1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "aom_dsp/binary_codes_writer.h"
13
14 #include "aom_dsp/flow_estimation/corner_detect.h"
15 #include "aom_dsp/flow_estimation/flow_estimation.h"
16 #include "av1/common/warped_motion.h"
17 #include "av1/encoder/encoder.h"
18 #include "av1/encoder/ethread.h"
19 #include "av1/encoder/rdopt.h"
20
21 // Highest motion model to search.
22 #define GLOBAL_TRANS_TYPES_ENC 3
23
24 // Computes the cost for the warp parameters.
gm_get_params_cost(const WarpedMotionParams * gm,const WarpedMotionParams * ref_gm,int allow_hp)25 static int gm_get_params_cost(const WarpedMotionParams *gm,
26 const WarpedMotionParams *ref_gm, int allow_hp) {
27 int params_cost = 0;
28 int trans_bits, trans_prec_diff;
29 switch (gm->wmtype) {
30 case AFFINE:
31 case ROTZOOM:
32 params_cost += aom_count_signed_primitive_refsubexpfin(
33 GM_ALPHA_MAX + 1, SUBEXPFIN_K,
34 (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
35 (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
36 params_cost += aom_count_signed_primitive_refsubexpfin(
37 GM_ALPHA_MAX + 1, SUBEXPFIN_K,
38 (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF),
39 (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF));
40 if (gm->wmtype >= AFFINE) {
41 params_cost += aom_count_signed_primitive_refsubexpfin(
42 GM_ALPHA_MAX + 1, SUBEXPFIN_K,
43 (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF),
44 (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF));
45 params_cost += aom_count_signed_primitive_refsubexpfin(
46 GM_ALPHA_MAX + 1, SUBEXPFIN_K,
47 (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
48 (1 << GM_ALPHA_PREC_BITS),
49 (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
50 }
51 AOM_FALLTHROUGH_INTENDED;
52 case TRANSLATION:
53 trans_bits = (gm->wmtype == TRANSLATION)
54 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
55 : GM_ABS_TRANS_BITS;
56 trans_prec_diff = (gm->wmtype == TRANSLATION)
57 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
58 : GM_TRANS_PREC_DIFF;
59 params_cost += aom_count_signed_primitive_refsubexpfin(
60 (1 << trans_bits) + 1, SUBEXPFIN_K,
61 (ref_gm->wmmat[0] >> trans_prec_diff),
62 (gm->wmmat[0] >> trans_prec_diff));
63 params_cost += aom_count_signed_primitive_refsubexpfin(
64 (1 << trans_bits) + 1, SUBEXPFIN_K,
65 (ref_gm->wmmat[1] >> trans_prec_diff),
66 (gm->wmmat[1] >> trans_prec_diff));
67 AOM_FALLTHROUGH_INTENDED;
68 case IDENTITY: break;
69 default: assert(0);
70 }
71 return (params_cost << AV1_PROB_COST_SHIFT);
72 }
73
74 // Calculates the threshold to be used for warp error computation.
calc_erroradv_threshold(int64_t ref_frame_error)75 static AOM_INLINE int64_t calc_erroradv_threshold(int64_t ref_frame_error) {
76 return (int64_t)(ref_frame_error * erroradv_tr + 0.5);
77 }
78
79 // For the given reference frame, computes the global motion parameters for
80 // different motion models and finds the best.
