1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/warped_motion.h"
13 #include "av1/common/thread_common.h"
14
15 #include "av1/encoder/allintra_vis.h"
16 #include "av1/encoder/bitstream.h"
17 #include "av1/encoder/encodeframe.h"
18 #include "av1/encoder/encoder.h"
19 #include "av1/encoder/encoder_alloc.h"
20 #include "av1/encoder/encodeframe_utils.h"
21 #include "av1/encoder/ethread.h"
22 #if !CONFIG_REALTIME_ONLY
23 #include "av1/encoder/firstpass.h"
24 #endif
25 #include "av1/encoder/global_motion.h"
26 #include "av1/encoder/global_motion_facade.h"
27 #include "av1/encoder/intra_mode_search_utils.h"
28 #include "av1/encoder/picklpf.h"
29 #include "av1/encoder/rdopt.h"
30 #include "aom_dsp/aom_dsp_common.h"
31 #include "av1/encoder/temporal_filter.h"
32 #include "av1/encoder/tpl_model.h"
33
accumulate_rd_opt(ThreadData * td,ThreadData * td_t)34 static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
35 td->rd_counts.compound_ref_used_flag |=
36 td_t->rd_counts.compound_ref_used_flag;
37 td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
38
39 for (int i = 0; i < TX_SIZES_ALL; i++) {
40 for (int j = 0; j < TX_TYPES; j++)
41 td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
42 }
43
44 for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
45 for (int j = 0; j < 2; j++) {
46 td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
47 }
48 }
49
50 for (int i = 0; i < 2; i++) {
51 td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
52 }
53
54 td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
55 td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];
56
57 td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
58 }
59
update_delta_lf_for_row_mt(AV1_COMP * cpi)60 static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
61 AV1_COMMON *cm = &cpi->common;
62 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
63 const int mib_size = cm->seq_params->mib_size;
64 const int frame_lf_count =
65 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
66 for (int row = 0; row < cm->tiles.rows; row++) {
67 for (int col = 0; col < cm->tiles.cols; col++) {
68 TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
69 const TileInfo *const tile_info = &tile_data->tile_info;
70 for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
71 mi_row += mib_size) {
72 if (mi_row == tile_info->mi_row_start)
73 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
74 for (int mi_col = tile_info->mi_col_start;
75 mi_col < tile_info->mi_col_end; mi_col += mib_size) {
76 const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
77 MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
78 MB_MODE_INFO *mbmi = mi[0];
79 if (mbmi->skip_txfm == 1 &&
80 (mbmi->bsize == cm->seq_params->sb_size)) {
81 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
82 mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
83 mbmi->delta_lf_from_base = xd->delta_lf_from_base;
84 } else {
85 if (cm->delta_q_info.delta_lf_multi) {
86 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
87 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
88 } else {
89 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
90 }
91 }
92 }
93 }
94 }
95 }
96 }
97
av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)98 void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
99 int c) {
100 (void)row_mt_sync;
101 (void)r;
102 (void)c;
103 return;
104 }
105
av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)106 void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
107 int c, int cols) {
108 (void)row_mt_sync;
109 (void)r;
110 (void)c;
111 (void)cols;
112 return;
113 }
114
av1_row_mt_sync_read(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)115 void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
116 #if CONFIG_MULTITHREAD
117 const int nsync = row_mt_sync->sync_range;
118
119 if (r) {
120 pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
121 pthread_mutex_lock(mutex);
122
123 while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
124 row_mt_sync->intrabc_extra_top_right_sb_delay) {
125 pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
126 }
127 pthread_mutex_unlock(mutex);
128 }
129 #else
130 (void)row_mt_sync;
131 (void)r;
132 (void)c;
133 #endif // CONFIG_MULTITHREAD
134 }
135
av1_row_mt_sync_write(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)136 void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
137 int cols) {
138 #if CONFIG_MULTITHREAD
139 const int nsync = row_mt_sync->sync_range;
140 int cur;
141 // Only signal when there are enough encoded blocks for next row to run.
142 int sig = 1;
143
144 if (c < cols - 1) {
145 cur = c;
146 if (c % nsync) sig = 0;
147 } else {
148 cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
149 }
150
151 if (sig) {
152 pthread_mutex_lock(&row_mt_sync->mutex_[r]);
153
154 row_mt_sync->num_finished_cols[r] = cur;
155
156 pthread_cond_signal(&row_mt_sync->cond_[r]);
157 pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
158 }
159 #else
160 (void)row_mt_sync;
161 (void)r;
162 (void)c;
163 (void)cols;
164 #endif // CONFIG_MULTITHREAD
165 }
166
167 // Allocate memory for row synchronization
row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync * row_mt_sync,AV1_COMMON * cm,int rows)168 static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
169 AV1_COMMON *cm, int rows) {
170 #if CONFIG_MULTITHREAD
171 int i;
172
173 CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
174 aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
175 if (row_mt_sync->mutex_) {
176 for (i = 0; i < rows; ++i) {
177 pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
178 }
179 }
180
181 CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
182 aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
183 if (row_mt_sync->cond_) {
184 for (i = 0; i < rows; ++i) {
185 pthread_cond_init(&row_mt_sync->cond_[i], NULL);
186 }
187 }
188 #endif // CONFIG_MULTITHREAD
189
190 CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
191 aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
192
193 row_mt_sync->rows = rows;
194 // Set up nsync.
195 row_mt_sync->sync_range = 1;
196 }
197
198 // Deallocate row based multi-threading synchronization related mutex and data
row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync * row_mt_sync)199 static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
200 if (row_mt_sync != NULL) {
201 #if CONFIG_MULTITHREAD
202 int i;
203
204 if (row_mt_sync->mutex_ != NULL) {
205 for (i = 0; i < row_mt_sync->rows; ++i) {
206 pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
207 }
208 aom_free(row_mt_sync->mutex_);
209 }
210 if (row_mt_sync->cond_ != NULL) {
211 for (i = 0; i < row_mt_sync->rows; ++i) {
212 pthread_cond_destroy(&row_mt_sync->cond_[i]);
213 }
214 aom_free(row_mt_sync->cond_);
215 }
216 #endif // CONFIG_MULTITHREAD
217 aom_free(row_mt_sync->num_finished_cols);
218
219 // clear the structure as the source of this call may be dynamic change
220 // in tiles in which case this call will be followed by an _alloc()
221 // which may fail.
