• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 
16 #include "config/aom_dsp_rtcd.h"
17 #include "config/aom_scale_rtcd.h"
18 
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_dsp/variance.h"
21 #include "aom_mem/aom_mem.h"
22 #include "aom_ports/mem.h"
23 #include "aom_scale/aom_scale.h"
24 #include "aom_scale/yv12config.h"
25 
26 #include "av1/common/entropymv.h"
27 #include "av1/common/quant_common.h"
28 #include "av1/common/reconinter.h"  // av1_setup_dst_planes()
29 #include "av1/common/reconintra.h"
30 #include "av1/common/txb_common.h"
31 #include "av1/encoder/aq_variance.h"
32 #include "av1/encoder/av1_quantize.h"
33 #include "av1/encoder/block.h"
34 #include "av1/encoder/dwt.h"
35 #include "av1/encoder/encodeframe.h"
36 #include "av1/encoder/encodemb.h"
37 #include "av1/encoder/encodemv.h"
38 #include "av1/encoder/encoder.h"
39 #include "av1/encoder/encoder_utils.h"
40 #include "av1/encoder/encode_strategy.h"
41 #include "av1/encoder/ethread.h"
42 #include "av1/encoder/extend.h"
43 #include "av1/encoder/firstpass.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/rd.h"
46 #include "av1/encoder/reconinter_enc.h"
47 
48 #define OUTPUT_FPF 0
49 
50 #define FIRST_PASS_Q 10.0
51 #define INTRA_MODE_PENALTY 1024
52 #define NEW_MV_MODE_PENALTY 32
53 #define DARK_THRESH 64
54 
55 #define NCOUNT_INTRA_THRESH 8192
56 #define NCOUNT_INTRA_FACTOR 3
57 
58 #define INVALID_FP_STATS_TO_PREDICT_FLAT_GOP -1
59 
output_stats(FIRSTPASS_STATS * stats,struct aom_codec_pkt_list * pktlist)60 static AOM_INLINE void output_stats(FIRSTPASS_STATS *stats,
61                                     struct aom_codec_pkt_list *pktlist) {
62   struct aom_codec_cx_pkt pkt;
63   pkt.kind = AOM_CODEC_STATS_PKT;
64   pkt.data.twopass_stats.buf = stats;
65   pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
66   if (pktlist != NULL) aom_codec_pkt_list_add(pktlist, &pkt);
67 
68 // TEMP debug code
69 #if OUTPUT_FPF
70   {
71     FILE *fpfile;
72     fpfile = fopen("firstpass.stt", "a");
73 
74     fprintf(fpfile,
75             "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
76             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
77             "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
78             stats->frame, stats->weight, stats->intra_error, stats->coded_error,
79             stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
80             stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
81             stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
82             stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
83             stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
84             stats->count, stats->duration);
85     fclose(fpfile);
86   }
87 #endif
88 }
89 
av1_twopass_zero_stats(FIRSTPASS_STATS * section)90 void av1_twopass_zero_stats(FIRSTPASS_STATS *section) {
91   section->frame = 0.0;
92   section->weight = 0.0;
93   section->intra_error = 0.0;
94   section->frame_avg_wavelet_energy = 0.0;
95   section->coded_error = 0.0;
96   section->sr_coded_error = 0.0;
97   section->pcnt_inter = 0.0;
98   section->pcnt_motion = 0.0;
99   section->pcnt_second_ref = 0.0;
100   section->pcnt_neutral = 0.0;
101   section->intra_skip_pct = 0.0;
102   section->inactive_zone_rows = 0.0;
103   section->inactive_zone_cols = 0.0;
104   section->MVr = 0.0;
105   section->mvr_abs = 0.0;
106   section->MVc = 0.0;
107   section->mvc_abs = 0.0;
108   section->MVrv = 0.0;
109   section->MVcv = 0.0;
110   section->mv_in_out_count = 0.0;
111   section->new_mv_count = 0.0;
112   section->count = 0.0;
113   section->duration = 1.0;
114   section->is_flash = 0;
115   section->noise_var = 0;
116   section->cor_coeff = 1.0;
117 }
118 
av1_accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)119 void av1_accumulate_stats(FIRSTPASS_STATS *section,
120                           const FIRSTPASS_STATS *frame) {
121   section->frame += frame->frame;
122   section->weight += frame->weight;
123   section->intra_error += frame->intra_error;
124   section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
125   section->coded_error += frame->coded_error;
126   section->sr_coded_error += frame->sr_coded_error;
127   section->pcnt_inter += frame->pcnt_inter;
128   section->pcnt_motion += frame->pcnt_motion;
129   section->pcnt_second_ref += frame->pcnt_second_ref;
130   section->pcnt_neutral += frame->pcnt_neutral;
131   section->intra_skip_pct += frame->intra_skip_pct;
132   section->inactive_zone_rows += frame->inactive_zone_rows;
133   section->inactive_zone_cols += frame->inactive_zone_cols;
134   section->MVr += frame->MVr;
135   section->mvr_abs += frame->mvr_abs;
136   section->MVc += frame->MVc;
137   section->mvc_abs += frame->mvc_abs;
138   section->MVrv += frame->MVrv;
139   section->MVcv += frame->MVcv;
140   section->mv_in_out_count += frame->mv_in_out_count;
141   section->new_mv_count += frame->new_mv_count;
142   section->count += frame->count;
143   section->duration += frame->duration;
144 }
145 
get_unit_rows(const BLOCK_SIZE fp_block_size,const int mb_rows)146 static int get_unit_rows(const BLOCK_SIZE fp_block_size, const int mb_rows) {
147   const int height_mi_log2 = mi_size_high_log2[fp_block_size];
148   const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
149   if (height_mi_log2 > mb_height_mi_log2) {
150     return mb_rows >> (height_mi_log2 - mb_height_mi_log2);
151   }
152 
153   return mb_rows << (mb_height_mi_log2 - height_mi_log2);
154 }
155 
get_unit_cols(const BLOCK_SIZE fp_block_size,const int mb_cols)156 static int get_unit_cols(const BLOCK_SIZE fp_block_size, const int mb_cols) {
157   const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
158   const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
159   if (width_mi_log2 > mb_width_mi_log2) {
160     return mb_cols >> (width_mi_log2 - mb_width_mi_log2);
161   }
162 
163   return mb_cols << (mb_width_mi_log2 - width_mi_log2);
164 }
165 
166 // TODO(chengchen): can we simplify it even if resize has to be considered?
get_num_mbs(const BLOCK_SIZE fp_block_size,const int num_mbs_16X16)167 static int get_num_mbs(const BLOCK_SIZE fp_block_size,
168                        const int num_mbs_16X16) {
169   const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
170   const int height_mi_log2 = mi_size_high_log2[fp_block_size];
171   const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
172   const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
173   // TODO(chengchen): Now this function assumes a square block is used.
174   // It does not support rectangular block sizes.
175   assert(width_mi_log2 == height_mi_log2);
176   if (width_mi_log2 > mb_width_mi_log2) {
177     return num_mbs_16X16 >> ((width_mi_log2 - mb_width_mi_log2) +
178                              (height_mi_log2 - mb_height_mi_log2));
179   }
180 
181   return num_mbs_16X16 << ((mb_width_mi_log2 - width_mi_log2) +
182                            (mb_height_mi_log2 - height_mi_log2));
183 }
184 
av1_end_first_pass(AV1_COMP * cpi)185 void av1_end_first_pass(AV1_COMP *cpi) {
186   if (cpi->ppi->twopass.stats_buf_ctx->total_stats && !cpi->ppi->lap_enabled)
187     output_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats,
188                  cpi->ppi->output_pkt_list);
189 }
190 
get_block_variance_fn(BLOCK_SIZE bsize)191 static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
192   switch (bsize) {
193     case BLOCK_8X8: return aom_mse8x8;
194     case BLOCK_16X8: return aom_mse16x8;
195     case BLOCK_8X16: return aom_mse8x16;
196     default: return aom_mse16x16;
197   }
198 }
199 
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)200 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
201                                          const struct buf_2d *src,
202                                          const struct buf_2d *ref) {
203   unsigned int sse;
204   const aom_variance_fn_t fn = get_block_variance_fn(bsize);
205   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
206   return sse;
207 }
208 
209 #if CONFIG_AV1_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)210 static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
211                                                       int bd) {
212   switch (bd) {
213     default:
214       switch (bsize) {
215         case BLOCK_8X8: return aom_highbd_8_mse8x8;
216         case BLOCK_16X8: return aom_highbd_8_mse16x8;
217         case BLOCK_8X16: return aom_highbd_8_mse8x16;
218         default: return aom_highbd_8_mse16x16;
219       }
220       break;
221     case 10:
222       switch (bsize) {
223         case BLOCK_8X8: return aom_highbd_10_mse8x8;
224         case BLOCK_16X8: return aom_highbd_10_mse16x8;
225         case BLOCK_8X16: return aom_highbd_10_mse8x16;
226         default: return aom_highbd_10_mse16x16;
227       }
228       break;
229     case 12:
230       switch (bsize) {
231         case BLOCK_8X8: return aom_highbd_12_mse8x8;
232         case BLOCK_16X8: return aom_highbd_12_mse16x8;
233         case BLOCK_8X16: return aom_highbd_12_mse8x16;
234         default: return aom_highbd_12_mse16x16;
235       }
236       break;
237   }
238 }
239 
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)240 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
241                                                 const struct buf_2d *src,
242                                                 const struct buf_2d *ref,
243                                                 int bd) {
244   unsigned int sse;
245   const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
246   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
247   return sse;
248 }
249 #endif  // CONFIG_AV1_HIGHBITDEPTH
250 
251 // Refine the motion search range according to the frame dimension
252 // for first pass test.