compute_global_motion_for_ref_frame(AV1_COMP * cpi,YV12_BUFFER_CONFIG * ref_buf[REF_FRAMES],int frame,int num_src_corners,int * src_corners,unsigned char * src_buffer,MotionModel * params_by_motion,uint8_t * segment_map,const int segment_map_w,const int segment_map_h,const WarpedMotionParams * ref_params)81 static AOM_INLINE void compute_global_motion_for_ref_frame(
82 AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
83 int num_src_corners, int *src_corners, unsigned char *src_buffer,
84 MotionModel *params_by_motion, uint8_t *segment_map,
85 const int segment_map_w, const int segment_map_h,
86 const WarpedMotionParams *ref_params) {
87 ThreadData *const td = &cpi->td;
88 MACROBLOCK *const x = &td->mb;
89 AV1_COMMON *const cm = &cpi->common;
90 MACROBLOCKD *const xd = &x->e_mbd;
91 int i;
92 int src_width = cpi->source->y_width;
93 int src_height = cpi->source->y_height;
94 int src_stride = cpi->source->y_stride;
95 // clang-format off
96 static const double kIdentityParams[MAX_PARAMDIM - 1] = {
97 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
98 };
99 // clang-format on
100 WarpedMotionParams tmp_wm_params;
101 const double *params_this_motion;
102 int inliers_by_motion[RANSAC_NUM_MOTIONS];
103 assert(ref_buf[frame] != NULL);
104 TransformationType model;
105
106 // TODO(sarahparker, debargha): Explore do_adaptive_gm_estimation = 1
107 const int do_adaptive_gm_estimation = 0;
108
109 const int ref_frame_dist = get_relative_dist(
110 &cm->seq_params->order_hint_info, cm->current_frame.order_hint,
111 cm->cur_frame->ref_order_hints[frame - LAST_FRAME]);
112 const GlobalMotionEstimationType gm_estimation_type =
113 cm->seq_params->order_hint_info.enable_order_hint &&
114 abs(ref_frame_dist) <= 2 && do_adaptive_gm_estimation
115 ? GLOBAL_MOTION_DISFLOW_BASED
116 : GLOBAL_MOTION_FEATURE_BASED;
117 for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) {
118 int64_t best_warp_error = INT64_MAX;
119 // Initially set all params to identity.
120 for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
121 memcpy(params_by_motion[i].params, kIdentityParams,
122 (MAX_PARAMDIM - 1) * sizeof(*(params_by_motion[i].params)));
123 params_by_motion[i].num_inliers = 0;
124 }
125
126 aom_compute_global_motion(model, src_buffer, src_width, src_height,
127 src_stride, src_corners, num_src_corners,
128 ref_buf[frame], cpi->common.seq_params->bit_depth,
129 gm_estimation_type, inliers_by_motion,
130 params_by_motion, RANSAC_NUM_MOTIONS);
131 int64_t ref_frame_error = 0;
132 for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
133 if (inliers_by_motion[i] == 0) continue;
134
135 params_this_motion = params_by_motion[i].params;
136 av1_convert_model_to_params(params_this_motion, &tmp_wm_params);
137
138 // Work around a bug in the AV1 specification
139 //
140 // For TRANSLATION type global motion models, gm_get_motion_vector() gives
141 // the wrong motion vector (see comments in that function for details).
142 // As translation-type models do not give much gain, we can avoid this bug
143 // by never choosing a TRANSLATION type model
144 if (tmp_wm_params.wmtype == TRANSLATION) {
145 continue;
146 }
147
148 if (tmp_wm_params.wmtype != IDENTITY) {
149 av1_compute_feature_segmentation_map(
150 segment_map, segment_map_w, segment_map_h,
151 params_by_motion[i].inliers, params_by_motion[i].num_inliers);
152
153 ref_frame_error = av1_segmented_frame_error(
154 is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer,
155 ref_buf[frame]->y_stride, cpi->source->y_buffer, src_width,
156 src_height, src_stride, segment_map, segment_map_w);
157
158 const int64_t erroradv_threshold =
159 calc_erroradv_threshold(ref_frame_error);
160
161 const int64_t warp_error = av1_refine_integerized_param(
162 &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd,
163 ref_buf[frame]->y_buffer, ref_buf[frame]->y_width,
164 ref_buf[frame]->y_height, ref_buf[frame]->y_stride,
165 cpi->source->y_buffer, src_width, src_height, src_stride,
166 GM_REFINEMENT_COUNT, best_warp_error, segment_map, segment_map_w,
167 erroradv_threshold);
168
169 // av1_refine_integerized_param() can return a TRANSLATION type model
170 // even if its input is some other type, so we have to skip those too
171 if (tmp_wm_params.wmtype == TRANSLATION) {
172 continue;
173 }
174
175 if (warp_error < best_warp_error) {
176 best_warp_error = warp_error;
177 // Save the wm_params modified by
178 // av1_refine_integerized_param() rather than motion index to
179 // avoid rerunning refine() below.