222 av1_zero(*row_mt_sync);
223 }
224 }
225
get_sb_rows_in_frame(AV1_COMMON * cm)226 static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) {
227 return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
228 cm->seq_params->mib_size_log2);
229 }
230
row_mt_mem_alloc(AV1_COMP * cpi,int max_rows,int max_cols,int alloc_row_ctx)231 static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
232 int alloc_row_ctx) {
233 struct AV1Common *cm = &cpi->common;
234 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
235 const int tile_cols = cm->tiles.cols;
236 const int tile_rows = cm->tiles.rows;
237 int tile_col, tile_row;
238
239 av1_row_mt_mem_dealloc(cpi);
240
241 // Allocate memory for row based multi-threading
242 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
243 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
244 int tile_index = tile_row * tile_cols + tile_col;
245 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
246
247 row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
248
249 this_tile->row_ctx = NULL;
250 if (alloc_row_ctx) {
251 assert(max_cols > 0);
252 const int num_row_ctx = AOMMAX(1, (max_cols - 1));
253 CHECK_MEM_ERROR(cm, this_tile->row_ctx,
254 (FRAME_CONTEXT *)aom_memalign(
255 16, num_row_ctx * sizeof(*this_tile->row_ctx)));
256 }
257 }
258 }
259 const int sb_rows = get_sb_rows_in_frame(cm);
260 CHECK_MEM_ERROR(
261 cm, enc_row_mt->num_tile_cols_done,
262 aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));
263
264 enc_row_mt->allocated_tile_cols = tile_cols;
265 enc_row_mt->allocated_tile_rows = tile_rows;
266 enc_row_mt->allocated_rows = max_rows;
267 enc_row_mt->allocated_cols = max_cols - 1;
268 enc_row_mt->allocated_sb_rows = sb_rows;
269 }
270
av1_row_mt_mem_dealloc(AV1_COMP * cpi)271 void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
272 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
273 const int tile_cols = enc_row_mt->allocated_tile_cols;
274 const int tile_rows = enc_row_mt->allocated_tile_rows;
275 int tile_col, tile_row;
276
277 // Free row based multi-threading sync memory
278 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
279 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
280 int tile_index = tile_row * tile_cols + tile_col;
281 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
282
283 row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
284
285 if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx);
286 }
287 }
288 aom_free(enc_row_mt->num_tile_cols_done);
289 enc_row_mt->num_tile_cols_done = NULL;
290 enc_row_mt->allocated_rows = 0;
291 enc_row_mt->allocated_cols = 0;
292 enc_row_mt->allocated_tile_cols = 0;
293 enc_row_mt->allocated_tile_rows = 0;
294 enc_row_mt->allocated_sb_rows = 0;
295 }
296
assign_tile_to_thread(int * thread_id_to_tile_id,int num_tiles,int num_workers)297 static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
298 int num_tiles, int num_workers) {
299 int tile_id = 0;
300 int i;
301
302 for (i = 0; i < num_workers; i++) {
303 thread_id_to_tile_id[i] = tile_id++;
304 if (tile_id == num_tiles) tile_id = 0;
305 }
306 }
307
get_next_job(TileDataEnc * const tile_data,int * current_mi_row,int mib_size)308 static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
309 int *current_mi_row, int mib_size) {
310 AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
311 const int mi_row_end = tile_data->tile_info.mi_row_end;
312
313 if (row_mt_sync->next_mi_row < mi_row_end) {
314 *current_mi_row = row_mt_sync->next_mi_row;
315 row_mt_sync->num_threads_working++;
316 row_mt_sync->next_mi_row += mib_size;
317 return 1;
318 }
319 return 0;
320 }
321
switch_tile_and_get_next_job(AV1_COMMON * const cm,TileDataEnc * const tile_data,int * cur_tile_id,int * current_mi_row,int * end_of_frame,int is_firstpass,const BLOCK_SIZE fp_block_size)322 static AOM_INLINE void switch_tile_and_get_next_job(
323 AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
324 int *current_mi_row, int *end_of_frame, int is_firstpass,
325 const BLOCK_SIZE fp_block_size) {
326 const int tile_cols = cm->tiles.cols;
327 const int tile_rows = cm->tiles.rows;
328
329 int tile_id = -1; // Stores the tile ID with minimum proc done
330 int max_mis_to_encode = 0;
331 int min_num_threads_working = INT_MAX;
332
333 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
334 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
335 int tile_index = tile_row * tile_cols + tile_col;
336 TileDataEnc *const this_tile = &tile_data[tile_index];
337 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
338
339 #if CONFIG_REALTIME_ONLY
340 int num_b_rows_in_tile =
341 av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
342 int num_b_cols_in_tile =
343 av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
344 #else
345 int num_b_rows_in_tile =
346 is_firstpass
347 ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
348 : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
349 int num_b_cols_in_tile =
350 is_firstpass
351 ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
352 : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
353 #endif
354 int theoretical_limit_on_threads =
355 AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
356 int num_threads_working = row_mt_sync->num_threads_working;
357
358 if (num_threads_working < theoretical_limit_on_threads) {
359 int num_mis_to_encode =
360 this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
361
362 // Tile to be processed by this thread is selected on the basis of
363 // availability of jobs:
364 // 1) If jobs are available, tile to be processed is chosen on the
365 // basis of minimum number of threads working for that tile. If two or
366 // more tiles have same number of threads working for them, then the
367 // tile with maximum number of jobs available will be chosen.
368 // 2) If no jobs are available, then end_of_frame is reached.
369 if (num_mis_to_encode > 0) {
370 if (num_threads_working < min_num_threads_working) {
371 min_num_threads_working = num_threads_working;
372 max_mis_to_encode = 0;
373 }
374 if (num_threads_working == min_num_threads_working &&
375 num_mis_to_encode > max_mis_to_encode) {
376 tile_id = tile_index;
377 max_mis_to_encode = num_mis_to_encode;
378 }
379 }
380 }
381 }
382 }
383 if (tile_id == -1) {
384 *end_of_frame = 1;
385 } else {
386 // Update the current tile id to the tile id that will be processed next,
387 // which will be the least processed tile.
388 *cur_tile_id = tile_id;
389 const int unit_height = mi_size_high[fp_block_size];
390 get_next_job(&tile_data[tile_id], current_mi_row,
391 is_firstpass ? unit_height : cm->seq_params->mib_size);
392 }
393 }
394
395 #if !CONFIG_REALTIME_ONLY
fp_enc_row_mt_worker_hook(void * arg1,void * unused)396 static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
397 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
398 AV1_COMP *const cpi = thread_data->cpi;
399 AV1_COMMON *const cm = &cpi->common;
400 int thread_id = thread_data->thread_id;
401 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
402 int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
403 #if CONFIG_MULTITHREAD
404 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
405 #endif
406 (void)unused;
407
408 assert(cur_tile_id != -1);
409
410 const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
411 const int unit_height = mi_size_high[fp_block_size];
412 int end_of_frame = 0;
413 while (1) {
414 int current_mi_row = -1;
415 #if CONFIG_MULTITHREAD
416 pthread_mutex_lock(enc_row_mt_mutex_);
417 #endif
418 if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row,
419 unit_height)) {
420 // No jobs are available for the current tile. Query for the status of
421 // other tiles and get the next job if available
422 switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
423 ¤t_mi_row, &end_of_frame, 1,
424 fp_block_size);
425 }
426 #if CONFIG_MULTITHREAD
427 pthread_mutex_unlock(enc_row_mt_mutex_);
428 #endif
429 if (end_of_frame == 1) break;
430
431 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
432 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
433 ThreadData *td = thread_data->td;
434
435 assert(current_mi_row != -1 &&
436 current_mi_row < this_tile->tile_info.mi_row_end);
437
438 const int unit_height_log2 = mi_size_high_log2[fp_block_size];
439 av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
440 fp_block_size);
441 #if CONFIG_MULTITHREAD
442 pthread_mutex_lock(enc_row_mt_mutex_);
443 #endif
444 row_mt_sync->num_threads_working--;
445 #if CONFIG_MULTITHREAD
446 pthread_mutex_unlock(enc_row_mt_mutex_);
447 #endif
448 }
449
450 return 1;
451 }
452 #endif
453
launch_loop_filter_rows(AV1_COMMON * cm,EncWorkerData * thread_data,AV1EncRowMultiThreadInfo * enc_row_mt,int mib_size_log2)454 static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
455 AV1EncRowMultiThreadInfo *enc_row_mt,
456 int mib_size_log2) {
457 AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
458 const int sb_rows = get_sb_rows_in_frame(cm);
459 AV1LfMTInfo *cur_job_info;
460 (void)enc_row_mt;
461 #if CONFIG_MULTITHREAD
462 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
463 #endif
464
465 while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
466 LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
467 const int lpf_opt_level = cur_job_info->lpf_opt_level;
468 (void)sb_rows;
469 #if CONFIG_MULTITHREAD
470 const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
471 const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
472 // Wait for current and next superblock row to finish encoding.
473 pthread_mutex_lock(enc_row_mt_mutex_);
474 while (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
475 enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols) {
476 pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
477 }
478 pthread_mutex_unlock(enc_row_mt_mutex_);
479 #endif
480 av1_thread_loop_filter_rows(
481 lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
482 cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
483 lpf_opt_level, lf_sync, lf_data->params_buf, lf_data->tx_buf,
484 mib_size_log2);
485 }
486 }
487
enc_row_mt_worker_hook(void * arg1,void * unused)488 static int enc_row_mt_worker_hook(void *arg1, void *unused) {
489 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
490 AV1_COMP *const cpi = thread_data->cpi;
491 AV1_COMMON *const cm = &cpi->common;
492 int thread_id = thread_data->thread_id;
493 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
494 int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
495 const int mib_size_log2 = cm->seq_params->mib_size_log2;
496 #if CONFIG_MULTITHREAD
497 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
498 #endif
499 (void)unused;
500 // Preallocate the pc_tree for realtime coding to reduce the cost of memory
501 // allocation.
502 thread_data->td->rt_pc_root =
503 cpi->sf.rt_sf.use_nonrd_pick_mode
504 ? av1_alloc_pc_tree_node(cm->seq_params->sb_size)
505 : NULL;
506
507 assert(cur_tile_id != -1);
508
509 const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
510 int end_of_frame = 0;
511
512 // When master thread does not have a valid job to process, xd->tile_ctx
513 // is not set and it contains NULL pointer. This can result in NULL pointer
514 // access violation if accessed beyond the encode stage. Hence, updating
515 // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
516 // context to avoid NULL pointer access in subsequent stages.