get_search_range(const InitialDimensions * initial_dimensions)253 static int get_search_range(const InitialDimensions *initial_dimensions) {
254   int sr = 0;
255   const int dim = AOMMIN(initial_dimensions->width, initial_dimensions->height);
256 
257   while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
258   return sr;
259 }
260 
first_pass_motion_search(AV1_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,FULLPEL_MV * best_mv,int * best_motion_err)261 static AOM_INLINE void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
262                                                 const MV *ref_mv,
263                                                 FULLPEL_MV *best_mv,
264                                                 int *best_motion_err) {
265   MACROBLOCKD *const xd = &x->e_mbd;
266   FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
267   int tmp_err;
268   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
269   const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
270   const int sr = get_search_range(&cpi->initial_dimensions);
271   const int step_param = cpi->sf.fp_sf.reduce_mv_step_param + sr;
272 
273   const search_site_config *first_pass_search_sites =
274       cpi->mv_search_params.search_site_cfg[SS_CFG_FPF];
275   const int fine_search_interval =
276       cpi->is_screen_content_type && cpi->common.features.allow_intrabc;
277   FULLPEL_MOTION_SEARCH_PARAMS ms_params;
278   av1_make_default_fullpel_ms_params(&ms_params, cpi, x, bsize, ref_mv,
279                                      first_pass_search_sites,
280                                      fine_search_interval);
281   av1_set_mv_search_method(&ms_params, first_pass_search_sites, NSTEP);
282 
283   FULLPEL_MV this_best_mv;
284   tmp_err = av1_full_pixel_search(start_mv, &ms_params, step_param, NULL,
285                                   &this_best_mv, NULL);
286 
287   if (tmp_err < INT_MAX) {
288     aom_variance_fn_ptr_t v_fn_ptr = cpi->ppi->fn_ptr[bsize];
289     const MSBuffers *ms_buffers = &ms_params.ms_buffers;
290     tmp_err = av1_get_mvpred_sse(&ms_params.mv_cost_params, this_best_mv,
291                                  &v_fn_ptr, ms_buffers->src, ms_buffers->ref) +
292               new_mv_mode_penalty;
293   }
294 
295   if (tmp_err < *best_motion_err) {
296     *best_motion_err = tmp_err;
297     *best_mv = this_best_mv;
298   }
299 }
300 
get_bsize(const CommonModeInfoParams * const mi_params,const BLOCK_SIZE fp_block_size,const int unit_row,const int unit_col)301 static BLOCK_SIZE get_bsize(const CommonModeInfoParams *const mi_params,
302                             const BLOCK_SIZE fp_block_size, const int unit_row,
303                             const int unit_col) {
304   const int unit_width = mi_size_wide[fp_block_size];
305   const int unit_height = mi_size_high[fp_block_size];
306   const int is_half_width =
307       unit_width * unit_col + unit_width / 2 >= mi_params->mi_cols;
308   const int is_half_height =
309       unit_height * unit_row + unit_height / 2 >= mi_params->mi_rows;
310   const int max_dimension =
311       AOMMAX(block_size_wide[fp_block_size], block_size_high[fp_block_size]);
312   int square_block_size = 0;
313   // 4X4, 8X8, 16X16, 32X32, 64X64, 128X128
314   switch (max_dimension) {
315     case 4: square_block_size = 0; break;
316     case 8: square_block_size = 1; break;
317     case 16: square_block_size = 2; break;
318     case 32: square_block_size = 3; break;
319     case 64: square_block_size = 4; break;
320     case 128: square_block_size = 5; break;
321     default: assert(0 && "First pass block size is not supported!"); break;
322   }
323   if (is_half_width && is_half_height) {
324     return subsize_lookup[PARTITION_SPLIT][square_block_size];
325   } else if (is_half_width) {
326     return subsize_lookup[PARTITION_VERT][square_block_size];
327   } else if (is_half_height) {
328     return subsize_lookup[PARTITION_HORZ][square_block_size];
329   } else {
330     return fp_block_size;
331   }
332 }
333 
find_fp_qindex(aom_bit_depth_t bit_depth)334 static int find_fp_qindex(aom_bit_depth_t bit_depth) {
335   return av1_find_qindex(FIRST_PASS_Q, bit_depth, 0, QINDEX_RANGE - 1);
336 }
337 
raw_motion_error_stdev(int * raw_motion_err_list,int raw_motion_err_counts)338 static double raw_motion_error_stdev(int *raw_motion_err_list,
339                                      int raw_motion_err_counts) {
340   int64_t sum_raw_err = 0;
341   double raw_err_avg = 0;
342   double raw_err_stdev = 0;
343   if (raw_motion_err_counts == 0) return 0;
344 
345   int i;
346   for (i = 0; i < raw_motion_err_counts; i++) {
347     sum_raw_err += raw_motion_err_list[i];
348   }
349   raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
350   for (i = 0; i < raw_motion_err_counts; i++) {
351     raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
352                      (raw_motion_err_list[i] - raw_err_avg);
353   }
354   // Calculate the standard deviation for the motion error of all the inter
355   // blocks of the 0,0 motion using the last source
356   // frame as the reference.
357   raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
358   return raw_err_stdev;
359 }
360 
calc_wavelet_energy(const AV1EncoderConfig * oxcf)361 static AOM_INLINE int calc_wavelet_energy(const AV1EncoderConfig *oxcf) {
362   return oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL;
363 }
364 typedef struct intra_pred_block_pass1_args {
365   const SequenceHeader *seq_params;
366   MACROBLOCK *x;
367 } intra_pred_block_pass1_args;
368 
copy_rect(uint8_t * dst,int dstride,const uint8_t * src,int sstride,int width,int height,int use_hbd)369 static INLINE void copy_rect(uint8_t *dst, int dstride, const uint8_t *src,
370                              int sstride, int width, int height, int use_hbd) {
371 #if CONFIG_AV1_HIGHBITDEPTH
372   if (use_hbd) {
373     aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), sstride,
374                              CONVERT_TO_SHORTPTR(dst), dstride, width, height);
375   } else {
376     aom_convolve_copy(src, sstride, dst, dstride, width, height);
377   }
378 #else
379   (void)use_hbd;
380   aom_convolve_copy(src, sstride, dst, dstride, width, height);
381 #endif
382 }
383 
first_pass_intra_pred_and_calc_diff(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)384 static void first_pass_intra_pred_and_calc_diff(int plane, int block,
385                                                 int blk_row, int blk_col,
386                                                 BLOCK_SIZE plane_bsize,
387                                                 TX_SIZE tx_size, void *arg) {
388   (void)block;
389   struct intra_pred_block_pass1_args *const args = arg;
390   MACROBLOCK *const x = args->x;
391   MACROBLOCKD *const xd = &x->e_mbd;
392   MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
393   MACROBLOCK_PLANE *const p = &x->plane[plane];
394   const int dst_stride = pd->dst.stride;
395   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
396   const MB_MODE_INFO *const mbmi = xd->mi[0];
397   const SequenceHeader *seq_params = args->seq_params;
398   const int src_stride = p->src.stride;
399   uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
400 
401   av1_predict_intra_block(
402       xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
403       pd->height, tx_size, mbmi->mode, 0, 0, FILTER_INTRA_MODES, src,
404       src_stride, dst, dst_stride, blk_col, blk_row, plane);
405 
406   av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
407 }
408 
first_pass_predict_intra_block_for_luma_plane(const SequenceHeader * seq_params,MACROBLOCK * x,BLOCK_SIZE bsize)409 static void first_pass_predict_intra_block_for_luma_plane(
410     const SequenceHeader *seq_params, MACROBLOCK *x, BLOCK_SIZE bsize) {
411   assert(bsize < BLOCK_SIZES_ALL);
412   const MACROBLOCKD *const xd = &x->e_mbd;
413   const int plane = AOM_PLANE_Y;
414   const MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
415   const int ss_x = pd->subsampling_x;
416   const int ss_y = pd->subsampling_y;
417   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
418   const int dst_stride = pd->dst.stride;
419   uint8_t *dst = pd->dst.buf;
420   const MACROBLOCK_PLANE *const p = &x->plane[plane];
421   const int src_stride = p->src.stride;
422   const uint8_t *src = p->src.buf;
423 
424   intra_pred_block_pass1_args args = { seq_params, x };
425   av1_foreach_transformed_block_in_plane(
426       xd, plane_bsize, plane, first_pass_intra_pred_and_calc_diff, &args);
427 
428   // copy source data to recon buffer, as the recon buffer will be used as a
429   // reference frame subsequently.