180 memcpy(&(cm->global_motion[frame]), &tmp_wm_params,
181 sizeof(WarpedMotionParams));
182 }
183 }
184 }
185 if (cm->global_motion[frame].wmtype <= AFFINE)
186 if (!av1_get_shear_params(&cm->global_motion[frame]))
187 cm->global_motion[frame] = default_warp_params;
188
189 #if 0
190 // We never choose translational models, so this code is disabled
191 if (cm->global_motion[frame].wmtype == TRANSLATION) {
192 cm->global_motion[frame].wmmat[0] =
193 convert_to_trans_prec(cm->features.allow_high_precision_mv,
194 cm->global_motion[frame].wmmat[0]) *
195 GM_TRANS_ONLY_DECODE_FACTOR;
196 cm->global_motion[frame].wmmat[1] =
197 convert_to_trans_prec(cm->features.allow_high_precision_mv,
198 cm->global_motion[frame].wmmat[1]) *
199 GM_TRANS_ONLY_DECODE_FACTOR;
200 }
201 #endif
202
203 if (cm->global_motion[frame].wmtype == IDENTITY) continue;
204
205 if (ref_frame_error == 0) continue;
206
207 // If the best error advantage found doesn't meet the threshold for
208 // this motion type, revert to IDENTITY.
209 if (!av1_is_enough_erroradvantage(
210 (double)best_warp_error / ref_frame_error,
211 gm_get_params_cost(&cm->global_motion[frame], ref_params,
212 cm->features.allow_high_precision_mv))) {
213 cm->global_motion[frame] = default_warp_params;
214 }
215
216 if (cm->global_motion[frame].wmtype != IDENTITY) break;
217 }
218 }
219
220 // Computes global motion for the given reference frame.
av1_compute_gm_for_valid_ref_frames(AV1_COMP * cpi,YV12_BUFFER_CONFIG * ref_buf[REF_FRAMES],int frame,int num_src_corners,int * src_corners,unsigned char * src_buffer,MotionModel * params_by_motion,uint8_t * segment_map,int segment_map_w,int segment_map_h)221 void av1_compute_gm_for_valid_ref_frames(
222 AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame,
223 int num_src_corners, int *src_corners, unsigned char *src_buffer,
224 MotionModel *params_by_motion, uint8_t *segment_map, int segment_map_w,
225 int segment_map_h) {
226 AV1_COMMON *const cm = &cpi->common;
227 const WarpedMotionParams *ref_params =
228 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
229 : &default_warp_params;
230
231 compute_global_motion_for_ref_frame(
232 cpi, ref_buf, frame, num_src_corners, src_corners, src_buffer,
233 params_by_motion, segment_map, segment_map_w, segment_map_h, ref_params);
234 }
235
236 // Loops over valid reference frames and computes global motion estimation.
compute_global_motion_for_references(AV1_COMP * cpi,YV12_BUFFER_CONFIG * ref_buf[REF_FRAMES],FrameDistPair reference_frame[REF_FRAMES-1],int num_ref_frames,int num_src_corners,int * src_corners,unsigned char * src_buffer,MotionModel * params_by_motion,uint8_t * segment_map,const int segment_map_w,const int segment_map_h)237 static AOM_INLINE void compute_global_motion_for_references(
238 AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
239 FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames,
240 int num_src_corners, int *src_corners, unsigned char *src_buffer,
241 MotionModel *params_by_motion, uint8_t *segment_map,
242 const int segment_map_w, const int segment_map_h) {
243 // Computation of frame corners for the source frame will be done already.
244 assert(num_src_corners != -1);
245 AV1_COMMON *const cm = &cpi->common;
246 // Compute global motion w.r.t. reference frames starting from the nearest ref
247 // frame in a given direction.