517 thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
518 while (1) {
519 int current_mi_row = -1;
520 #if CONFIG_MULTITHREAD
521 pthread_mutex_lock(enc_row_mt_mutex_);
522 #endif
523 if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row,
524 cm->seq_params->mib_size)) {
525 // No jobs are available for the current tile. Query for the status of
526 // other tiles and get the next job if available
527 switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
528 ¤t_mi_row, &end_of_frame, 0,
529 fp_block_size);
530 }
531 #if CONFIG_MULTITHREAD
532 pthread_mutex_unlock(enc_row_mt_mutex_);
533 #endif
534 if (end_of_frame == 1) break;
535
536 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
537 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
538 const TileInfo *const tile_info = &this_tile->tile_info;
539 const int tile_row = tile_info->tile_row;
540 const int tile_col = tile_info->tile_col;
541 ThreadData *td = thread_data->td;
542 const int sb_row = current_mi_row >> mib_size_log2;
543
544 assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
545
546 td->mb.e_mbd.tile_ctx = td->tctx;
547 td->mb.tile_pb_ctx = &this_tile->tctx;
548 td->abs_sum_level = 0;
549
550 if (this_tile->allow_update_cdf) {
551 td->mb.row_ctx = this_tile->row_ctx;
552 if (current_mi_row == tile_info->mi_row_start)
553 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
554 } else {
555 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
556 }
557
558 av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
559 &td->mb.e_mbd);
560
561 cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
562 if (td->mb.txfm_search_info.mb_rd_record != NULL) {
563 av1_crc32c_calculator_init(
564 &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
565 }
566
567 av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
568 #if CONFIG_MULTITHREAD
569 pthread_mutex_lock(enc_row_mt_mutex_);
570 #endif
571 this_tile->abs_sum_level += td->abs_sum_level;
572 row_mt_sync->num_threads_working--;
573 enc_row_mt->num_tile_cols_done[sb_row]++;
574 #if CONFIG_MULTITHREAD
575 pthread_cond_broadcast(enc_row_mt->cond_);
576 pthread_mutex_unlock(enc_row_mt_mutex_);
577 #endif
578 }
579 if (cpi->mt_info.pipeline_lpf_mt_with_enc &&
580 (cm->lf.filter_level[PLANE_TYPE_Y] ||
581 cm->lf.filter_level[PLANE_TYPE_UV])) {
582 // Loop-filter a superblock row if encoding of the current and next
583 // superblock row is complete.
584 // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
585 // encoding and loop filter stage.
586 launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
587 }
588 av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0,
589 0);
590 return 1;
591 }
592
enc_worker_hook(void * arg1,void * unused)593 static int enc_worker_hook(void *arg1, void *unused) {
594 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
595 AV1_COMP *const cpi = thread_data->cpi;
596 const AV1_COMMON *const cm = &cpi->common;
597 const int tile_cols = cm->tiles.cols;
598 const int tile_rows = cm->tiles.rows;
599 int t;
600
601 (void)unused;
602 // Preallocate the pc_tree for realtime coding to reduce the cost of memory
603 // allocation.
604 thread_data->td->rt_pc_root =
605 cpi->sf.rt_sf.use_nonrd_pick_mode
606 ? av1_alloc_pc_tree_node(cm->seq_params->sb_size)
607 : NULL;
608
609 for (t = thread_data->start; t < tile_rows * tile_cols;
610 t += cpi->mt_info.num_workers) {
611 int tile_row = t / tile_cols;
612 int tile_col = t % tile_cols;
613
614 TileDataEnc *const this_tile =
615 &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
616 thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
617 thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
618 av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
619 }
620
621 av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0,
622 0);
623
624 return 1;
625 }
626
av1_init_frame_mt(AV1_PRIMARY * ppi,AV1_COMP * cpi)627 void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
628 cpi->mt_info.workers = ppi->p_mt_info.workers;
629 cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
630 cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
631 int i;
632 for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
633 cpi->mt_info.num_mod_workers[i] =
634 AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
635 }
636 }
637
av1_init_cdef_worker(AV1_COMP * cpi)638 void av1_init_cdef_worker(AV1_COMP *cpi) {
639 // The allocation is done only for level 0 parallel frames. No change
640 // in config is supported in the middle of a parallel encode set, since the
641 // rest of the MT modules also do not support dynamic change of config.
642 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
643 PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
644 int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);
645
646 av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
647 &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
648 cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
649 }
650
651 #if !CONFIG_REALTIME_ONLY
av1_init_lr_mt_buffers(AV1_COMP * cpi)652 void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
653 AV1_COMMON *const cm = &cpi->common;
654 AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
655 if (lr_sync->sync_range) {
656 int num_lr_workers =
657 av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
658 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
659 return;
660 lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
661 lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
662 }
663 }
664 #endif
665
666 #if CONFIG_MULTITHREAD
av1_init_mt_sync(AV1_COMP * cpi,int is_first_pass)667 void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
668 AV1_COMMON *const cm = &cpi->common;
669 MultiThreadInfo *const mt_info = &cpi->mt_info;
670
671 // Initialize enc row MT object.
672 if (is_first_pass || cpi->oxcf.row_mt == 1) {
673 AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
674 if (enc_row_mt->mutex_ == NULL) {
675 CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
676 aom_malloc(sizeof(*(enc_row_mt->mutex_))));
677 if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
678 }
679 if (enc_row_mt->cond_ == NULL) {
680 CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
681 aom_malloc(sizeof(*(enc_row_mt->cond_))));
682 if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
683 }
684 }
685
686 if (!is_first_pass) {
687 // Initialize global motion MT object.
688 AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
689 if (gm_sync->mutex_ == NULL) {
690 CHECK_MEM_ERROR(cm, gm_sync->mutex_,
691 aom_malloc(sizeof(*(gm_sync->mutex_))));
692 if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
693 }
694 #if !CONFIG_REALTIME_ONLY
695 // Initialize temporal filtering MT object.
696 AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
697 if (tf_sync->mutex_ == NULL) {
698 CHECK_MEM_ERROR(cm, tf_sync->mutex_,
699 aom_malloc(sizeof(*tf_sync->mutex_)));
700 if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
701 }
702 #endif // !CONFIG_REALTIME_ONLY
703 // Initialize CDEF MT object.
704 AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
705 if (cdef_sync->mutex_ == NULL) {
706 CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
707 aom_malloc(sizeof(*(cdef_sync->mutex_))));
708 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
709 }
710
711 // Initialize loop filter MT object.
712 AV1LfSync *lf_sync = &mt_info->lf_row_sync;
713 // Number of superblock rows
714 const int sb_rows =
715 CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
716 PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
717 int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);
718
719 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
720 num_lf_workers > lf_sync->num_workers) {
721 av1_loop_filter_dealloc(lf_sync);
722 av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
723 }
724
725 #if !CONFIG_REALTIME_ONLY
726 if (is_restoration_used(cm)) {
727 // Initialize loop restoration MT object.
728 AV1LrSync *lr_sync = &mt_info->lr_row_sync;
729 int rst_unit_size;
730 if (cm->width * cm->height > 352 * 288)
731 rst_unit_size = RESTORATION_UNITSIZE_MAX;
732 else
733 rst_unit_size = (RESTORATION_UNITSIZE_MAX >> 1);
734 int num_rows_lr = av1_lr_count_units_in_tile(rst_unit_size, cm->height);
735 int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
736 if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
737 num_lr_workers > lr_sync->num_workers ||
738 MAX_MB_PLANE > lr_sync->num_planes) {
739 av1_loop_restoration_dealloc(lr_sync, num_lr_workers);
740 av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
741 MAX_MB_PLANE, cm->width);
742 }
743 }
744 #endif
745
746 // Initialization of pack bitstream MT object.