430   copy_rect(dst, dst_stride, src, src_stride, block_size_wide[bsize],
431             block_size_high[bsize], seq_params->use_highbitdepth);
432 }
433 
434 #define UL_INTRA_THRESH 50
435 #define INVALID_ROW -1
436 // Computes and returns the intra pred error of a block.
437 // intra pred error: sum of squared error of the intra predicted residual.
438 // Inputs:
439 //   cpi: the encoder setting. Only a few params in it will be used.
440 //   this_frame: the current frame buffer.
441 //   tile: tile information (not used in first pass, already init to zero)
442 //   unit_row: row index in the unit of first pass block size.
443 //   unit_col: column index in the unit of first pass block size.
444 //   y_offset: the offset of y frame buffer, indicating the starting point of
445 //             the current block.
446 //   uv_offset: the offset of u and v frame buffer, indicating the starting
447 //              point of the current block.
448 //   fp_block_size: first pass block size.
449 //   qindex: quantization step size to encode the frame.
450 //   stats: frame encoding stats.
451 // Modifies:
452 //   stats->intra_skip_count
453 //   stats->image_data_start_row
454 //   stats->intra_factor
455 //   stats->brightness_factor
456 //   stats->intra_error
457 //   stats->frame_avg_wavelet_energy
458 // Returns:
459 //   this_intra_error.
firstpass_intra_prediction(AV1_COMP * cpi,ThreadData * td,YV12_BUFFER_CONFIG * const this_frame,const TileInfo * const tile,const int unit_row,const int unit_col,const int y_offset,const int uv_offset,const BLOCK_SIZE fp_block_size,const int qindex,FRAME_STATS * const stats)460 static int firstpass_intra_prediction(
461     AV1_COMP *cpi, ThreadData *td, YV12_BUFFER_CONFIG *const this_frame,
462     const TileInfo *const tile, const int unit_row, const int unit_col,
463     const int y_offset, const int uv_offset, const BLOCK_SIZE fp_block_size,
464     const int qindex, FRAME_STATS *const stats) {
465   const AV1_COMMON *const cm = &cpi->common;
466   const CommonModeInfoParams *const mi_params = &cm->mi_params;
467   const SequenceHeader *const seq_params = cm->seq_params;
468   MACROBLOCK *const x = &td->mb;
469   MACROBLOCKD *const xd = &x->e_mbd;
470   const int unit_scale = mi_size_wide[fp_block_size];
471   const int num_planes = av1_num_planes(cm);
472   const BLOCK_SIZE bsize =
473       get_bsize(mi_params, fp_block_size, unit_row, unit_col);
474 
475   set_mi_offsets(mi_params, xd, unit_row * unit_scale, unit_col * unit_scale);
476   xd->plane[0].dst.buf = this_frame->y_buffer + y_offset;
477   if (num_planes > 1) {
478     xd->plane[1].dst.buf = this_frame->u_buffer + uv_offset;
479     xd->plane[2].dst.buf = this_frame->v_buffer + uv_offset;
480   }
481   xd->left_available = (unit_col != 0);
482   xd->mi[0]->bsize = bsize;
483   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
484   set_mi_row_col(xd, tile, unit_row * unit_scale, mi_size_high[bsize],
485                  unit_col * unit_scale, mi_size_wide[bsize], mi_params->mi_rows,
486                  mi_params->mi_cols);
487   set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
488   xd->mi[0]->segment_id = 0;
489   xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
490   xd->mi[0]->mode = DC_PRED;
491   xd->mi[0]->tx_size = TX_4X4;
492 
493   if (cpi->sf.fp_sf.disable_recon)
494     first_pass_predict_intra_block_for_luma_plane(seq_params, x, bsize);
495   else
496     av1_encode_intra_block_plane(cpi, x, bsize, 0, DRY_RUN_NORMAL, 0);
497   int this_intra_error = aom_get_mb_ss(x->plane[0].src_diff);
498   if (seq_params->use_highbitdepth) {
499     switch (seq_params->bit_depth) {
500       case AOM_BITS_8: break;
501       case AOM_BITS_10: this_intra_error >>= 4; break;
502       case AOM_BITS_12: this_intra_error >>= 8; break;
503       default:
504         assert(0 &&
505                "seq_params->bit_depth should be AOM_BITS_8, "
506                "AOM_BITS_10 or AOM_BITS_12");
507         return -1;
508     }
509   }
510 
511   if (this_intra_error < UL_INTRA_THRESH) {
512     ++stats->intra_skip_count;
513   } else if ((unit_col > 0) && (stats->image_data_start_row == INVALID_ROW)) {
514     stats->image_data_start_row = unit_row;
515   }
516 
517   double log_intra = log(this_intra_error + 1.0);
518   if (log_intra < 10.0) {
519     stats->intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
520   } else {
521     stats->intra_factor += 1.0;
522   }
523 
524   int level_sample;
525   if (seq_params->use_highbitdepth) {
526     level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
527   } else {
528     level_sample = x->plane[0].src.buf[0];
529   }
530 
531   if (seq_params->use_highbitdepth) {
532     switch (seq_params->bit_depth) {
533       case AOM_BITS_8: break;
534       case AOM_BITS_10: level_sample >>= 2; break;
535       case AOM_BITS_12: level_sample >>= 4; break;
536       default:
537         assert(0 &&
538                "seq_params->bit_depth should be AOM_BITS_8, "
539                "AOM_BITS_10 or AOM_BITS_12");
540         return -1;
541     }
542   }
543   if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
544     stats->brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
545   } else {
546     stats->brightness_factor += 1.0;
547   }
548 
549   // Intrapenalty below deals with situations where the intra and inter
550   // error scores are very low (e.g. a plain black frame).
551   // We do not have special cases in first pass for 0,0 and nearest etc so
552   // all inter modes carry an overhead cost estimate for the mv.
553   // When the error score is very low this causes us to pick all or lots of
554   // INTRA modes and throw lots of key frames.
555   // This penalty adds a cost matching that of a 0,0 mv to the intra case.
556   this_intra_error += INTRA_MODE_PENALTY;
557 
558   // Accumulate the intra error.
559   stats->intra_error += (int64_t)this_intra_error;
560 
561   // Stats based on wavelet energy is used in the following cases :
562   // 1. ML model which predicts if a flat structure (golden-frame only structure
563   // without ALT-REF and Internal-ARFs) is better. This ML model is enabled in
564   // constant quality mode under certain conditions.
565   // 2. Delta qindex mode is set as DELTA_Q_PERCEPTUAL.
566   // Thus, wavelet energy calculation is enabled for the above cases.
567   if (calc_wavelet_energy(&cpi->oxcf)) {
568     const int hbd = is_cur_buf_hbd(xd);
569     const int stride = x->plane[0].src.stride;
570     const int num_8x8_rows = block_size_high[fp_block_size] / 8;
571     const int num_8x8_cols = block_size_wide[fp_block_size] / 8;
572     const uint8_t *buf = x->plane[0].src.buf;
573     stats->frame_avg_wavelet_energy += av1_haar_ac_sad_mxn_uint8_input(
574         buf, stride, hbd, num_8x8_rows, num_8x8_cols);
575   } else {
576     stats->frame_avg_wavelet_energy = INVALID_FP_STATS_TO_PREDICT_FLAT_GOP;
577   }
578 
579   return this_intra_error;
580 }
581 
582 // Returns the sum of square error between source and reference blocks.
get_prediction_error_bitdepth(const int is_high_bitdepth,const int bitdepth,const BLOCK_SIZE block_size,const struct buf_2d * src,const struct buf_2d * ref)583 static int get_prediction_error_bitdepth(const int is_high_bitdepth,
584                                          const int bitdepth,
585                                          const BLOCK_SIZE block_size,
586                                          const struct buf_2d *src,
587                                          const struct buf_2d *ref) {
588   (void)is_high_bitdepth;
589   (void)bitdepth;
590 #if CONFIG_AV1_HIGHBITDEPTH
591   if (is_high_bitdepth) {
592     return highbd_get_prediction_error(block_size, src, ref, bitdepth);
593   }
594 #endif  // CONFIG_AV1_HIGHBITDEPTH
595   return get_prediction_error(block_size, src, ref);
596 }
597 
598 // Accumulates motion vector stats.
599 // Modifies member variables of "stats".
accumulate_mv_stats(const MV best_mv,const FULLPEL_MV mv,const int mb_row,const int mb_col,const int mb_rows,const int mb_cols,MV * last_non_zero_mv,FRAME_STATS * stats)600 static void accumulate_mv_stats(const MV best_mv, const FULLPEL_MV mv,
601                                 const int mb_row, const int mb_col,
602                                 const int mb_rows, const int mb_cols,
603                                 MV *last_non_zero_mv, FRAME_STATS *stats) {
604   if (is_zero_mv(&best_mv)) return;
605 
606   ++stats->mv_count;
607   // Non-zero vector, was it different from the last non zero vector?
608   if (!is_equal_mv(&best_mv, last_non_zero_mv)) ++stats->new_mv_count;
609   *last_non_zero_mv = best_mv;
610 
611   // Does the row vector point inwards or outwards?
