cm->mi_params.mi_rows >> 1;
415 start_mi_row &= 0xfffffff8;
416 mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
417 }
418 end_mi_row = start_mi_row + mi_rows_to_filter;
419 av1_loop_filter_frame_init(cm, plane_start, plane_end);
420
421 if (num_workers > 1) {
422 // Enqueue and execute loopfiltering jobs.
423 loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
424 workers, num_workers, lf_sync, lpf_opt_level);
425 } else {
426 // Directly filter in the main thread.
427 loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
428 lpf_opt_level);
429 }
430 }
431
lr_sync_read(void * const lr_sync,int r,int c,int plane)432 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
433 #if CONFIG_MULTITHREAD
434 AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
435 const int nsync = loop_res_sync->sync_range;
436
437 if (r && !(c & (nsync - 1))) {
438 pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
439 pthread_mutex_lock(mutex);
440
441 while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
442 pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
443 }
444 pthread_mutex_unlock(mutex);
445 }
446 #else
447 (void)lr_sync;
448 (void)r;
449 (void)c;
450 (void)plane;
451 #endif // CONFIG_MULTITHREAD
452 }
453
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)454 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
455 const int sb_cols, int plane) {
456 #if CONFIG_MULTITHREAD
457 AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
458 const int nsync = loop_res_sync->sync_range;
459 int cur;
460 // Only signal when there are enough filtered SB for next row to run.
461 int sig = 1;
462
463 if (c < sb_cols - 1) {
464 cur = c;
465 if (c % nsync) sig = 0;
466 } else {
467 cur = sb_cols + nsync;
468 }
469
470 if (sig) {
471 pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
472
473 loop_res_sync->cur_sb_col[plane][r] = cur;
474
475 pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
476 pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
477 }
478 #else
479 (void)lr_sync;
480 (void)r;
481 (void)c;
482 (void)sb_cols;
483 (void)plane;
484 #endif // CONFIG_MULTITHREAD
485 }
486
487 // Allocate memory for loop restoration row synchronization
av1_loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)488 void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
489 int num_workers, int num_rows_lr,
490 int num_planes, int width) {
491 lr_sync->rows = num_rows_lr;
492 lr_sync->num_planes = num_planes;
493 #if CONFIG_MULTITHREAD
494 {
495 int i, j;
496
497 for (j = 0; j < num_planes; j++) {
498 CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
499 aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
500 if (lr_sync->mutex_[j]) {
501 for (i = 0; i < num_rows_lr; ++i) {
502 pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
503 }
504 }
505
506 CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
507 aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
508 if (lr_sync->cond_[j]) {
509 for (i = 0; i < num_rows_lr; ++i) {
510 pthread_cond_init(&lr_sync->cond_[j][i], NULL);
511 }
512 }
513 }
514
515 CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
516 aom_malloc(sizeof(*(lr_sync->job_mutex))));
517 if (lr_sync->job_mutex) {
518 pthread_mutex_init(lr_sync->job_mutex, NULL);
519 }
520 }
521 #endif // CONFIG_MULTITHREAD
522 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
523 aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
524
525 for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
526 if (worker_idx < num_workers - 1) {
527 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
528 (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
529 CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
530 aom_malloc(sizeof(RestorationLineBuffers)));
531
532 } else {
533 lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
534 lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
535 }
536 }
537
538 lr_sync->num_workers = num_workers;
539
540 for (int j = 0; j < num_planes; j++) {
541 CHECK_MEM_ERROR(
542 cm, lr_sync->cur_sb_col[j],
543 aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
544 }
545 CHECK_MEM_ERROR(
546 cm, lr_sync->job_queue,
547 aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
548 // Set up nsync.