747 AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
748 if (pack_bs_sync->mutex_ == NULL) {
749 CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
750 aom_malloc(sizeof(*pack_bs_sync->mutex_)));
751 if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
752 }
753 }
754 }
755 #endif // CONFIG_MULTITHREAD
756
757 // Computes the number of workers to be considered while allocating memory for a
758 // multi-threaded module under FPMT.
av1_get_num_mod_workers_for_alloc(PrimaryMultiThreadInfo * const p_mt_info,MULTI_THREADED_MODULES mod_name)759 int av1_get_num_mod_workers_for_alloc(PrimaryMultiThreadInfo *const p_mt_info,
760 MULTI_THREADED_MODULES mod_name) {
761 int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
762 if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
763 // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
764 // As frame parallel jobs will only perform multi-threading for the encode
765 // stage, we can limit the allocations according to num_enc_workers per
766 // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
767 num_mod_workers = p_mt_info->num_workers;
768 }
769 return num_mod_workers;
770 }
771
av1_init_tile_thread_data(AV1_PRIMARY * ppi,int is_first_pass)772 void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
773 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
774
775 assert(p_mt_info->workers != NULL);
776 assert(p_mt_info->tile_thr_data != NULL);
777
778 int num_workers = p_mt_info->num_workers;
779 int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
780 for (int i = num_workers - 1; i >= 0; i--) {
781 EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
782
783 if (i > 0) {
784 // Allocate thread data.
785 AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td,
786 aom_memalign(32, sizeof(*thread_data->td)));
787 av1_zero(*thread_data->td);
788 thread_data->original_td = thread_data->td;
789
790 // Set up shared coeff buffers.
791 av1_setup_shared_coeff_buffer(
792 &ppi->seq_params, &thread_data->td->shared_coeff_buf, &ppi->error);
793 AOM_CHECK_MEM_ERROR(
794 &ppi->error, thread_data->td->tmp_conv_dst,
795 aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
796 sizeof(*thread_data->td->tmp_conv_dst)));
797
798 if (i < p_mt_info->num_mod_workers[MOD_FP]) {
799 // Set up firstpass PICK_MODE_CONTEXT.
800 thread_data->td->firstpass_ctx = av1_alloc_pmc(
801 ppi->cpi, BLOCK_16X16, &thread_data->td->shared_coeff_buf);
802 }
803
804 if (!is_first_pass && i < num_enc_workers) {
805 // Set up sms_tree.
806 av1_setup_sms_tree(ppi->cpi, thread_data->td);
807
808 for (int x = 0; x < 2; x++)
809 for (int y = 0; y < 2; y++)
810 AOM_CHECK_MEM_ERROR(
811 &ppi->error, thread_data->td->hash_value_buffer[x][y],
812 (uint32_t *)aom_malloc(
813 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
814 sizeof(*thread_data->td->hash_value_buffer[0][0])));
815
816 // Allocate frame counters in thread data.
817 AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td->counts,
818 aom_calloc(1, sizeof(*thread_data->td->counts)));
819
820 // Allocate buffers used by palette coding mode.
821 AOM_CHECK_MEM_ERROR(
822 &ppi->error, thread_data->td->palette_buffer,
823 aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));
824
825 // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
826 // used in inter frames to store intermediate inter mode prediction
827 // results and are not required for allintra encoding mode. Hence, the
828 // memory allocations for these buffers are avoided for allintra
829 // encoding mode.
830 if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
831 alloc_obmc_buffers(&thread_data->td->obmc_buffer, &ppi->error);
832
833 alloc_compound_type_rd_buffers(&ppi->error,
834 &thread_data->td->comp_rd_buffer);
835
836 for (int j = 0; j < 2; ++j) {
837 AOM_CHECK_MEM_ERROR(
838 &ppi->error, thread_data->td->tmp_pred_bufs[j],
839 aom_memalign(32,
840 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
841 sizeof(*thread_data->td->tmp_pred_bufs[j])));
842 }
843 }
844
845 if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
846 const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
847 AOM_CHECK_MEM_ERROR(
848 &ppi->error, thread_data->td->pixel_gradient_info,
849 aom_malloc(sizeof(*thread_data->td->pixel_gradient_info) *
850 plane_types * MAX_SB_SQUARE));
851 }
852
853 if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
854 const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
855 const int mi_count_in_sb =
856 mi_size_wide[sb_size] * mi_size_high[sb_size];
857
858 AOM_CHECK_MEM_ERROR(
859 &ppi->error, thread_data->td->src_var_info_of_4x4_sub_blocks,
860 aom_malloc(
861 sizeof(*thread_data->td->src_var_info_of_4x4_sub_blocks) *
862 mi_count_in_sb));
863 }
864
865 if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
866 const int num_64x64_blocks =
867 (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
868 AOM_CHECK_MEM_ERROR(
869 &ppi->error, thread_data->td->vt64x64,
870 aom_malloc(sizeof(*thread_data->td->vt64x64) * num_64x64_blocks));
871 }
872 }
873 }
874
875 if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
876 if (i == 0) {
877 for (int j = 0; j < ppi->num_fp_contexts; j++) {
878 AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
879 (FRAME_CONTEXT *)aom_memalign(
880 16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
881 }
882 } else {
883 AOM_CHECK_MEM_ERROR(
884 &ppi->error, thread_data->td->tctx,
885 (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
886 }
887 }
888 }
889 }
890
av1_create_workers(AV1_PRIMARY * ppi,int num_workers)891 void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
892 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
893 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
894
895 AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
896 aom_malloc(num_workers * sizeof(*p_mt_info->workers)));
897
898 AOM_CHECK_MEM_ERROR(
899 &ppi->error, p_mt_info->tile_thr_data,
900 aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));
901
902 for (int i = num_workers - 1; i >= 0; i--) {
903 AVxWorker *const worker = &p_mt_info->workers[i];
904 EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
905
906 winterface->init(worker);
907 worker->thread_name = "aom enc worker";
908
909 thread_data->thread_id = i;
910 // Set the starting tile for each thread.
911 thread_data->start = i;
912
913 if (i > 0) {
914 // Create threads
915 if (!winterface->reset(worker))
916 aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
917 "Tile encoder thread creation failed");
918 }
919 winterface->sync(worker);
920
921 ++p_mt_info->num_workers;
922 }
923 }
924
925 // This function returns 1 if frame parallel encode is supported for
926 // the current configuration. Returns 0 otherwise.
is_fpmt_config(AV1_PRIMARY * ppi,AV1EncoderConfig * oxcf)927 static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
928 // FPMT is enabled for AOM_Q and AOM_VBR.
929 // TODO(Tarun): Test and enable resize config.
930 if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
931 return 0;
932 }
933 if (ppi->use_svc) {
934 return 0;
935 }
936 if (oxcf->tile_cfg.enable_large_scale_tile) {
937 return 0;
938 }
939 if (oxcf->dec_model_cfg.timing_info_present) {
940 return 0;
941 }
942 if (oxcf->mode != GOOD) {
943 return 0;
944 }
945 if (oxcf->tool_cfg.error_resilient_mode) {
946 return 0;
947 }
948 if (oxcf->resize_cfg.resize_mode) {
949 return 0;
950 }
951 if (oxcf->pass != AOM_RC_SECOND_PASS) {
952 return 0;
953 }
954 if (oxcf->max_threads < 2) {
955 return 0;
956 }
957 if (!oxcf->fp_mt) {
958 return 0;
959 }
960
961 return 1;
962 }
963
av1_check_fpmt_config(AV1_PRIMARY * const ppi,AV1EncoderConfig * const oxcf)964 int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
965 AV1EncoderConfig *const oxcf) {
966 if (is_fpmt_config(ppi, oxcf)) return 1;
967 // Reset frame parallel configuration for unsupported config
968 if (ppi->num_fp_contexts > 1) {
969 for (int i = 1; i < ppi->num_fp_contexts; i++) {
970 // Release the previously-used frame-buffer
971 if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
972 --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
973 ppi->parallel_cpi[i]->common.cur_frame = NULL;
974 }
975 }
976
977 int cur_gf_index = ppi->cpi->gf_frame_index;
978 int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
979 av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
980 reset_size);
981 av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
982 av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
983 memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
984 sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
985 reset_size * REF_FRAMES);
986 memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
987 sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
988 ppi->num_fp_contexts = 1;
989 }
990 return 0;
991 }
992
993 // A large value for threads used to compute the max num_enc_workers
994 // possible for each resolution.
995 #define MAX_THREADS 100
996
997 // Computes the max number of enc workers possible for each resolution.
compute_max_num_enc_workers(CommonModeInfoParams * const mi_params,int mib_size_log2)998 static AOM_INLINE int compute_max_num_enc_workers(
999 CommonModeInfoParams *const mi_params, int mib_size_log2) {
1000 int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
1001 int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);
1002
1003 return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
1004 }
1005
1006 // Computes the number of frame parallel(fp) contexts to be created
1007 // based on the number of max_enc_workers.
av1_compute_num_fp_contexts(AV1_PRIMARY * ppi,AV1EncoderConfig * oxcf)1008 int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
1009 ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
1010 if (!av1_check_fpmt_config(ppi, oxcf)) {
1011 return 1;
1012 }
1013 int max_num_enc_workers = compute_max_num_enc_workers(
1014 &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
1015 // Scaling factors and rounding factors used to tune worker_per_frame
1016 // computation.