612   if (mb_row < mb_rows / 2) {
613     if (mv.row > 0) {
614       --stats->sum_in_vectors;
615     } else if (mv.row < 0) {
616       ++stats->sum_in_vectors;
617     }
618   } else if (mb_row > mb_rows / 2) {
619     if (mv.row > 0) {
620       ++stats->sum_in_vectors;
621     } else if (mv.row < 0) {
622       --stats->sum_in_vectors;
623     }
624   }
625 
626   // Does the col vector point inwards or outwards?
627   if (mb_col < mb_cols / 2) {
628     if (mv.col > 0) {
629       --stats->sum_in_vectors;
630     } else if (mv.col < 0) {
631       ++stats->sum_in_vectors;
632     }
633   } else if (mb_col > mb_cols / 2) {
634     if (mv.col > 0) {
635       ++stats->sum_in_vectors;
636     } else if (mv.col < 0) {
637       --stats->sum_in_vectors;
638     }
639   }
640 }
641 
642 // Computes and returns the inter prediction error from the last frame.
643 // Computes inter prediction errors from the golden and alt ref frams and
644 // Updates stats accordingly.
645 // Inputs:
646 //   cpi: the encoder setting. Only a few params in it will be used.
647 //   last_frame: the frame buffer of the last frame.
648 //   golden_frame: the frame buffer of the golden frame.
649 //   unit_row: row index in the unit of first pass block size.
650 //   unit_col: column index in the unit of first pass block size.
651 //   recon_yoffset: the y offset of the reconstructed  frame buffer,
652 //                  indicating the starting point of the current block.
653 //   recont_uvoffset: the u/v offset of the reconstructed frame buffer,
654 //                    indicating the starting point of the current block.
655 //   src_yoffset: the y offset of the source frame buffer.
656 //   fp_block_size: first pass block size.
657 //   this_intra_error: the intra prediction error of this block.
658 //   raw_motion_err_counts: the count of raw motion vectors.
659 //   raw_motion_err_list: the array that records the raw motion error.
660 //   ref_mv: the reference used to start the motion search
661 //   best_mv: the best mv found
662 //   last_non_zero_mv: the last non zero mv found in this tile row.
663 //   stats: frame encoding stats.
664 //  Modifies:
665 //    raw_motion_err_list
666 //    best_ref_mv
667 //    last_mv
668 //    stats: many member params in it.
669 //  Returns:
670 //    this_inter_error
firstpass_inter_prediction(AV1_COMP * cpi,ThreadData * td,const YV12_BUFFER_CONFIG * const last_frame,const YV12_BUFFER_CONFIG * const golden_frame,const int unit_row,const int unit_col,const int recon_yoffset,const int recon_uvoffset,const int src_yoffset,const BLOCK_SIZE fp_block_size,const int this_intra_error,const int raw_motion_err_counts,int * raw_motion_err_list,const MV ref_mv,MV * best_mv,MV * last_non_zero_mv,FRAME_STATS * stats)671 static int firstpass_inter_prediction(
672     AV1_COMP *cpi, ThreadData *td, const YV12_BUFFER_CONFIG *const last_frame,
673     const YV12_BUFFER_CONFIG *const golden_frame, const int unit_row,
674     const int unit_col, const int recon_yoffset, const int recon_uvoffset,
675     const int src_yoffset, const BLOCK_SIZE fp_block_size,
676     const int this_intra_error, const int raw_motion_err_counts,
677     int *raw_motion_err_list, const MV ref_mv, MV *best_mv,
678     MV *last_non_zero_mv, FRAME_STATS *stats) {
679   int this_inter_error = this_intra_error;
680   AV1_COMMON *const cm = &cpi->common;
681   const CommonModeInfoParams *const mi_params = &cm->mi_params;
682   CurrentFrame *const current_frame = &cm->current_frame;
683   MACROBLOCK *const x = &td->mb;
684   MACROBLOCKD *const xd = &x->e_mbd;
685   const int is_high_bitdepth = is_cur_buf_hbd(xd);
686   const int bitdepth = xd->bd;
687   const int unit_scale = mi_size_wide[fp_block_size];
688   const BLOCK_SIZE bsize =
689       get_bsize(mi_params, fp_block_size, unit_row, unit_col);
690   const int fp_block_size_height = block_size_wide[fp_block_size];
691   const int unit_width = mi_size_wide[fp_block_size];
692   const int unit_rows = get_unit_rows(fp_block_size, mi_params->mb_rows);
693   const int unit_cols = get_unit_cols(fp_block_size, mi_params->mb_cols);
694   // Assume 0,0 motion with no mv overhead.
695   FULLPEL_MV mv = kZeroFullMv;
696   xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
697   // Set up limit values for motion vectors to prevent them extending
698   // outside the UMV borders.
699   av1_set_mv_col_limits(mi_params, &x->mv_limits, unit_col * unit_width,
700                         fp_block_size_height >> MI_SIZE_LOG2,
701                         cpi->oxcf.border_in_pixels);
702 
703   int motion_error =
704       get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
705                                     &x->plane[0].src, &xd->plane[0].pre[0]);
706 
707   // Compute the motion error of the 0,0 motion using the last source
708   // frame as the reference. Skip the further motion search on
709   // reconstructed frame if this error is small.
710   struct buf_2d unscaled_last_source_buf_2d;
711   unscaled_last_source_buf_2d.buf =
712       cpi->unscaled_last_source->y_buffer + src_yoffset;
713   unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
714   const int raw_motion_error = get_prediction_error_bitdepth(
715       is_high_bitdepth, bitdepth, bsize, &x->plane[0].src,
716       &unscaled_last_source_buf_2d);
717   raw_motion_err_list[raw_motion_err_counts] = raw_motion_error;
718   const FIRST_PASS_SPEED_FEATURES *const fp_sf = &cpi->sf.fp_sf;
719 
720   if (raw_motion_error > fp_sf->skip_motion_search_threshold) {
721     // Test last reference frame using the previous best mv as the
722     // starting point (best reference) for the search.
723     first_pass_motion_search(cpi, x, &ref_mv, &mv, &motion_error);
724 
725     // If the current best reference mv is not centered on 0,0 then do a
726     // 0,0 based search as well.
727     if ((fp_sf->skip_zeromv_motion_search == 0) && !is_zero_mv(&ref_mv)) {
728       FULLPEL_MV tmp_mv = kZeroFullMv;
729       int tmp_err = INT_MAX;
730       first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);
731 
732       if (tmp_err < motion_error) {
733         motion_error = tmp_err;
734         mv = tmp_mv;
735       }
736     }
737 
738     // Motion search in 2nd reference frame.
739     int gf_motion_error = motion_error;
740     if ((current_frame->frame_number > 1) && golden_frame != NULL) {
741       FULLPEL_MV tmp_mv = kZeroFullMv;
742       // Assume 0,0 motion with no mv overhead.
743       xd->plane[0].pre[0].buf = golden_frame->y_buffer + recon_yoffset;
744       xd->plane[0].pre[0].stride = golden_frame->y_stride;
745       gf_motion_error =
746           get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
747                                         &x->plane[0].src, &xd->plane[0].pre[0]);
748       first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &gf_motion_error);
749     }
750     if (gf_motion_error < motion_error && gf_motion_error < this_intra_error) {
751       ++stats->second_ref_count;
752     }
753     // In accumulating a score for the 2nd reference frame take the
754     // best of the motion predicted score and the intra coded error
755     // (just as will be done for) accumulation of "coded_error" for
756     // the last frame.
757     if ((current_frame->frame_number > 1) && golden_frame != NULL) {
758       stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error);
759     } else {
760       // TODO(chengchen): I believe logically this should also be changed to
761       // stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error).
762       stats->sr_coded_error += motion_error;
763     }
764 
765     // Reset to last frame as reference buffer.
766     xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
767     if (av1_num_planes(&cpi->common) > 1) {
768       xd->plane[1].pre[0].buf = last_frame->u_buffer + recon_uvoffset;
769       xd->plane[2].pre[0].buf = last_frame->v_buffer + recon_uvoffset;
770     }
771   } else {
772     stats->sr_coded_error += motion_error;
773   }
774 
775   // Start by assuming that intra mode is best.
776   *best_mv = kZeroMv;
777 
778   if (motion_error <= this_intra_error) {
779     // Keep a count of cases where the inter and intra were very close
780     // and very low. This helps with scene cut detection for example in
781     // cropped clips with black bars at the sides or top and bottom.
782     if (((this_intra_error - INTRA_MODE_PENALTY) * 9 <= motion_error * 10) &&
783         (this_intra_error < (2 * INTRA_MODE_PENALTY))) {
784       stats->neutral_count += 1.0;
785       // Also track cases where the intra is not much worse than the inter
786       // and use this in limiting the GF/arf group length.