549 lr_sync->sync_range = get_lr_sync_range(width);
550 }
551
552 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync,int num_workers)553 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
554 if (lr_sync != NULL) {
555 int j;
556 #if CONFIG_MULTITHREAD
557 int i;
558 for (j = 0; j < MAX_MB_PLANE; j++) {
559 if (lr_sync->mutex_[j] != NULL) {
560 for (i = 0; i < lr_sync->rows; ++i) {
561 pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
562 }
563 aom_free(lr_sync->mutex_[j]);
564 }
565 if (lr_sync->cond_[j] != NULL) {
566 for (i = 0; i < lr_sync->rows; ++i) {
567 pthread_cond_destroy(&lr_sync->cond_[j][i]);
568 }
569 aom_free(lr_sync->cond_[j]);
570 }
571 }
572 if (lr_sync->job_mutex != NULL) {
573 pthread_mutex_destroy(lr_sync->job_mutex);
574 aom_free(lr_sync->job_mutex);
575 }
576 #endif // CONFIG_MULTITHREAD
577 for (j = 0; j < MAX_MB_PLANE; j++) {
578 aom_free(lr_sync->cur_sb_col[j]);
579 }
580
581 aom_free(lr_sync->job_queue);
582
583 if (lr_sync->lrworkerdata) {
584 for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
585 LRWorkerData *const workerdata_data =
586 lr_sync->lrworkerdata + worker_idx;
587
588 aom_free(workerdata_data->rst_tmpbuf);
589 aom_free(workerdata_data->rlbs);
590 }
591 aom_free(lr_sync->lrworkerdata);
592 }
593
594 // clear the structure as the source of this call may be a resize in which
595 // case this call will be followed by an _alloc() which may fail.
596 av1_zero(*lr_sync);
597 }
598 }
599
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)600 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
601 AV1_COMMON *cm) {
602 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
603
604 const int num_planes = av1_num_planes(cm);
605 AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
606 int32_t lr_job_counter[2], num_even_lr_jobs = 0;
607 lr_sync->jobs_enqueued = 0;
608 lr_sync->jobs_dequeued = 0;
609
610 for (int plane = 0; plane < num_planes; plane++) {
611 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
612 num_even_lr_jobs =
613 num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
614 }
615 lr_job_counter[0] = 0;
616 lr_job_counter[1] = num_even_lr_jobs;
617
618 for (int plane = 0; plane < num_planes; plane++) {
619 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
620 const int is_uv = plane > 0;
621 const int ss_y = is_uv && cm->seq_params->subsampling_y;
622
623 PixelRect tile_rect = ctxt[plane].tile_rect;
624 const int unit_size = ctxt[plane].rsi->restoration_unit_size;
625
626 const int tile_h = tile_rect.bottom - tile_rect.top;
627 const int ext_size = unit_size * 3 / 2;
628
629 int y0 = 0, i = 0;
630 while (y0 < tile_h) {
631 int remaining_h = tile_h - y0;
632 int h = (remaining_h < ext_size) ? remaining_h : unit_size;
633
634 RestorationTileLimits limits;
635 limits.v_start = tile_rect.top + y0;
636 limits.v_end = tile_rect.top + y0 + h;
637 assert(limits.v_end <= tile_rect.bottom);
638 // Offset the tile upwards to align with the restoration processing stripe
639 const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
640 limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
641 if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
642
643 assert(lr_job_counter[0] <= num_even_lr_jobs);
644
645 lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
646 lr_job_queue[lr_job_counter[i & 1]].plane = plane;
647 lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
648 lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
649 lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
650 if ((i & 1) == 0) {
651 lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
652 limits.v_start + RESTORATION_BORDER;
653 lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
654 limits.v_end - RESTORATION_BORDER;
655 if (i == 0) {
656 assert(limits.v_start == tile_rect.top);
657 lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
658 }
659 if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
660 assert(limits.v_end == tile_rect.bottom);
661 lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
662 }
663 } else {
664 lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
665 AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
666 lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
667 AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
668 }
669 lr_job_counter[i & 1]++;
670 lr_sync->jobs_enqueued++;
671
672 y0 += h;
673 ++i;
674 }
675 }
676 }
677
get_lr_job_info(AV1LrSync * lr_sync)678 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
679 AV1LrMTInfo *cur_job_info = NULL;
680
681 #if CONFIG_MULTITHREAD
682 pthread_mutex_lock(lr_sync->job_mutex);
683
684 if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
685 cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
686 lr_sync->jobs_dequeued++;
687 }
688
689 pthread_mutex_unlock(lr_sync->job_mutex);
690 #else
691 (void)lr_sync;
692 #endif
693
694 return cur_job_info;
695 }
696
697 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)698 static int loop_restoration_row_worker(void *arg1, void *arg2) {
699 AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
700 LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
701 AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
702 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
703 int lr_unit_row;
704 int plane;
705 const int tile_row = LR_TILE_ROW;
706 const int tile_col = LR_TILE_COL;
707 const int tile_cols = LR_TILE_COLS;
708 const int tile_idx = tile_col + tile_row * tile_cols;
709 typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
710 YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
711 int vstart, int vend);
712 static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
713 aom_yv12_partial_coloc_copy_u,
714 aom_yv12_partial_coloc_copy_v };
715
716 while (1) {
717 AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
718 if (cur_job_info != NULL) {
719 RestorationTileLimits limits;
720 sync_read_fn_t on_sync_read;
721 sync_write_fn_t on_sync_write;
722 limits.v_start = cur_job_info->v_start;
723 limits.v_end = cur_job_info->v_end;
724 lr_unit_row = cur_job_info->lr_unit_row;
725 plane = cur_job_info->plane;
726 const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
727
728 // sync_mode == 1 implies only sync read is required in LR Multi-threading
729 // sync_mode == 0 implies only sync write is required.