1017 int rounding_factor[2] = { 2, 4 };
1018 int scaling_factor[2] = { 4, 8 };
1019 int is_480p_or_lesser =
1020 AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
1021 int is_sb_64 = 0;
1022 if (ppi->cpi != NULL)
1023 is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
1024 // A parallel frame encode has at least 1/4th the
1025 // theoretical limit of max enc workers in default case. For resolutions
1026 // larger than 480p, if SB size is 64x64, optimal performance is obtained with
1027 // limit of 1/8.
1028 int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
1029 int workers_per_frame =
1030 AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
1031 scaling_factor[index]);
1032 int max_threads = oxcf->max_threads;
1033 int num_fp_contexts = max_threads / workers_per_frame;
1034 // Based on empirical results, FPMT gains with multi-tile are significant when
1035 // more parallel frames are available. Use FPMT with multi-tile encode only
1036 // when sufficient threads are available for parallel encode of
1037 // MAX_PARALLEL_FRAMES frames.
1038 if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
1039 if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
1040 }
1041
1042 num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
1043 // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
1044 num_fp_contexts = (ppi->num_fp_contexts == 1)
1045 ? num_fp_contexts
1046 : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
1047 if (num_fp_contexts > 1) {
1048 ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
1049 AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
1050 }
1051 return num_fp_contexts;
1052 }
1053
1054 // Computes the number of workers to process each of the parallel frames.
compute_num_workers_per_frame(const int num_workers,const int parallel_frame_count)1055 static AOM_INLINE int compute_num_workers_per_frame(
1056 const int num_workers, const int parallel_frame_count) {
1057 // Number of level 2 workers per frame context (floor division).
1058 int workers_per_frame = (num_workers / parallel_frame_count);
1059 return workers_per_frame;
1060 }
1061
1062 // Prepare level 1 workers. This function is only called for
1063 // parallel_frame_count > 1. This function populates the mt_info structure of
1064 // frame level contexts appropriately by dividing the total number of available
1065 // workers amongst the frames as level 2 workers. It also populates the hook and
1066 // data members of level 1 workers.
prepare_fpmt_workers(AV1_PRIMARY * ppi,AV1_COMP_DATA * first_cpi_data,AVxWorkerHook hook,int parallel_frame_count)1067 static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi,
1068 AV1_COMP_DATA *first_cpi_data,
1069 AVxWorkerHook hook,
1070 int parallel_frame_count) {
1071 assert(parallel_frame_count <= ppi->num_fp_contexts &&
1072 parallel_frame_count > 1);
1073
1074 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1075 int num_workers = p_mt_info->num_workers;
1076
1077 int frame_idx = 0;
1078 int i = 0;
1079 while (i < num_workers) {
1080 // Assign level 1 worker
1081 AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
1082 &p_mt_info->workers[i];
1083 AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1084 MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1085 AV1_COMMON *const cm = &cur_cpi->common;
1086 const int num_planes = av1_num_planes(cm);
1087
1088 // Assign start of level 2 worker pool
1089 mt_info->workers = &p_mt_info->workers[i];
1090 mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
1091 // Assign number of workers for each frame in the parallel encode set.
1092 mt_info->num_workers = compute_num_workers_per_frame(
1093 num_workers - i, parallel_frame_count - frame_idx);
1094 for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
1095 mt_info->num_mod_workers[j] =
1096 AOMMIN(mt_info->num_workers, ppi->p_mt_info.num_mod_workers[j]);
1097 }
1098 if (ppi->p_mt_info.cdef_worker != NULL) {
1099 mt_info->cdef_worker = &ppi->p_mt_info.cdef_worker[i];
1100
1101 // Back up the original cdef_worker pointers.
1102 mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
1103 for (int plane = 0; plane < num_planes; plane++)
1104 mt_info->restore_state_buf.cdef_colbuf[plane] =
1105 mt_info->cdef_worker->colbuf[plane];
1106 }
1107 #if !CONFIG_REALTIME_ONLY
1108 if (is_restoration_used(cm)) {
1109 // Back up the original LR buffers before update.
1110 int idx = i + mt_info->num_workers - 1;
1111 mt_info->restore_state_buf.rst_tmpbuf =
1112 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
1113 mt_info->restore_state_buf.rlbs =
1114 mt_info->lr_row_sync.lrworkerdata[idx].rlbs;
1115
1116 // Update LR buffers.
1117 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
1118 mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
1119 }
1120 #endif
1121
1122 // At this stage, the thread specific CDEF buffers for the current frame's
1123 // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
1124 // already been allocated across parallel frames.
1125 av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
1126 p_mt_info->num_workers, 0);
1127
1128 frame_worker->hook = hook;
1129 frame_worker->data1 = cur_cpi;
1130 frame_worker->data2 = (frame_idx == 0)
1131 ? first_cpi_data
1132 : &ppi->parallel_frames_data[frame_idx - 1];
1133 frame_idx++;
1134 i += mt_info->num_workers;
1135 }
1136 p_mt_info->p_num_workers = parallel_frame_count;
1137 }
1138
1139 // Launch level 1 workers to perform frame parallel encode.
launch_fpmt_workers(AV1_PRIMARY * ppi)1140 static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) {
1141 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1142 int num_workers = ppi->p_mt_info.p_num_workers;
1143
1144 for (int i = num_workers - 1; i >= 0; i--) {
1145 AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1146 if (i == 0)
1147 winterface->execute(worker);
1148 else
1149 winterface->launch(worker);
1150 }
1151 }
1152
1153 // Synchronize level 1 workers.
sync_fpmt_workers(AV1_PRIMARY * ppi)1154 static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi) {
1155 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1156 int num_workers = ppi->p_mt_info.p_num_workers;
1157 int had_error = 0;
1158 // Points to error in the earliest display order frame in the parallel set.
1159 const struct aom_internal_error_info *error;
1160
1161 // Encoding ends.
1162 for (int i = num_workers - 1; i >= 0; i--) {
1163 AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1164 if (!winterface->sync(worker)) {
1165 had_error = 1;
1166 error = ((AV1_COMP *)worker->data1)->common.error;
1167 }
1168 }
1169
1170 if (had_error)
1171 aom_internal_error(&ppi->error, error->error_code, "%s", error->detail);
1172 }
1173
1174 // Restore worker states after parallel encode.
restore_workers_after_fpmt(AV1_PRIMARY * ppi,int parallel_frame_count)1175 static AOM_INLINE void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
1176 int parallel_frame_count) {
1177 assert(parallel_frame_count <= ppi->num_fp_contexts &&
1178 parallel_frame_count > 1);
1179 (void)parallel_frame_count;
1180
1181 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1182 int num_workers = p_mt_info->num_workers;
1183
1184 int frame_idx = 0;
1185 int i = 0;
1186 while (i < num_workers) {
1187 AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1188 MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1189 const AV1_COMMON *const cm = &cur_cpi->common;
1190 const int num_planes = av1_num_planes(cm);
1191
1192 // Restore the original cdef_worker pointers.
1193 if (ppi->p_mt_info.cdef_worker != NULL) {
1194 mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
1195 for (int plane = 0; plane < num_planes; plane++)
1196 mt_info->cdef_worker->colbuf[plane] =
1197 mt_info->restore_state_buf.cdef_colbuf[plane];
1198 }
1199 #if !CONFIG_REALTIME_ONLY
1200 if (is_restoration_used(cm)) {
1201 // Restore the original LR buffers.
1202 int idx = i + mt_info->num_workers - 1;
1203 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
1204 mt_info->restore_state_buf.rst_tmpbuf;
1205 mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
1206 mt_info->restore_state_buf.rlbs;
1207 }
1208 #endif
1209
1210 frame_idx++;
1211 i += mt_info->num_workers;
1212 }
1213 }
1214
get_compressed_data_hook(void * arg1,void * arg2)1215 static int get_compressed_data_hook(void *arg1, void *arg2) {
1216 AV1_COMP *cpi = (AV1_COMP *)arg1;
1217 AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
1218 int status = av1_get_compressed_data(cpi, cpi_data);
1219
1220 // AOM_CODEC_OK(0) means no error.