787     } else if ((this_intra_error > NCOUNT_INTRA_THRESH) &&
788                (this_intra_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
789       stats->neutral_count +=
790           (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_intra_error);
791     }
792 
793     *best_mv = get_mv_from_fullmv(&mv);
794     this_inter_error = motion_error;
795     xd->mi[0]->mode = NEWMV;
796     xd->mi[0]->mv[0].as_mv = *best_mv;
797     xd->mi[0]->tx_size = TX_4X4;
798     xd->mi[0]->ref_frame[0] = LAST_FRAME;
799     xd->mi[0]->ref_frame[1] = NONE_FRAME;
800 
801     if (fp_sf->disable_recon == 0) {
802       av1_enc_build_inter_predictor(cm, xd, unit_row * unit_scale,
803                                     unit_col * unit_scale, NULL, bsize,
804                                     AOM_PLANE_Y, AOM_PLANE_Y);
805       av1_encode_sby_pass1(cpi, x, bsize);
806     }
807     stats->sum_mvr += best_mv->row;
808     stats->sum_mvr_abs += abs(best_mv->row);
809     stats->sum_mvc += best_mv->col;
810     stats->sum_mvc_abs += abs(best_mv->col);
811     stats->sum_mvrs += best_mv->row * best_mv->row;
812     stats->sum_mvcs += best_mv->col * best_mv->col;
813     ++stats->inter_count;
814 
815     accumulate_mv_stats(*best_mv, mv, unit_row, unit_col, unit_rows, unit_cols,
816                         last_non_zero_mv, stats);
817   }
818 
819   return this_inter_error;
820 }
821 
822 // Normalize the first pass stats.
823 // Error / counters are normalized to each MB.
824 // MVs are normalized to the width/height of the frame.
normalize_firstpass_stats(FIRSTPASS_STATS * fps,double num_mbs_16x16,double f_w,double f_h)825 static void normalize_firstpass_stats(FIRSTPASS_STATS *fps,
826                                       double num_mbs_16x16, double f_w,
827                                       double f_h) {
828   fps->coded_error /= num_mbs_16x16;
829   fps->sr_coded_error /= num_mbs_16x16;
830   fps->intra_error /= num_mbs_16x16;
831   fps->frame_avg_wavelet_energy /= num_mbs_16x16;
832 
833   fps->MVr /= f_h;
834   fps->mvr_abs /= f_h;
835   fps->MVc /= f_w;
836   fps->mvc_abs /= f_w;
837   fps->MVrv /= (f_h * f_h);
838   fps->MVcv /= (f_w * f_w);
839   fps->new_mv_count /= num_mbs_16x16;
840 }
841 
842 // Updates the first pass stats of this frame.
843 // Input:
844 //   cpi: the encoder setting. Only a few params in it will be used.
845 //   stats: stats accumulated for this frame.
846 //   raw_err_stdev: the statndard deviation for the motion error of all the
847 //                  inter blocks of the (0,0) motion using the last source
848 //                  frame as the reference.
849 //   frame_number: current frame number.
850 //   ts_duration: Duration of the frame / collection of frames.
851 // Updates:
852 //   twopass->total_stats: the accumulated stats.
853 //   twopass->stats_buf_ctx->stats_in_end: the pointer to the current stats,
854 //                                         update its value and its position
855 //                                         in the buffer.
update_firstpass_stats(AV1_COMP * cpi,const FRAME_STATS * const stats,const double raw_err_stdev,const int frame_number,const int64_t ts_duration,const BLOCK_SIZE fp_block_size)856 static void update_firstpass_stats(AV1_COMP *cpi,
857                                    const FRAME_STATS *const stats,
858                                    const double raw_err_stdev,
859                                    const int frame_number,
860                                    const int64_t ts_duration,
861                                    const BLOCK_SIZE fp_block_size) {
862   TWO_PASS *twopass = &cpi->ppi->twopass;
863   AV1_COMMON *const cm = &cpi->common;
864   const CommonModeInfoParams *const mi_params = &cm->mi_params;
865   FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
866   FIRSTPASS_STATS fps;
867   // The minimum error here insures some bit allocation to frames even
868   // in static regions. The allocation per MB declines for larger formats
869   // where the typical "real" energy per MB also falls.
870   // Initial estimate here uses sqrt(mbs) to define the min_err, where the
871   // number of mbs is proportional to the image area.
872   const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
873                                 ? cpi->initial_mbs
874                                 : mi_params->MBs;
875   // Number of actual units used in the first pass, it can be other square
876   // block sizes than 16X16.
877   const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
878   const double min_err = 200 * sqrt(num_mbs);
879 
880   fps.weight = stats->intra_factor * stats->brightness_factor;
881   fps.frame = frame_number;
882   fps.coded_error = (double)(stats->coded_error >> 8) + min_err;
883   fps.sr_coded_error = (double)(stats->sr_coded_error >> 8) + min_err;
884   fps.intra_error = (double)(stats->intra_error >> 8) + min_err;
885   fps.frame_avg_wavelet_energy = (double)stats->frame_avg_wavelet_energy;
886   fps.count = 1.0;
887   fps.pcnt_inter = (double)stats->inter_count / num_mbs;
888   fps.pcnt_second_ref = (double)stats->second_ref_count / num_mbs;
889   fps.pcnt_neutral = (double)stats->neutral_count / num_mbs;
890   fps.intra_skip_pct = (double)stats->intra_skip_count / num_mbs;
891   fps.inactive_zone_rows = (double)stats->image_data_start_row;
892   fps.inactive_zone_cols = (double)0;  // Placeholder: not currently supported.
893   fps.raw_error_stdev = raw_err_stdev;
894   fps.is_flash = 0;
895   fps.noise_var = (double)0;
896   fps.cor_coeff = (double)1.0;
897 
898   if (stats->mv_count > 0) {
899     fps.MVr = (double)stats->sum_mvr / stats->mv_count;
900     fps.mvr_abs = (double)stats->sum_mvr_abs / stats->mv_count;
901     fps.MVc = (double)stats->sum_mvc / stats->mv_count;
902     fps.mvc_abs = (double)stats->sum_mvc_abs / stats->mv_count;
903     fps.MVrv = ((double)stats->sum_mvrs -
904                 ((double)stats->sum_mvr * stats->sum_mvr / stats->mv_count)) /
905                stats->mv_count;
906     fps.MVcv = ((double)stats->sum_mvcs -
907                 ((double)stats->sum_mvc * stats->sum_mvc / stats->mv_count)) /
908                stats->mv_count;
909     fps.mv_in_out_count = (double)stats->sum_in_vectors / (stats->mv_count * 2);
910     fps.new_mv_count = stats->new_mv_count;
911     fps.pcnt_motion = (double)stats->mv_count / num_mbs;
912   } else {
913     fps.MVr = 0.0;
914     fps.mvr_abs = 0.0;
915     fps.MVc = 0.0;
916     fps.mvc_abs = 0.0;
917     fps.MVrv = 0.0;
918     fps.MVcv = 0.0;
919     fps.mv_in_out_count = 0.0;
920     fps.new_mv_count = 0.0;
921     fps.pcnt_motion = 0.0;
922   }
923 
924   // TODO(paulwilkins):  Handle the case when duration is set to 0, or
925   // something less than the full time between subsequent values of
926   // cpi->source_time_stamp.
927   fps.duration = (double)ts_duration;
928 
929   normalize_firstpass_stats(&fps, num_mbs_16X16, cm->width, cm->height);
930 
931   // We will store the stats inside the persistent twopass struct (and NOT the
932   // local variable 'fps'), and then cpi->output_pkt_list will point to it.
933   *this_frame_stats = fps;
934   if (!cpi->ppi->lap_enabled) {
935     output_stats(this_frame_stats, cpi->ppi->output_pkt_list);
936   } else {
937     av1_firstpass_info_push(&twopass->firstpass_info, this_frame_stats);
938   }
939   if (cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL) {
940     av1_accumulate_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats, &fps);
941   }
942   twopass->stats_buf_ctx->stats_in_end++;
943   // When ducky encode is on, we always use linear buffer for stats_buf_ctx.
944   if (cpi->use_ducky_encode == 0) {
945     // TODO(angiebird): Figure out why first pass uses circular buffer.