248 for (int frame = 0; frame < num_ref_frames; frame++) {
249 int ref_frame = reference_frame[frame].frame;
250 av1_compute_gm_for_valid_ref_frames(
251 cpi, ref_buf, ref_frame, num_src_corners, src_corners, src_buffer,
252 params_by_motion, segment_map, segment_map_w, segment_map_h);
253 // If global motion w.r.t. current ref frame is
254 // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
255 // the remaining ref frames in that direction. The below exit is disabled
256 // when ref frame distance w.r.t. current frame is zero. E.g.:
257 // source_alt_ref_frame w.r.t. ARF frames.
258 if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
259 reference_frame[frame].distance != 0 &&
260 cm->global_motion[ref_frame].wmtype != ROTZOOM)
261 break;
262 }
263 }
264
265 // Compares the distance in 'a' and 'b'. Returns 1 if the frame corresponding to
266 // 'a' is farther, -1 if the frame corresponding to 'b' is farther, 0 otherwise.
compare_distance(const void * a,const void * b)267 static int compare_distance(const void *a, const void *b) {
268 const int diff =
269 ((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance;
270 if (diff > 0)
271 return 1;
272 else if (diff < 0)
273 return -1;
274 return 0;
275 }
276
disable_gm_search_based_on_stats(const AV1_COMP * const cpi)277 static int disable_gm_search_based_on_stats(const AV1_COMP *const cpi) {
278 int is_gm_present = 1;
279
280 // Check number of GM models only in GF groups with ARF frames. GM param
281 // estimation is always done in the case of GF groups with no ARF frames (flat
282 // gops)
283 if (cpi->ppi->gf_group.arf_index > -1) {
284 // valid_gm_model_found is initialized to INT32_MAX in the beginning of
285 // every GF group.
286 // Therefore, GM param estimation is always done for all frames until
287 // at least 1 frame each of ARF_UPDATE, INTNL_ARF_UPDATE and LF_UPDATE are
288 // encoded in a GF group For subsequent frames, GM param estimation is
289 // disabled, if no valid models have been found in all the three update
290 // types.
291 is_gm_present = (cpi->ppi->valid_gm_model_found[ARF_UPDATE] != 0) ||
292 (cpi->ppi->valid_gm_model_found[INTNL_ARF_UPDATE] != 0) ||
293 (cpi->ppi->valid_gm_model_found[LF_UPDATE] != 0);
294 }
295 return !is_gm_present;
296 }
297
298 // Prunes reference frames for global motion estimation based on the speed
299 // feature 'gm_search_type'.
do_gm_search_logic(SPEED_FEATURES * const sf,int frame)300 static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) {
301 (void)frame;
302 switch (sf->gm_sf.gm_search_type) {
303 case GM_FULL_SEARCH: return 1;
304 case GM_REDUCED_REF_SEARCH_SKIP_L2_L3:
305 return !(frame == LAST2_FRAME || frame == LAST3_FRAME);
306 case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2:
307 return !(frame == LAST2_FRAME || frame == LAST3_FRAME ||
308 (frame == ALTREF2_FRAME));
309 case GM_DISABLE_SEARCH: return 0;
310 default: assert(0);
311 }
312 return 1;
313 }
314
315 // Populates valid reference frames in past/future directions in
316 // 'reference_frames' and their count in 'num_ref_frames'.