1221 return !status;
1222 }
1223
1224 // This function encodes the raw frame data for each frame in parallel encode
1225 // set, and outputs the frame bit stream to the designated buffers.
av1_compress_parallel_frames(AV1_PRIMARY * const ppi,AV1_COMP_DATA * const first_cpi_data)1226 int av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
1227 AV1_COMP_DATA *const first_cpi_data) {
1228 // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
1229 // corresponding to frames in the current parallel encode set.
1230 int ref_buffers_used_map = 0;
1231 int frames_in_parallel_set = av1_init_parallel_frame_context(
1232 first_cpi_data, ppi, &ref_buffers_used_map);
1233 prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
1234 frames_in_parallel_set);
1235 launch_fpmt_workers(ppi);
1236 sync_fpmt_workers(ppi);
1237 restore_workers_after_fpmt(ppi, frames_in_parallel_set);
1238
1239 // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
1240 // encode set.
1241 for (int i = 0; i < frames_in_parallel_set; ++i) {
1242 av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
1243 }
1244 av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
1245 ref_buffers_used_map);
1246 return AOM_CODEC_OK;
1247 }
1248
launch_workers(MultiThreadInfo * const mt_info,int num_workers)1249 static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info,
1250 int num_workers) {
1251 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1252 for (int i = num_workers - 1; i >= 0; i--) {
1253 AVxWorker *const worker = &mt_info->workers[i];
1254 if (i == 0)
1255 winterface->execute(worker);
1256 else
1257 winterface->launch(worker);
1258 }
1259 }
1260
sync_enc_workers(MultiThreadInfo * const mt_info,AV1_COMMON * const cm,int num_workers)1261 static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
1262 AV1_COMMON *const cm, int num_workers) {
1263 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1264 int had_error = 0;
1265
1266 // Encoding ends.
1267 for (int i = num_workers - 1; i > 0; i--) {
1268 AVxWorker *const worker = &mt_info->workers[i];
1269 had_error |= !winterface->sync(worker);
1270 }
1271
1272 if (had_error)
1273 aom_internal_error(cm->error, AOM_CODEC_ERROR,
1274 "Failed to encode tile data");
1275 }
1276
accumulate_counters_enc_workers(AV1_COMP * cpi,int num_workers)1277 static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
1278 int num_workers) {
1279 for (int i = num_workers - 1; i >= 0; i--) {
1280 AVxWorker *const worker = &cpi->mt_info.workers[i];
1281 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
1282 cpi->intrabc_used |= thread_data->td->intrabc_used;
1283 cpi->deltaq_used |= thread_data->td->deltaq_used;
1284 // Accumulate rtc counters.
1285 if (!frame_is_intra_only(&cpi->common))
1286 av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
1287 if (thread_data->td != &cpi->td) {
1288 // Keep these conditional expressions in sync with the corresponding ones
1289 // in prepare_enc_workers().
1290 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1291 aom_free(thread_data->td->mb.mv_costs);
1292 }
1293 if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1294 aom_free(thread_data->td->mb.dv_costs);
1295 }
1296 }
1297 av1_dealloc_mb_data(&cpi->common, &thread_data->td->mb);
1298
1299 // Accumulate counters.
1300 if (i > 0) {
1301 av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
1302 accumulate_rd_opt(&cpi->td, thread_data->td);
1303 cpi->td.mb.txfm_search_info.txb_split_count +=
1304 thread_data->td->mb.txfm_search_info.txb_split_count;
1305 #if CONFIG_SPEED_STATS
1306 cpi->td.mb.txfm_search_info.tx_search_count +=
1307 thread_data->td->mb.txfm_search_info.tx_search_count;
1308 #endif // CONFIG_SPEED_STATS
1309 }
1310 }
1311 }
1312
prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1313 static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1314 int num_workers) {
1315 MultiThreadInfo *const mt_info = &cpi->mt_info;
1316 AV1_COMMON *const cm = &cpi->common;
1317 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
1318 for (int i = num_workers - 1; i >= 0; i--) {
1319 AVxWorker *const worker = &mt_info->workers[i];
1320 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1321
1322 // Initialize loopfilter data
1323 thread_data->lf_sync = &mt_info->lf_row_sync;
1324 thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
1325 loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);
1326
1327 worker->hook = hook;
1328 worker->data1 = thread_data;
1329 worker->data2 = NULL;
1330
1331 thread_data->thread_id = i;
1332 // Set the starting tile for each thread.
1333 thread_data->start = i;
1334
1335 thread_data->cpi = cpi;
1336 if (i == 0) {
1337 thread_data->td = &cpi->td;
1338 } else {
1339 thread_data->td = thread_data->original_td;
1340 }
1341
1342 thread_data->td->intrabc_used = 0;
1343 thread_data->td->deltaq_used = 0;
1344 thread_data->td->abs_sum_level = 0;
1345 thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
1346 thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;
1347
1348 // Before encoding a frame, copy the thread data from cpi.
1349 if (thread_data->td != &cpi->td) {
1350 thread_data->td->mb = cpi->td.mb;
1351 thread_data->td->rd_counts = cpi->td.rd_counts;
1352 thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
1353
1354 for (int x = 0; x < 2; x++) {
1355 for (int y = 0; y < 2; y++) {
1356 memcpy(thread_data->td->hash_value_buffer[x][y],
1357 cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
1358 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1359 sizeof(*thread_data->td->hash_value_buffer[0][0]));
1360 thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
1361 thread_data->td->hash_value_buffer[x][y];
1362 }
1363 }
1364 // Keep these conditional expressions in sync with the corresponding ones
1365 // in accumulate_counters_enc_workers().
1366 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1367 CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
1368 (MvCosts *)aom_malloc(sizeof(MvCosts)));
1369 memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
1370 sizeof(MvCosts));
1371 }
1372 if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1373 // Reset dv_costs to NULL for worker threads when dv cost update is
1374 // enabled so that only dv_cost_upd_level needs to be checked before the
1375 // aom_free() call for the same.
1376 thread_data->td->mb.dv_costs = NULL;
1377 if (av1_need_dv_costs(cpi)) {
1378 CHECK_MEM_ERROR(cm, thread_data->td->mb.dv_costs,
1379 (IntraBCMVCosts *)aom_malloc(sizeof(IntraBCMVCosts)));
1380 memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
1381 sizeof(IntraBCMVCosts));
1382 }
1383 }
1384 }
1385 av1_alloc_mb_data(cpi, &thread_data->td->mb);
1386
1387 // Reset rtc counters.
1388 av1_init_rtc_counters(&thread_data->td->mb);
1389
1390 if (thread_data->td->counts != &cpi->counts) {
1391 memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
1392 }
1393
1394 if (i > 0) {
1395 thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
1396 thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
1397 thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
1398 for (int j = 0; j < 2; ++j) {
1399 thread_data->td->mb.tmp_pred_bufs[j] =
1400 thread_data->td->tmp_pred_bufs[j];
1401 }
1402 thread_data->td->mb.pixel_gradient_info =
1403 thread_data->td->pixel_gradient_info;
1404
1405 thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
1406 thread_data->td->src_var_info_of_4x4_sub_blocks;
1407
1408 thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
1409 for (int j = 0; j < 2; ++j) {
1410 thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
1411 thread_data->td->mb.tmp_pred_bufs[j];
1412 }
1413 }
1414 }
1415 }
1416
1417 #if !CONFIG_REALTIME_ONLY
fp_prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1418 static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1419 int num_workers) {
1420 AV1_COMMON *const cm = &cpi->common;
1421 MultiThreadInfo *const mt_info = &cpi->mt_info;
1422 for (int i = num_workers - 1; i >= 0; i--) {
1423 AVxWorker *const worker = &mt_info->workers[i];
1424 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1425
1426 worker->hook = hook;
1427 worker->data1 = thread_data;
1428 worker->data2 = NULL;
1429
1430 thread_data->thread_id = i;
1431 // Set the starting tile for each thread.
1432 thread_data->start = i;
1433
1434 thread_data->cpi = cpi;
1435 if (i == 0) {
1436 thread_data->td = &cpi->td;
1437 } else {
1438 thread_data->td = thread_data->original_td;
1439 }
1440
1441 // Before encoding a frame, copy the thread data from cpi.
1442 if (thread_data->td != &cpi->td) {
1443 thread_data->td->mb = cpi->td.mb;
1444 // Keep this conditional expression in sync with the corresponding one
1445 // in av1_fp_encode_tiles_row_mt().