946     /* In the case of two pass, first pass uses it as a circular buffer,
947      * when LAP is enabled it is used as a linear buffer*/
948     if ((cpi->oxcf.pass == AOM_RC_FIRST_PASS) &&
949         (twopass->stats_buf_ctx->stats_in_end >=
950          twopass->stats_buf_ctx->stats_in_buf_end)) {
951       twopass->stats_buf_ctx->stats_in_end =
952           twopass->stats_buf_ctx->stats_in_start;
953     }
954   }
955 }
956 
print_reconstruction_frame(const YV12_BUFFER_CONFIG * const last_frame,int frame_number,int do_print)957 static void print_reconstruction_frame(
958     const YV12_BUFFER_CONFIG *const last_frame, int frame_number,
959     int do_print) {
960   if (!do_print) return;
961 
962   char filename[512];
963   FILE *recon_file;
964   snprintf(filename, sizeof(filename), "enc%04d.yuv", frame_number);
965 
966   if (frame_number == 0) {
967     recon_file = fopen(filename, "wb");
968   } else {
969     recon_file = fopen(filename, "ab");
970   }
971 
972   fwrite(last_frame->buffer_alloc, last_frame->frame_size, 1, recon_file);
973   fclose(recon_file);
974 }
975 
accumulate_frame_stats(FRAME_STATS * mb_stats,int mb_rows,int mb_cols)976 static FRAME_STATS accumulate_frame_stats(FRAME_STATS *mb_stats, int mb_rows,
977                                           int mb_cols) {
978   FRAME_STATS stats = { 0 };
979   int i, j;
980 
981   stats.image_data_start_row = INVALID_ROW;
982   for (j = 0; j < mb_rows; j++) {
983     for (i = 0; i < mb_cols; i++) {
984       FRAME_STATS mb_stat = mb_stats[j * mb_cols + i];
985       stats.brightness_factor += mb_stat.brightness_factor;
986       stats.coded_error += mb_stat.coded_error;
987       stats.frame_avg_wavelet_energy += mb_stat.frame_avg_wavelet_energy;
988       if (stats.image_data_start_row == INVALID_ROW &&
989           mb_stat.image_data_start_row != INVALID_ROW) {
990         stats.image_data_start_row = mb_stat.image_data_start_row;
991       }
992       stats.inter_count += mb_stat.inter_count;
993       stats.intra_error += mb_stat.intra_error;
994       stats.intra_factor += mb_stat.intra_factor;
995       stats.intra_skip_count += mb_stat.intra_skip_count;
996       stats.mv_count += mb_stat.mv_count;
997       stats.neutral_count += mb_stat.neutral_count;
998       stats.new_mv_count += mb_stat.new_mv_count;
999       stats.second_ref_count += mb_stat.second_ref_count;
1000       stats.sr_coded_error += mb_stat.sr_coded_error;
1001       stats.sum_in_vectors += mb_stat.sum_in_vectors;
1002       stats.sum_mvc += mb_stat.sum_mvc;
1003       stats.sum_mvc_abs += mb_stat.sum_mvc_abs;
1004       stats.sum_mvcs += mb_stat.sum_mvcs;
1005       stats.sum_mvr += mb_stat.sum_mvr;
1006       stats.sum_mvr_abs += mb_stat.sum_mvr_abs;
1007       stats.sum_mvrs += mb_stat.sum_mvrs;
1008     }
1009   }
1010   return stats;
1011 }
1012 
setup_firstpass_data(AV1_COMMON * const cm,FirstPassData * firstpass_data,const int unit_rows,const int unit_cols)1013 static void setup_firstpass_data(AV1_COMMON *const cm,
1014                                  FirstPassData *firstpass_data,
1015                                  const int unit_rows, const int unit_cols) {
1016   CHECK_MEM_ERROR(cm, firstpass_data->raw_motion_err_list,
1017                   aom_calloc(unit_rows * unit_cols,
1018                              sizeof(*firstpass_data->raw_motion_err_list)));
1019   CHECK_MEM_ERROR(
1020       cm, firstpass_data->mb_stats,
1021       aom_calloc(unit_rows * unit_cols, sizeof(*firstpass_data->mb_stats)));
1022   for (int j = 0; j < unit_rows; j++) {
1023     for (int i = 0; i < unit_cols; i++) {
1024       firstpass_data->mb_stats[j * unit_cols + i].image_data_start_row =
1025           INVALID_ROW;
1026     }
1027   }
1028 }
1029 
free_firstpass_data(FirstPassData * firstpass_data)1030 static void free_firstpass_data(FirstPassData *firstpass_data) {
1031   aom_free(firstpass_data->raw_motion_err_list);
1032   aom_free(firstpass_data->mb_stats);
1033 }
1034 
av1_get_unit_rows_in_tile(const TileInfo * tile,const BLOCK_SIZE fp_block_size)1035 int av1_get_unit_rows_in_tile(const TileInfo *tile,
1036                               const BLOCK_SIZE fp_block_size) {
1037   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1038   const int mi_rows = tile->mi_row_end - tile->mi_row_start;
1039   const int unit_rows = CEIL_POWER_OF_TWO(mi_rows, unit_height_log2);
1040 
1041   return unit_rows;
1042 }
1043 
av1_get_unit_cols_in_tile(const TileInfo * tile,const BLOCK_SIZE fp_block_size)1044 int av1_get_unit_cols_in_tile(const TileInfo *tile,
1045                               const BLOCK_SIZE fp_block_size) {
1046   const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
1047   const int mi_cols = tile->mi_col_end - tile->mi_col_start;
1048   const int unit_cols = CEIL_POWER_OF_TWO(mi_cols, unit_width_log2);
1049 
1050   return unit_cols;
1051 }
1052 
1053 #define FIRST_PASS_ALT_REF_DISTANCE 16
first_pass_tile(AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,const BLOCK_SIZE fp_block_size)1054 static void first_pass_tile(AV1_COMP *cpi, ThreadData *td,
1055                             TileDataEnc *tile_data,
1056                             const BLOCK_SIZE fp_block_size) {
1057   TileInfo *tile = &tile_data->tile_info;
1058   const int unit_height = mi_size_high[fp_block_size];
1059   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1060   for (int mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
1061        mi_row += unit_height) {
1062     av1_first_pass_row(cpi, td, tile_data, mi_row >> unit_height_log2,
1063                        fp_block_size);
1064   }
1065 }
1066 
first_pass_tiles(AV1_COMP * cpi,const BLOCK_SIZE fp_block_size)1067 static void first_pass_tiles(AV1_COMP *cpi, const BLOCK_SIZE fp_block_size) {
1068   AV1_COMMON *const cm = &cpi->common;
1069   const int tile_cols = cm->tiles.cols;
1070   const int tile_rows = cm->tiles.rows;
1071   const int num_planes = av1_num_planes(&cpi->common);
1072   for (int plane = 0; plane < num_planes; plane++) {
1073     const int subsampling_xy =
1074         plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
1075               : 0;
1076     const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
1077     CHECK_MEM_ERROR(
1078         cm, cpi->td.mb.plane[plane].src_diff,
1079         (int16_t *)aom_memalign(
1080             32, sizeof(*cpi->td.mb.plane[plane].src_diff) * sb_size));
1081   }
1082   for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
1083     for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
1084       TileDataEnc *const tile_data =
1085           &cpi->tile_data[tile_row * tile_cols + tile_col];
1086       first_pass_tile(cpi, &cpi->td, tile_data, fp_block_size);
1087     }
1088   }
1089   for (int plane = 0; plane < num_planes; plane++) {
1090     if (cpi->td.mb.plane[plane].src_diff) {
1091       aom_free(cpi->td.mb.plane[plane].src_diff);
1092       cpi->td.mb.plane[plane].src_diff = NULL;
1093     }
1094   }
1095 }
1096 
av1_first_pass_row(AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,const int unit_row,const BLOCK_SIZE fp_block_size)1097 void av1_first_pass_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
1098                         const int unit_row, const BLOCK_SIZE fp_block_size) {
1099   MACROBLOCK *const x = &td->mb;
1100   AV1_COMMON *const cm = &cpi->common;
1101   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1102   const SequenceHeader *const seq_params = cm->seq_params;
1103   const int num_planes = av1_num_planes(cm);
1104   MACROBLOCKD *const xd = &x->e_mbd;
1105   TileInfo *tile = &tile_data->tile_info;
1106   const int qindex = find_fp_qindex(seq_params->bit_depth);
1107   const int fp_block_size_width = block_size_high[fp_block_size];
1108   const int fp_block_size_height = block_size_wide[fp_block_size];
1109   const int unit_width = mi_size_wide[fp_block_size];
1110   const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
1111   const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1112   const int unit_cols = mi_params->mb_cols * 4 / unit_width;
1113   int raw_motion_err_counts = 0;
1114   int unit_row_in_tile = unit_row - (tile->mi_row_start >> unit_height_log2);
1115   int unit_col_start = tile->mi_col_start >> unit_width_log2;
1116   int unit_cols_in_tile = av1_get_unit_cols_in_tile(tile, fp_block_size);
1117   MultiThreadInfo *const mt_info = &cpi->mt_info;
1118   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1119   AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
1120 
1121   const YV12_BUFFER_CONFIG *const last_frame =
1122       get_ref_frame_yv12_buf(cm, LAST_FRAME);
1123   const YV12_BUFFER_CONFIG *golden_frame =
1124       get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
1125   YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;
1126 
1127   PICK_MODE_CONTEXT *ctx = td->firstpass_ctx;
1128   FRAME_STATS *mb_stats =
1129       cpi->firstpass_data.mb_stats + unit_row * unit_cols + unit_col_start;
1130   int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list +
1131                              unit_row * unit_cols + unit_col_start;
1132   MV *first_top_mv = &tile_data->firstpass_top_mv;
1133 
1134   for (int i = 0; i < num_planes; ++i) {
1135     x->plane[i].coeff = ctx->coeff[i];
1136     x->plane[i].qcoeff = ctx->qcoeff[i];
1137     x->plane[i].eobs = ctx->eobs[i];
1138     x->plane[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
1139     x->plane[i].dqcoeff = ctx->dqcoeff[i];
1140   }
1141 
1142   const int src_y_stride = cpi->source->y_stride;
1143   const int recon_y_stride = this_frame->y_stride;
1144   const int recon_uv_stride = this_frame->uv_stride;
1145   const int uv_mb_height =
1146       fp_block_size_height >> (this_frame->y_height > this_frame->uv_height);
1147 
1148   MV best_ref_mv = kZeroMv;
1149   MV last_mv;
1150 
1151   // Reset above block coeffs.