730 on_sync_read =
731 cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
732 on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
733 : av1_lr_sync_write_dummy;
734
735 av1_foreach_rest_unit_in_row(
736 &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
737 ctxt[plane].rsi->restoration_unit_size, unit_idx0,
738 ctxt[plane].rsi->horz_units_per_tile,
739 ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
740 lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
741 on_sync_write, lr_sync);
742
743 copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
744 ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
745 cur_job_info->v_copy_end);
746
747 if (lrworkerdata->do_extend_border) {
748 aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane,
749 cur_job_info->v_copy_start,
750 cur_job_info->v_copy_end);
751 }
752 } else {
753 break;
754 }
755 }
756 return 1;
757 }
758
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int nworkers,AV1LrSync * lr_sync,AV1_COMMON * cm,int do_extend_border)759 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
760 AVxWorker *workers, int nworkers,
761 AV1LrSync *lr_sync, AV1_COMMON *cm,
762 int do_extend_border) {
763 FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
764
765 const int num_planes = av1_num_planes(cm);
766
767 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
768 int num_rows_lr = 0;
769
770 for (int plane = 0; plane < num_planes; plane++) {
771 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
772
773 const PixelRect tile_rect = ctxt[plane].tile_rect;
774 const int max_tile_h = tile_rect.bottom - tile_rect.top;
775
776 const int unit_size = cm->rst_info[plane].restoration_unit_size;
777
778 num_rows_lr =
779 AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
780 }
781
782 const int num_workers = nworkers;
783 int i;
784 assert(MAX_MB_PLANE == 3);
785
786 if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
787 num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
788 av1_loop_restoration_dealloc(lr_sync, num_workers);
789 av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
790 num_planes, cm->width);
791 }
792
793 // Initialize cur_sb_col to -1 for all SB rows.
794 for (i = 0; i < num_planes; i++) {
795 memset(lr_sync->cur_sb_col[i], -1,
796 sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
797 }
798
799 enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
800
801 // Set up looprestoration thread data.
802 for (i = num_workers - 1; i >= 0; --i) {
803 AVxWorker *const worker = &workers[i];
804 lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
805 lr_sync->lrworkerdata[i].do_extend_border = do_extend_border;
806 worker->hook = loop_restoration_row_worker;
807 worker->data1 = lr_sync;
808 worker->data2 = &lr_sync->lrworkerdata[i];
809
810 // Start loop restoration
811 if (i == 0) {
812 winterface->execute(worker);
813 } else {
814 winterface->launch(worker);
815 }
816 }
817
818 // Wait till all rows are finished
819 for (i = 1; i < num_workers; ++i) {
820 winterface->sync(&workers[i]);
821 }
822 }
823
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt,int do_extend_border)824 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
825 AV1_COMMON *cm, int optimized_lr,
826 AVxWorker *workers, int num_workers,
827 AV1LrSync *lr_sync, void *lr_ctxt,
828 int do_extend_border) {
829 assert(!cm->features.all_lossless);
830
831 const int num_planes = av1_num_planes(cm);
832
833 AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
834
835 av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
836 optimized_lr, num_planes);
837
838 foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
839 cm, do_extend_border);
840 }
841
842 // Initializes cdef_sync parameters.