1446 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1447 CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
1448 (MvCosts *)aom_malloc(sizeof(MvCosts)));
1449 memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
1450 sizeof(MvCosts));
1451 }
1452 }
1453
1454 av1_alloc_mb_data(cpi, &thread_data->td->mb);
1455 }
1456 }
1457 #endif
1458
1459 // Computes the number of workers for row multi-threading of encoding stage
compute_num_enc_row_mt_workers(AV1_COMMON * const cm,int max_threads)1460 static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm,
1461 int max_threads) {
1462 TileInfo tile_info;
1463 const int tile_cols = cm->tiles.cols;
1464 const int tile_rows = cm->tiles.rows;
1465 int total_num_threads_row_mt = 0;
1466 for (int row = 0; row < tile_rows; row++) {
1467 for (int col = 0; col < tile_cols; col++) {
1468 av1_tile_init(&tile_info, cm, row, col);
1469 const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
1470 const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
1471 total_num_threads_row_mt +=
1472 AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
1473 }
1474 }
1475 return AOMMIN(max_threads, total_num_threads_row_mt);
1476 }
1477
1478 // Computes the number of workers for tile multi-threading of encoding stage
compute_num_enc_tile_mt_workers(AV1_COMMON * const cm,int max_threads)1479 static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm,
1480 int max_threads) {
1481 const int tile_cols = cm->tiles.cols;
1482 const int tile_rows = cm->tiles.rows;
1483 return AOMMIN(max_threads, tile_cols * tile_rows);
1484 }
1485
1486 // Find max worker of all MT stages
av1_get_max_num_workers(const AV1_COMP * cpi)1487 int av1_get_max_num_workers(const AV1_COMP *cpi) {
1488 int max_num_workers = 0;
1489 for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
1490 max_num_workers =
1491 AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
1492 assert(max_num_workers >= 1);
1493 return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
1494 }
1495
1496 // Computes the number of workers for encoding stage (row/tile multi-threading)
av1_compute_num_enc_workers(AV1_COMP * cpi,int max_workers)1497 int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) {
1498 if (max_workers <= 1) return 1;
1499 if (cpi->oxcf.row_mt)
1500 return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
1501 else
1502 return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
1503 }
1504
av1_encode_tiles_mt(AV1_COMP * cpi)1505 void av1_encode_tiles_mt(AV1_COMP *cpi) {
1506 AV1_COMMON *const cm = &cpi->common;
1507 MultiThreadInfo *const mt_info = &cpi->mt_info;
1508 const int tile_cols = cm->tiles.cols;
1509 const int tile_rows = cm->tiles.rows;
1510 int num_workers = mt_info->num_mod_workers[MOD_ENC];
1511
1512 assert(IMPLIES(cpi->tile_data == NULL,
1513 cpi->allocated_tiles < tile_cols * tile_rows));
1514 if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
1515
1516 av1_init_tile_data(cpi);
1517 num_workers = AOMMIN(num_workers, mt_info->num_workers);
1518
1519 prepare_enc_workers(cpi, enc_worker_hook, num_workers);
1520 launch_workers(&cpi->mt_info, num_workers);
1521 sync_enc_workers(&cpi->mt_info, cm, num_workers);
1522 accumulate_counters_enc_workers(cpi, num_workers);
1523 }
1524
1525 // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
1526 // members, so we treat it as an array, and sum over the whole length.
av1_accumulate_frame_counts(FRAME_COUNTS * acc_counts,const FRAME_COUNTS * counts)1527 void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
1528 const FRAME_COUNTS *counts) {
1529 unsigned int *const acc = (unsigned int *)acc_counts;
1530 const unsigned int *const cnt = (const unsigned int *)counts;
1531
1532 const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
1533
1534 for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
1535 }
1536
1537 // Computes the maximum number of sb rows and sb_cols across tiles which are
1538 // used to allocate memory for multi-threaded encoding with row-mt=1.
compute_max_sb_rows_cols(const AV1_COMMON * cm,int * max_sb_rows_in_tile,int * max_sb_cols_in_tile)1539 static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm,
1540 int *max_sb_rows_in_tile,
1541 int *max_sb_cols_in_tile) {
1542 const int tile_rows = cm->tiles.rows;
1543 const int mib_size_log2 = cm->seq_params->mib_size_log2;
1544 const int num_mi_rows = cm->mi_params.mi_rows;
1545 const int *const row_start_sb = cm->tiles.row_start_sb;
1546 for (int row = 0; row < tile_rows; row++) {
1547 const int mi_row_start = row_start_sb[row] << mib_size_log2;
1548 const int mi_row_end =
1549 AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1550 const int num_sb_rows_in_tile =
1551 CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
1552 *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
1553 }
1554
1555 const int tile_cols = cm->tiles.cols;
1556 const int num_mi_cols = cm->mi_params.mi_cols;
1557 const int *const col_start_sb = cm->tiles.col_start_sb;
1558 for (int col = 0; col < tile_cols; col++) {
1559 const int mi_col_start = col_start_sb[col] << mib_size_log2;
1560 const int mi_col_end =
1561 AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
1562 const int num_sb_cols_in_tile =
1563 CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
1564 *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
1565 }
1566 }
1567
1568 #if !CONFIG_REALTIME_ONLY
1569 // Computes the number of workers for firstpass stage (row/tile multi-threading)
av1_fp_compute_num_enc_workers(AV1_COMP * cpi)1570 int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
1571 AV1_COMMON *cm = &cpi->common;
1572 const int tile_cols = cm->tiles.cols;
1573 const int tile_rows = cm->tiles.rows;
1574 int total_num_threads_row_mt = 0;
1575 TileInfo tile_info;
1576
1577 if (cpi->oxcf.max_threads <= 1) return 1;
1578
1579 for (int row = 0; row < tile_rows; row++) {
1580 for (int col = 0; col < tile_cols; col++) {
1581 av1_tile_init(&tile_info, cm, row, col);
1582 const int num_mb_rows_in_tile =
1583 av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
1584 const int num_mb_cols_in_tile =
1585 av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
1586 total_num_threads_row_mt +=
1587 AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
1588 }
1589 }
1590 return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
1591 }
1592
1593 // Computes the maximum number of mb_rows for row multi-threading of firstpass
1594 // stage
fp_compute_max_mb_rows(const AV1_COMMON * cm,BLOCK_SIZE fp_block_size)1595 static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm,
1596 BLOCK_SIZE fp_block_size) {
1597 const int tile_rows = cm->tiles.rows;
1598 const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1599 const int mib_size_log2 = cm->seq_params->mib_size_log2;
1600 const int num_mi_rows = cm->mi_params.mi_rows;
1601 const int *const row_start_sb = cm->tiles.row_start_sb;
1602 int max_mb_rows = 0;
1603
1604 for (int row = 0; row < tile_rows; row++) {
1605 const int mi_row_start = row_start_sb[row] << mib_size_log2;
1606 const int mi_row_end =
1607 AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1608 const int num_mb_rows_in_tile =
1609 CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
1610 max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
1611 }
1612 return max_mb_rows;
1613 }
1614 #endif
1615
lpf_pipeline_mt_init(AV1_COMP * cpi)1616 static void lpf_pipeline_mt_init(AV1_COMP *cpi) {
1617 // Pipelining of loop-filtering after encoding is enabled when loop-filter
1618 // level is chosen based on quantizer and frame type. It is disabled in case
1619 // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
1620 // decides the filter level. Loop-filtering is disabled in case
1621 // of non-reference frames and for frames with intra block copy tool enabled.