1152   xd->up_available = (unit_row_in_tile != 0);
1153   int recon_yoffset = (unit_row * recon_y_stride * fp_block_size_height) +
1154                       (unit_col_start * fp_block_size_width);
1155   int src_yoffset = (unit_row * src_y_stride * fp_block_size_height) +
1156                     (unit_col_start * fp_block_size_width);
1157   int recon_uvoffset = (unit_row * recon_uv_stride * uv_mb_height) +
1158                        (unit_col_start * uv_mb_height);
1159 
1160   // Set up limit values for motion vectors to prevent them extending
1161   // outside the UMV borders.
1162   av1_set_mv_row_limits(
1163       mi_params, &x->mv_limits, (unit_row << unit_height_log2),
1164       (fp_block_size_height >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels);
1165 
1166   av1_setup_src_planes(x, cpi->source, unit_row << unit_height_log2,
1167                        tile->mi_col_start, num_planes, fp_block_size);
1168 
1169   // Fix - zero the 16x16 block first. This ensures correct this_intra_error for
1170   // block sizes smaller than 16x16.
1171   av1_zero_array(x->plane[0].src_diff, 256);
1172 
1173   for (int unit_col_in_tile = 0; unit_col_in_tile < unit_cols_in_tile;
1174        unit_col_in_tile++) {
1175     const int unit_col = unit_col_start + unit_col_in_tile;
1176 
1177     enc_row_mt->sync_read_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile);
1178 
1179     if (unit_col_in_tile == 0) {
1180       last_mv = *first_top_mv;
1181     }
1182     int this_intra_error = firstpass_intra_prediction(
1183         cpi, td, this_frame, tile, unit_row, unit_col, recon_yoffset,
1184         recon_uvoffset, fp_block_size, qindex, mb_stats);
1185 
1186     if (!frame_is_intra_only(cm)) {
1187       const int this_inter_error = firstpass_inter_prediction(
1188           cpi, td, last_frame, golden_frame, unit_row, unit_col, recon_yoffset,
1189           recon_uvoffset, src_yoffset, fp_block_size, this_intra_error,
1190           raw_motion_err_counts, raw_motion_err_list, best_ref_mv, &best_ref_mv,
1191           &last_mv, mb_stats);
1192       if (unit_col_in_tile == 0) {
1193         *first_top_mv = last_mv;
1194       }
1195       mb_stats->coded_error += this_inter_error;
1196       ++raw_motion_err_counts;
1197     } else {
1198       mb_stats->sr_coded_error += this_intra_error;
1199       mb_stats->coded_error += this_intra_error;
1200     }
1201 
1202     // Adjust to the next column of MBs.
1203     x->plane[0].src.buf += fp_block_size_width;
1204     if (num_planes > 1) {
1205       x->plane[1].src.buf += uv_mb_height;
1206       x->plane[2].src.buf += uv_mb_height;
1207     }
1208 
1209     recon_yoffset += fp_block_size_width;
1210     src_yoffset += fp_block_size_width;
1211     recon_uvoffset += uv_mb_height;
1212     mb_stats++;
1213 
1214     enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile,
1215                                unit_cols_in_tile);
1216   }
1217 }
1218 
av1_noop_first_pass_frame(AV1_COMP * cpi,const int64_t ts_duration)1219 void av1_noop_first_pass_frame(AV1_COMP *cpi, const int64_t ts_duration) {
1220   AV1_COMMON *const cm = &cpi->common;
1221   CurrentFrame *const current_frame = &cm->current_frame;
1222   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1223   int max_mb_rows = mi_params->mb_rows;
1224   int max_mb_cols = mi_params->mb_cols;
1225   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
1226     int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
1227     max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
1228   }
1229   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
1230     int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
1231     max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
1232   }
1233   const int unit_rows = get_unit_rows(BLOCK_16X16, max_mb_rows);
1234   const int unit_cols = get_unit_cols(BLOCK_16X16, max_mb_cols);
1235   setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
1236   FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;
1237   FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
1238   free_firstpass_data(&cpi->firstpass_data);
1239   update_firstpass_stats(cpi, &stats, 1.0, current_frame->frame_number,
1240                          ts_duration, BLOCK_16X16);
1241 }
1242 
av1_first_pass(AV1_COMP * cpi,const int64_t ts_duration)1243 void av1_first_pass(AV1_COMP *cpi, const int64_t ts_duration) {
1244   MACROBLOCK *const x = &cpi->td.mb;
1245   AV1_COMMON *const cm = &cpi->common;
1246   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1247   CurrentFrame *const current_frame = &cm->current_frame;
1248   const SequenceHeader *const seq_params = cm->seq_params;
1249   const int num_planes = av1_num_planes(cm);
1250   MACROBLOCKD *const xd = &x->e_mbd;
1251   const int qindex = find_fp_qindex(seq_params->bit_depth);
1252 
1253   // Detect if the key frame is screen content type.
1254   if (frame_is_intra_only(cm)) {
1255     FeatureFlags *const features = &cm->features;
1256     assert(cpi->source != NULL);
1257     xd->cur_buf = cpi->source;
1258     av1_set_screen_content_options(cpi, features);
1259   }
1260 
1261   // Prepare the speed features
1262   av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed);
1263 
1264   // Unit size for the first pass encoding.
1265   const BLOCK_SIZE fp_block_size =
1266       get_fp_block_size(cpi->is_screen_content_type);
1267 
1268   int max_mb_rows = mi_params->mb_rows;
1269   int max_mb_cols = mi_params->mb_cols;
1270   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
1271     int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
1272     max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
1273   }
1274   if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
1275     int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
1276     max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
1277   }
1278 
1279   // Number of rows in the unit size.
1280   // Note max_mb_rows and max_mb_cols are in the unit of 16x16.
1281   const int unit_rows = get_unit_rows(fp_block_size, max_mb_rows);
1282   const int unit_cols = get_unit_cols(fp_block_size, max_mb_cols);
1283 
1284   // Set fp_block_size, for the convenience of multi-thread usage.
1285   cpi->fp_block_size = fp_block_size;
1286 
1287   setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
1288   int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list;
1289   FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;
1290 
1291   // multi threading info
1292   MultiThreadInfo *const mt_info = &cpi->mt_info;
1293   AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1294 
1295   const int tile_cols = cm->tiles.cols;
1296   const int tile_rows = cm->tiles.rows;
1297   if (cpi->allocated_tiles < tile_cols * tile_rows) {
1298     av1_alloc_tile_data(cpi);
1299   }
1300 
1301   av1_init_tile_data(cpi);
1302 
1303   const YV12_BUFFER_CONFIG *const last_frame =
1304       get_ref_frame_yv12_buf(cm, LAST_FRAME);
1305   const YV12_BUFFER_CONFIG *golden_frame =
1306       get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
1307   YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;
1308   // First pass code requires valid last and new frame buffers.
1309   assert(this_frame != NULL);
1310   assert(frame_is_intra_only(cm) || (last_frame != NULL));
1311 
1312   av1_setup_frame_size(cpi);
1313   av1_set_mv_search_params(cpi);
1314 
1315   set_mi_offsets(mi_params, xd, 0, 0);
1316   xd->mi[0]->bsize = fp_block_size;
1317 
1318   // Do not use periodic key frames.
1319   cpi->rc.frames_to_key = INT_MAX;
1320 
1321   av1_set_quantizer(
1322       cm, cpi->oxcf.q_cfg.qm_minlevel, cpi->oxcf.q_cfg.qm_maxlevel, qindex,
1323       cpi->oxcf.q_cfg.enable_chroma_deltaq, cpi->oxcf.q_cfg.enable_hdr_deltaq);
1324 
1325   av1_setup_block_planes(xd, seq_params->subsampling_x,
1326                          seq_params->subsampling_y, num_planes);
1327 
1328   av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, fp_block_size);
1329   av1_setup_dst_planes(xd->plane, seq_params->sb_size, this_frame, 0, 0, 0,
1330                        num_planes);
1331 
1332   if (!frame_is_intra_only(cm)) {
1333     av1_setup_pre_planes(xd, 0, last_frame, 0, 0, NULL, num_planes);
1334   }
1335 
1336   set_mi_offsets(mi_params, xd, 0, 0);
1337 
1338   // Don't store luma on the fist pass since chroma is not computed
1339   xd->cfl.store_y = 0;
1340   av1_frame_init_quantizer(cpi);
1341 
1342   av1_default_coef_probs(cm);
1343   av1_init_mode_probs(cm->fc);
1344   av1_init_mv_probs(cm);
1345   av1_initialize_rd_consts(cpi);
1346 
1347   enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy;
1348   enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy;
1349 
1350   if (mt_info->num_workers > 1) {
1351     enc_row_mt->sync_read_ptr = av1_row_mt_sync_read;
1352     enc_row_mt->sync_write_ptr = av1_row_mt_sync_write;
1353     av1_fp_encode_tiles_row_mt(cpi);
1354   } else {
1355     first_pass_tiles(cpi, fp_block_size);
1356   }
1357 
1358   FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
1359   int total_raw_motion_err_count =
1360       frame_is_intra_only(cm) ? 0 : unit_rows * unit_cols;
1361   const double raw_err_stdev =
1362       raw_motion_error_stdev(raw_motion_err_list, total_raw_motion_err_count);
1363   free_firstpass_data(&cpi->firstpass_data);
1364 
1365   // Clamp the image start to rows/2. This number of rows is discarded top
1366   // and bottom as dead data so rows / 2 means the frame is blank.