reset_cdef_job_info(AV1CdefSync * const cdef_sync)843 static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
844 cdef_sync->end_of_frame = 0;
845 cdef_sync->fbr = 0;
846 cdef_sync->fbc = 0;
847 }
848
launch_cdef_workers(AVxWorker * const workers,int num_workers)849 static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers,
850 int num_workers) {
851 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
852 for (int i = num_workers - 1; i >= 0; i--) {
853 AVxWorker *const worker = &workers[i];
854 if (i == 0)
855 winterface->execute(worker);
856 else
857 winterface->launch(worker);
858 }
859 }
860
sync_cdef_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)861 static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers,
862 AV1_COMMON *const cm,
863 int num_workers) {
864 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
865 int had_error = 0;
866
867 // Wait for completion of Cdef frame.
868 for (int i = num_workers - 1; i > 0; i--) {
869 AVxWorker *const worker = &workers[i];
870 had_error |= !winterface->sync(worker);
871 }
872 if (had_error)
873 aom_internal_error(cm->error, AOM_CODEC_ERROR,
874 "Failed to process cdef frame");
875 }
876
877 // Updates the row index of the next job to be processed.
878 // Also updates end_of_frame flag when the processing of all rows is complete.
update_cdef_row_next_job_info(AV1CdefSync * const cdef_sync,const int nvfb)879 static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
880 const int nvfb) {
881 cdef_sync->fbr++;
882 if (cdef_sync->fbr == nvfb) {
883 cdef_sync->end_of_frame = 1;
884 }
885 }
886
887 // Checks if a job is available. If job is available,
888 // populates next job information and returns 1, else returns 0.
get_cdef_row_next_job(AV1CdefSync * const cdef_sync,int * cur_fbr,const int nvfb)889 static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
890 int *cur_fbr, const int nvfb) {
891 #if CONFIG_MULTITHREAD
892 pthread_mutex_lock(cdef_sync->mutex_);
893 #endif // CONFIG_MULTITHREAD
894 int do_next_row = 0;
895 // Populates information needed for current job and update the row
896 // index of the next row to be processed.
897 if (cdef_sync->end_of_frame == 0) {
898 do_next_row = 1;
899 *cur_fbr = cdef_sync->fbr;
900 update_cdef_row_next_job_info(cdef_sync, nvfb);
901 }
902 #if CONFIG_MULTITHREAD
903 pthread_mutex_unlock(cdef_sync->mutex_);
904 #endif // CONFIG_MULTITHREAD
905 return do_next_row;
906 }
907
908 // Hook function for each thread in CDEF multi-threading.
cdef_sb_row_worker_hook(void * arg1,void * arg2)909 static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
910 AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
911 AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
912 AV1_COMMON *cm = cdef_worker->cm;
913 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
914 int cur_fbr;
915 const int num_planes = av1_num_planes(cm);
916 while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
917 MACROBLOCKD *xd = cdef_worker->xd;
918 av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf,
919 cdef_worker->srcbuf, cur_fbr,
920 cdef_worker->cdef_init_fb_row_fn, cdef_sync);
921 if (cdef_worker->do_extend_border) {
922 for (int plane = 0; plane < num_planes; ++plane) {
923 const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf;
924 const int is_uv = plane > 0;
925 const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
926 const int unit_height = MI_SIZE_64X64 << mi_high;
927 const int v_start = cur_fbr * unit_height;
928 const int v_end =
929 AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]);
930 aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end);
931 }
932 }
933 }
934 return 1;
935 }
936
937 // Assigns CDEF hook function and thread data to each worker.