update_valid_ref_frames_for_gm(AV1_COMP * cpi,YV12_BUFFER_CONFIG * ref_buf[REF_FRAMES],FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES-1],int * num_ref_frames)317 static AOM_INLINE void update_valid_ref_frames_for_gm(
318 AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES],
319 FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1],
320 int *num_ref_frames) {
321 AV1_COMMON *const cm = &cpi->common;
322 int *num_past_ref_frames = &num_ref_frames[0];
323 int *num_future_ref_frames = &num_ref_frames[1];
324 const GF_GROUP *gf_group = &cpi->ppi->gf_group;
325 int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
326 gf_group, cpi->sf.inter_sf.selective_ref_frame, 1, cpi->gf_frame_index);
327 int cur_frame_gm_disabled = 0;
328
329 if (cpi->sf.gm_sf.disable_gm_search_based_on_stats) {
330 cur_frame_gm_disabled = disable_gm_search_based_on_stats(cpi);
331 }
332
333 for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) {
334 const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME };
335 RefCntBuffer *buf = get_ref_frame_buf(cm, frame);
336 const int ref_disabled =
337 !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]);
338 ref_buf[frame] = NULL;
339 cm->global_motion[frame] = default_warp_params;
340 // Skip global motion estimation for invalid ref frames
341 if (buf == NULL ||
342 (ref_disabled && cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE)) {
343 continue;
344 } else {
345 ref_buf[frame] = &buf->buf;
346 }
347
348 int prune_ref_frames =
349 ref_pruning_enabled &&
350 prune_ref_by_selective_ref_frame(cpi, NULL, ref_frame,
351 cm->cur_frame->ref_display_order_hint);
352
353 if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width &&
354 ref_buf[frame]->y_crop_height == cpi->source->y_crop_height &&
355 do_gm_search_logic(&cpi->sf, frame) && !prune_ref_frames &&
356 !cur_frame_gm_disabled) {
357 assert(ref_buf[frame] != NULL);
358 const int relative_frame_dist = av1_encoder_get_relative_dist(
359 buf->display_order_hint, cm->cur_frame->display_order_hint);
360 // Populate past and future ref frames.
361 // reference_frames[0][] indicates past direction and
362 // reference_frames[1][] indicates future direction.
363 if (relative_frame_dist <= 0) {
364 reference_frames[0][*num_past_ref_frames].distance =
365 abs(relative_frame_dist);
366 reference_frames[0][*num_past_ref_frames].frame = frame;
367 (*num_past_ref_frames)++;
368 } else {
369 reference_frames[1][*num_future_ref_frames].distance =
370 abs(relative_frame_dist);
371 reference_frames[1][*num_future_ref_frames].frame = frame;
372 (*num_future_ref_frames)++;
373 }
374 }
375 }
376 }
377
378 // Deallocates segment_map and inliers.
dealloc_global_motion_data(MotionModel * params_by_motion,uint8_t * segment_map)379 static AOM_INLINE void dealloc_global_motion_data(MotionModel *params_by_motion,
380 uint8_t *segment_map) {
381 aom_free(segment_map);
382
383 for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
384 aom_free(params_by_motion[m].inliers);
385 }
386 }
387
388 // Allocates and initializes memory for segment_map and MotionModel.
alloc_global_motion_data(MotionModel * params_by_motion,uint8_t ** segment_map,const int segment_map_w,const int segment_map_h)389 static AOM_INLINE bool alloc_global_motion_data(MotionModel *params_by_motion,
390 uint8_t **segment_map,
391 const int segment_map_w,
392 const int segment_map_h) {
393 av1_zero_array(params_by_motion, RANSAC_NUM_MOTIONS);
394 for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
395 params_by_motion[m].inliers =
396 aom_malloc(sizeof(*(params_by_motion[m].inliers)) * 2 * MAX_CORNERS);
397 if (!params_by_motion[m].inliers) {
398 dealloc_global_motion_data(params_by_motion, NULL);
399 return false;
400 }
401 }
402
403 *segment_map = (uint8_t *)aom_calloc(segment_map_w * segment_map_h,
404 sizeof(*segment_map));
405 if (!*segment_map) {
406 dealloc_global_motion_data(params_by_motion, NULL);
407 return false;
408 }
409 return true;
410 }
411
412 // Initializes parameters used for computing global motion.
setup_global_motion_info_params(AV1_COMP * cpi)413 static AOM_INLINE void setup_global_motion_info_params(AV1_COMP *cpi) {
414 GlobalMotionInfo *const gm_info = &cpi->gm_info;
415 YV12_BUFFER_CONFIG *source = cpi->source;
416
417 gm_info->src_buffer = source->y_buffer;
418 if (source->flags & YV12_FLAG_HIGHBITDEPTH) {
419 // The source buffer is 16-bit, so we need to convert to 8 bits for the
420 // following code. We cache the result until the source frame is released.