1367   if ((stats.image_data_start_row > unit_rows / 2) ||
1368       (stats.image_data_start_row == INVALID_ROW)) {
1369     stats.image_data_start_row = unit_rows / 2;
1370   }
1371   // Exclude any image dead zone
1372   if (stats.image_data_start_row > 0) {
1373     stats.intra_skip_count =
1374         AOMMAX(0, stats.intra_skip_count -
1375                       (stats.image_data_start_row * unit_cols * 2));
1376   }
1377 
1378   TWO_PASS *twopass = &cpi->ppi->twopass;
1379   const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
1380                                 ? cpi->initial_mbs
1381                                 : mi_params->MBs;
1382   // Number of actual units used in the first pass, it can be other square
1383   // block sizes than 16X16.
1384   const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
1385   stats.intra_factor = stats.intra_factor / (double)num_mbs;
1386   stats.brightness_factor = stats.brightness_factor / (double)num_mbs;
1387   FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
1388   update_firstpass_stats(cpi, &stats, raw_err_stdev,
1389                          current_frame->frame_number, ts_duration,
1390                          fp_block_size);
1391 
1392   // Copy the previous Last Frame back into gf buffer if the prediction is good
1393   // enough... but also don't allow it to lag too far.
1394   if ((twopass->sr_update_lag > 3) ||
1395       ((current_frame->frame_number > 0) &&
1396        (this_frame_stats->pcnt_inter > 0.20) &&
1397        ((this_frame_stats->intra_error /
1398          DOUBLE_DIVIDE_CHECK(this_frame_stats->coded_error)) > 2.0))) {
1399     if (golden_frame != NULL) {
1400       assign_frame_buffer_p(
1401           &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
1402           cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
1403     }
1404     twopass->sr_update_lag = 1;
1405   } else {
1406     ++twopass->sr_update_lag;
1407   }
1408 
1409   aom_extend_frame_borders(this_frame, num_planes);
1410 
1411   // The frame we just compressed now becomes the last frame.
1412   assign_frame_buffer_p(
1413       &cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)], cm->cur_frame);
1414 
1415   // Special case for the first frame. Copy into the GF buffer as a second
1416   // reference.
1417   if (current_frame->frame_number == 0 &&
1418       get_ref_frame_map_idx(cm, GOLDEN_FRAME) != INVALID_IDX) {
1419     assign_frame_buffer_p(
1420         &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
1421         cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
1422   }
1423 
1424   print_reconstruction_frame(last_frame, current_frame->frame_number,
1425                              /*do_print=*/0);
1426 
1427   ++current_frame->frame_number;
1428 }
1429 
av1_firstpass_info_init(FIRSTPASS_INFO * firstpass_info,FIRSTPASS_STATS * ext_stats_buf,int ext_stats_buf_size)1430 aom_codec_err_t av1_firstpass_info_init(FIRSTPASS_INFO *firstpass_info,
1431                                         FIRSTPASS_STATS *ext_stats_buf,
1432                                         int ext_stats_buf_size) {
1433   assert(IMPLIES(ext_stats_buf == NULL, ext_stats_buf_size == 0));
1434   if (ext_stats_buf == NULL) {
1435     firstpass_info->stats_buf = firstpass_info->static_stats_buf;
1436     firstpass_info->stats_buf_size =
1437         sizeof(firstpass_info->static_stats_buf) /
1438         sizeof(firstpass_info->static_stats_buf[0]);
1439     firstpass_info->start_index = 0;
1440     firstpass_info->cur_index = 0;
1441     firstpass_info->stats_count = 0;
1442     firstpass_info->future_stats_count = 0;
1443     firstpass_info->past_stats_count = 0;
1444     av1_zero(firstpass_info->total_stats);
1445     if (ext_stats_buf_size == 0) {
1446       return AOM_CODEC_OK;
1447     } else {
1448       return AOM_CODEC_ERROR;
1449     }
1450   } else {
1451     firstpass_info->stats_buf = ext_stats_buf;
1452     firstpass_info->stats_buf_size = ext_stats_buf_size;
1453     firstpass_info->start_index = 0;
1454     firstpass_info->cur_index = 0;
1455     firstpass_info->stats_count = firstpass_info->stats_buf_size;
1456     firstpass_info->future_stats_count = firstpass_info->stats_count;
1457     firstpass_info->past_stats_count = 0;
1458     av1_zero(firstpass_info->total_stats);
1459     for (int i = 0; i < firstpass_info->stats_count; ++i) {
1460       av1_accumulate_stats(&firstpass_info->total_stats,
1461                            &firstpass_info->stats_buf[i]);
1462     }
1463   }
1464   return AOM_CODEC_OK;
1465 }
1466 
av1_firstpass_info_move_cur_index(FIRSTPASS_INFO * firstpass_info)1467 aom_codec_err_t av1_firstpass_info_move_cur_index(
1468     FIRSTPASS_INFO *firstpass_info) {
1469   assert(firstpass_info->future_stats_count +
1470              firstpass_info->past_stats_count ==
1471          firstpass_info->stats_count);
1472   if (firstpass_info->future_stats_count > 1) {
1473     firstpass_info->cur_index =
1474         (firstpass_info->cur_index + 1) % firstpass_info->stats_buf_size;
1475     --firstpass_info->future_stats_count;
1476     ++firstpass_info->past_stats_count;
1477     return AOM_CODEC_OK;
1478   } else {
1479     return AOM_CODEC_ERROR;
1480   }
1481 }
1482 
av1_firstpass_info_pop(FIRSTPASS_INFO * firstpass_info)1483 aom_codec_err_t av1_firstpass_info_pop(FIRSTPASS_INFO *firstpass_info) {
1484   if (firstpass_info->stats_count > 0 && firstpass_info->past_stats_count > 0) {
1485     const int next_start =
1486         (firstpass_info->start_index + 1) % firstpass_info->stats_buf_size;
1487     firstpass_info->start_index = next_start;
1488     --firstpass_info->stats_count;
1489     --firstpass_info->past_stats_count;
1490     return AOM_CODEC_OK;
1491   } else {
1492     return AOM_CODEC_ERROR;
1493   }
1494 }
1495 
av1_firstpass_info_move_cur_index_and_pop(FIRSTPASS_INFO * firstpass_info)1496 aom_codec_err_t av1_firstpass_info_move_cur_index_and_pop(
1497     FIRSTPASS_INFO *firstpass_info) {
1498   aom_codec_err_t ret = av1_firstpass_info_move_cur_index(firstpass_info);
1499   if (ret != AOM_CODEC_OK) return ret;
1500   ret = av1_firstpass_info_pop(firstpass_info);
1501   return ret;
1502 }
1503 
av1_firstpass_info_push(FIRSTPASS_INFO * firstpass_info,const FIRSTPASS_STATS * input_stats)1504 aom_codec_err_t av1_firstpass_info_push(FIRSTPASS_INFO *firstpass_info,
1505                                         const FIRSTPASS_STATS *input_stats) {
1506   if (firstpass_info->stats_count < firstpass_info->stats_buf_size) {
1507     const int next_index =
1508         (firstpass_info->start_index + firstpass_info->stats_count) %
1509         firstpass_info->stats_buf_size;
1510     firstpass_info->stats_buf[next_index] = *input_stats;
1511     ++firstpass_info->stats_count;
1512     ++firstpass_info->future_stats_count;
1513     av1_accumulate_stats(&firstpass_info->total_stats, input_stats);
1514     return AOM_CODEC_OK;
1515   } else {
1516     return AOM_CODEC_ERROR;
1517   }
1518 }
1519 
av1_firstpass_info_peek(const FIRSTPASS_INFO * firstpass_info,int offset_from_cur)1520 const FIRSTPASS_STATS *av1_firstpass_info_peek(
1521     const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) {
1522   if (offset_from_cur >= -firstpass_info->past_stats_count &&
1523       offset_from_cur < firstpass_info->future_stats_count) {
1524     const int index = (firstpass_info->cur_index + offset_from_cur) %
1525                       firstpass_info->stats_buf_size;
1526     return &firstpass_info->stats_buf[index];
1527   } else {
1528     return NULL;
1529   }
1530 }
1531 
av1_firstpass_info_future_count(const FIRSTPASS_INFO * firstpass_info,int offset_from_cur)1532 int av1_firstpass_info_future_count(const FIRSTPASS_INFO *firstpass_info,
1533                                     int offset_from_cur) {
1534   if (offset_from_cur < firstpass_info->future_stats_count) {
1535     return firstpass_info->future_stats_count - offset_from_cur;
1536   }
1537   return 0;
1538 }
1539 
av1_firstpass_info_past_count(const FIRSTPASS_INFO * firstpass_info,int offset_from_cur)1540 int av1_firstpass_info_past_count(const FIRSTPASS_INFO *firstpass_info,
1541                                   int offset_from_cur) {
1542   if (offset_from_cur >= -firstpass_info->past_stats_count) {
1543     return offset_from_cur + firstpass_info->past_stats_count;
1544   }
1545   return 0;
1546 }
1547