prepare_cdef_frame_workers(AV1_COMMON * const cm,MACROBLOCKD * xd,AV1CdefWorkerData * const cdef_worker,AVxWorkerHook hook,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)938 static void prepare_cdef_frame_workers(
939 AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
940 AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
941 int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
942 int do_extend_border) {
943 const int num_planes = av1_num_planes(cm);
944
945 cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
946 for (int plane = 0; plane < num_planes; plane++)
947 cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
948 for (int i = num_workers - 1; i >= 0; i--) {
949 AVxWorker *const worker = &workers[i];
950 cdef_worker[i].cm = cm;
951 cdef_worker[i].xd = xd;
952 cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
953 cdef_worker[i].do_extend_border = do_extend_border;
954 for (int plane = 0; plane < num_planes; plane++)
955 cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
956
957 worker->hook = hook;
958 worker->data1 = cdef_sync;
959 worker->data2 = &cdef_worker[i];
960 }
961 }
962
963 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row_mt(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)964 void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
965 const MACROBLOCKD *const xd,
966 CdefBlockInfo *const fb_info,
967 uint16_t **const linebuf, uint16_t *const src,
968 struct AV1CdefSyncData *const cdef_sync, int fbr) {
969 const int num_planes = av1_num_planes(cm);
970 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
971 const int luma_stride =
972 ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
973
974 // for the current filter block, it's top left corner mi structure (mi_tl)
975 // is first accessed to check whether the top and left boundaries are
976 // frame boundaries. Then bottom-left and top-right mi structures are
977 // accessed to check whether the bottom and right boundaries
978 // (respectively) are frame boundaries.
979 //
980 // Note that we can't just check the bottom-right mi structure - eg. if
981 // we're at the right-hand edge of the frame but not the bottom, then
982 // the bottom-right mi is NULL but the bottom-left is not.
983 fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
984 if (fbr != nvfb - 1)
985 fb_info->frame_boundary[BOTTOM] =
986 (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
987 else
988 fb_info->frame_boundary[BOTTOM] = 1;
989
990 fb_info->src = src;
991 fb_info->damping = cm->cdef_info.cdef_damping;
992 fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
993 av1_zero(fb_info->dir);
994 av1_zero(fb_info->var);
995
996 for (int plane = 0; plane < num_planes; plane++) {
997 const int stride = luma_stride >> xd->plane[plane].subsampling_x;
998 uint16_t *top_linebuf = &linebuf[plane][0];
999 uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
1000 {
1001 const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1002 const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1003 const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1004
1005 if (fbr != nvfb - 1) // if (fbr != 0) // top line buffer copy
1006 av1_cdef_copy_sb8_16(
1007 cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
1008 xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
1009 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1010 if (fbr != nvfb - 1) // bottom line buffer copy
1011 av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
1012 stride, xd->plane[plane].dst.buf, bot_offset, 0,
1013 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1014 }
1015
1016 fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
1017 fb_info->bot_linebuf[plane] =
1018 &linebuf[plane]
1019 [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
1020 }
1021
1022 cdef_row_mt_sync_write(cdef_sync, fbr);
1023 cdef_row_mt_sync_read(cdef_sync, fbr);
1024 }
1025
1026 // Implements multi-threading for CDEF.
1027 // Perform CDEF on input frame.
1028 // Inputs:
1029 // frame: Pointer to input frame buffer.
1030 // cm: Pointer to common structure.
1031 // xd: Pointer to common current coding block structure.
1032 // Returns:
1033 // Nothing will be returned.
av1_cdef_frame_mt(AV1_COMMON * const cm,MACROBLOCKD * const xd,AV1CdefWorkerData * const cdef_worker,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1034 void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1035 AV1CdefWorkerData *const cdef_worker,
1036 AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1037 int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1038 int do_extend_border) {
1039 YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
1040 const int num_planes = av1_num_planes(cm);
1041
1042 av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
1043 num_planes);
1044
1045 reset_cdef_job_info(cdef_sync);
1046 prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
1047 workers, cdef_sync, num_workers,
1048 cdef_init_fb_row_fn, do_extend_border);
1049 launch_cdef_workers(workers, num_workers);
1050 sync_cdef_workers(workers, cm, num_workers);
1051 }
1052
av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON * cm)1053 int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) {
1054 // No additional top-right delay when intraBC tool is not enabled.
1055 if (!av1_allow_intrabc(cm)) return 0;
1056 // Due to the hardware constraints on processing the intraBC tool with row
1057 // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5
1058 // superblocks of size 64x64 is mandated. However, a minimum top-right delay
1059 // of 1 superblock is assured with 'sync_range'. Hence return only the
1060 // additional superblock delay when the intraBC tool is enabled.
1061 return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4;
1062 }
1063