421 gm_info->src_buffer =
422 av1_downconvert_frame(source, cpi->common.seq_params->bit_depth);
423 }
424
425 gm_info->segment_map_w =
426 (source->y_width + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
427 gm_info->segment_map_h =
428 (source->y_height + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG;
429
430 memset(gm_info->reference_frames, -1,
431 sizeof(gm_info->reference_frames[0][0]) * MAX_DIRECTIONS *
432 (REF_FRAMES - 1));
433 av1_zero(gm_info->num_ref_frames);
434
435 // Populate ref_buf for valid ref frames in global motion
436 update_valid_ref_frames_for_gm(cpi, gm_info->ref_buf,
437 gm_info->reference_frames,
438 gm_info->num_ref_frames);
439
440 // Sort the past and future ref frames in the ascending order of their
441 // distance from the current frame. reference_frames[0] => past direction
442 // and reference_frames[1] => future direction.
443 qsort(gm_info->reference_frames[0], gm_info->num_ref_frames[0],
444 sizeof(gm_info->reference_frames[0][0]), compare_distance);
445 qsort(gm_info->reference_frames[1], gm_info->num_ref_frames[1],
446 sizeof(gm_info->reference_frames[1][0]), compare_distance);
447
448 gm_info->num_src_corners = -1;
449 // If at least one valid reference frame exists in past/future directions,
450 // compute interest points of source frame using FAST features.
451 if (gm_info->num_ref_frames[0] > 0 || gm_info->num_ref_frames[1] > 0) {
452 gm_info->num_src_corners = av1_fast_corner_detect(
453 gm_info->src_buffer, source->y_width, source->y_height,
454 source->y_stride, gm_info->src_corners, MAX_CORNERS);
455 }
456 }
457
458 // Computes global motion w.r.t. valid reference frames.
global_motion_estimation(AV1_COMP * cpi)459 static AOM_INLINE void global_motion_estimation(AV1_COMP *cpi) {
460 GlobalMotionInfo *const gm_info = &cpi->gm_info;
461 MotionModel params_by_motion[RANSAC_NUM_MOTIONS];
462 uint8_t *segment_map = NULL;
463
464 alloc_global_motion_data(params_by_motion, &segment_map,
465 gm_info->segment_map_w, gm_info->segment_map_h);
466
467 // Compute global motion w.r.t. past reference frames and future reference
468 // frames
469 for (int dir = 0; dir < MAX_DIRECTIONS; dir++) {
470 if (gm_info->num_ref_frames[dir] > 0)
471 compute_global_motion_for_references(
472 cpi, gm_info->ref_buf, gm_info->reference_frames[dir],
473 gm_info->num_ref_frames[dir], gm_info->num_src_corners,
474 gm_info->src_corners, gm_info->src_buffer, params_by_motion,
475 segment_map, gm_info->segment_map_w, gm_info->segment_map_h);
476 }
477
478 dealloc_global_motion_data(params_by_motion, segment_map);
479 }
480
481 // Global motion estimation for the current frame is computed.This computation
482 // happens once per frame and the winner motion model parameters are stored in
483 // cm->cur_frame->global_motion.
av1_compute_global_motion_facade(AV1_COMP * cpi)484 void av1_compute_global_motion_facade(AV1_COMP *cpi) {
485 AV1_COMMON *const cm = &cpi->common;
486 GlobalMotionInfo *const gm_info = &cpi->gm_info;
487
488 if (cpi->oxcf.tool_cfg.enable_global_motion) {
489 if (cpi->gf_frame_index == 0) {
490 for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
491 cpi->ppi->valid_gm_model_found[i] = INT32_MAX;
492 #if CONFIG_FPMT_TEST
493 if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE)
494 cpi->ppi->temp_valid_gm_model_found[i] = INT32_MAX;
495 #endif
496 }
497 }
498 }
499
500 if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source &&
501 cpi->superres_mode == AOM_SUPERRES_NONE &&
502 cpi->oxcf.tool_cfg.enable_global_motion && !gm_info->search_done) {
503 setup_global_motion_info_params(cpi);
504 if (cpi->mt_info.num_workers > 1)
505 av1_global_motion_estimation_mt(cpi);
506 else
507 global_motion_estimation(cpi);
508 gm_info->search_done = 1;
509 }
510 memcpy(cm->cur_frame->global_motion, cm->global_motion,
511 sizeof(cm->cur_frame->global_motion));
512 }
513