1622 AV1_COMMON *cm = &cpi->common;
1623 const int use_loopfilter = is_loopfilter_used(cm);
1624 const int use_superres = av1_superres_scaled(cm);
1625 const int use_cdef = is_cdef_used(cm);
1626 const int use_restoration = is_restoration_used(cm);
1627
1628 const unsigned int skip_apply_postproc_filters =
1629 derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
1630 use_superres, use_restoration);
1631 cpi->mt_info.pipeline_lpf_mt_with_enc =
1632 (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
1633 (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
1634 (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
1635 !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
1636 ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);
1637
1638 if (!cpi->mt_info.pipeline_lpf_mt_with_enc) return;
1639
1640 set_postproc_filter_default_params(cm);
1641
1642 if (!use_loopfilter) return;
1643
1644 const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
1645 assert(method == LPF_PICK_FROM_Q);
1646 assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);
1647
1648 av1_pick_filter_level(cpi->source, cpi, method);
1649
1650 struct loopfilter *lf = &cm->lf;
1651 const int plane_start = 0;
1652 const int plane_end = av1_num_planes(cm);
1653 int planes_to_lf[MAX_MB_PLANE];
1654 if ((lf->filter_level[PLANE_TYPE_Y] || lf->filter_level[PLANE_TYPE_UV]) &&
1655 check_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end)) {
1656 int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
1657 assert(lpf_opt_level == 2);
1658
1659 const int start_mi_row = 0;
1660 const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;
1661
1662 av1_loop_filter_frame_init(cm, plane_start, plane_end);
1663
1664 assert(cpi->mt_info.num_mod_workers[MOD_ENC] ==
1665 cpi->mt_info.num_mod_workers[MOD_LPF]);
1666 loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
1667 cpi->mt_info.num_mod_workers[MOD_LPF],
1668 &cpi->mt_info.lf_row_sync, lpf_opt_level,
1669 cm->seq_params->mib_size_log2);
1670 }
1671 }
1672
av1_encode_tiles_row_mt(AV1_COMP * cpi)1673 void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
1674 AV1_COMMON *const cm = &cpi->common;
1675 MultiThreadInfo *const mt_info = &cpi->mt_info;
1676 AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1677 const int tile_cols = cm->tiles.cols;
1678 const int tile_rows = cm->tiles.rows;
1679 const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
1680 int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1681 int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
1682 int num_workers = mt_info->num_mod_workers[MOD_ENC];
1683
1684 compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
1685 const bool alloc_row_mt_mem =
1686 (enc_row_mt->allocated_tile_cols != tile_cols ||
1687 enc_row_mt->allocated_tile_rows != tile_rows ||
1688 enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
1689 enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
1690 enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
1691 const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
1692
1693 assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
1694 if (alloc_tile_data) {
1695 av1_alloc_tile_data(cpi);
1696 }
1697
1698 assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
1699 if (alloc_row_mt_mem) {
1700 row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
1701 cpi->oxcf.algo_cfg.cdf_update_mode);
1702 }
1703
1704 lpf_pipeline_mt_init(cpi);
1705
1706 av1_init_tile_data(cpi);
1707
1708 memset(thread_id_to_tile_id, -1,
1709 sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1710 memset(enc_row_mt->num_tile_cols_done, 0,
1711 sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);
1712
1713 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1714 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1715 int tile_index = tile_row * tile_cols + tile_col;
1716 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1717 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1718
1719 // Initialize num_finished_cols to -1 for all rows.
1720 memset(row_mt_sync->num_finished_cols, -1,
1721 sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
1722 row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1723 row_mt_sync->num_threads_working = 0;
1724 row_mt_sync->intrabc_extra_top_right_sb_delay =
1725 av1_get_intrabc_extra_top_right_sb_delay(cm);
1726
1727 av1_inter_mode_data_init(this_tile);
1728 av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
1729 this_tile->tile_info.mi_col_start,
1730 this_tile->tile_info.mi_col_end, tile_row);
1731 }
1732 }
1733
1734 num_workers = AOMMIN(num_workers, mt_info->num_workers);
1735
1736 assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1737 num_workers);
1738 prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
1739 launch_workers(&cpi->mt_info, num_workers);
1740 sync_enc_workers(&cpi->mt_info, cm, num_workers);
1741 if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
1742 accumulate_counters_enc_workers(cpi, num_workers);
1743 }
1744
1745 #if !CONFIG_REALTIME_ONLY
av1_fp_encode_tiles_row_mt(AV1_COMP * cpi)1746 void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
1747 AV1_COMMON *const cm = &cpi->common;
1748 MultiThreadInfo *const mt_info = &cpi->mt_info;
1749 AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1750 const int tile_cols = cm->tiles.cols;
1751 const int tile_rows = cm->tiles.rows;
1752 int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1753 int num_workers = 0;
1754 int max_mb_rows = 0;
1755
1756 max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
1757 const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
1758 enc_row_mt->allocated_tile_rows != tile_rows ||
1759 enc_row_mt->allocated_rows != max_mb_rows;
1760 const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
1761
1762 assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
1763 if (alloc_tile_data) {
1764 av1_alloc_tile_data(cpi);
1765 }
1766
1767 assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
1768 if (alloc_row_mt_mem) {
1769 row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
1770 }
1771
1772 av1_init_tile_data(cpi);
1773
1774 // For pass = 1, compute the no. of workers needed. For single-pass encode
1775 // (pass = 0), no. of workers are already computed.
1776 if (mt_info->num_mod_workers[MOD_FP] == 0)
1777 num_workers = av1_fp_compute_num_enc_workers(cpi);
1778 else
1779 num_workers = mt_info->num_mod_workers[MOD_FP];
1780
1781 memset(thread_id_to_tile_id, -1,
1782 sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1783
1784 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1785 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1786 int tile_index = tile_row * tile_cols + tile_col;
1787 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1788 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1789
1790 // Initialize num_finished_cols to -1 for all rows.
1791 memset(row_mt_sync->num_finished_cols, -1,
1792 sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
1793 row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1794 row_mt_sync->num_threads_working = 0;
1795
1796 // intraBC mode is not evaluated during first-pass encoding. Hence, no
1797 // additional top-right delay is required.
1798 row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
1799 }
1800 }
1801
1802 num_workers = AOMMIN(num_workers, mt_info->num_workers);
1803 assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1804 num_workers);
1805 fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
1806 launch_workers(&cpi->mt_info, num_workers);
1807 sync_enc_workers(&cpi->mt_info, cm, num_workers);
1808 for (int i = num_workers - 1; i >= 0; i--) {
1809 EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
1810 if (thread_data->td != &cpi->td) {
1811 // Keep this conditional expression in sync with the corresponding one
1812 // in fp_prepare_enc_workers().
1813 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1814 aom_free(thread_data->td->mb.mv_costs);
1815 }
1816 assert(!thread_data->td->mb.dv_costs);
1817 }
1818 av1_dealloc_mb_data(cm, &thread_data->td->mb);
1819 }
1820 }
1821
av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c)1822 void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
1823 int r, int c) {
1824 (void)tpl_mt_sync;
1825 (void)r;
1826 (void)c;
1827 return;
1828 }
1829
av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c,int cols)1830 void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
1831 int r, int c, int cols) {
1832 (void)tpl_mt_sync;
1833 (void)r;
1834 (void)c;
1835 (void)cols;
1836 return;
1837 }
1838
av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c)1839 void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
1840 int c) {
1841 #if CONFIG_MULTITHREAD
1842 int nsync = tpl_row_mt_sync->sync_range;
1843
1844 if (r) {
1845 pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
1846 pthread_mutex_lock(mutex);
1847
1848 while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
1849 pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
1850 pthread_mutex_unlock(mutex);
1851 }
1852 #else
1853 (void)tpl_row_mt_sync;
1854 (void)r;
1855 (void)c;
1856 #endif // CONFIG_MULTITHREAD
1857 }
1858
av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c,int cols)1859 void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
1860 int c, int cols) {
1861 #if CONFIG_MULTITHREAD
1862 int nsync = tpl_row_mt_sync->sync_range;
1863 int cur;
1864 // Only signal when there are enough encoded blocks for next row to run.
1865 int sig = 1;
1866
1867 if (c < cols - 1) {
1868 cur = c;
1869 if (c % nsync) sig = 0;
1870 } else {
1871 cur = cols + nsync;
1872 }
1873
1874 if (sig) {
1875 pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
1876
1877 tpl_row_mt_sync->num_finished_cols[r] = cur;
1878
1879 pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
1880 pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
1881 }
1882 #else
1883 (void)tpl_row_mt_sync;
1884 (void)r;
1885 (void)c;
1886 (void)cols;
1887 #endif // CONFIG_MULTITHREAD
1888 }
1889
1890 // Each worker calls tpl_worker_hook() and computes the tpl data.
tpl_worker_hook(void * arg1,void * unused)1891 static int tpl_worker_hook(void *arg1, void *unused) {
1892 (void)unused;
1893 EncWorkerData *thread_data = (EncWorkerData *)arg1;
1894 AV1_COMP *cpi = thread_data->cpi;
1895 AV1_COMMON *cm = &cpi->common;
1896 MACROBLOCK *x = &thread_data->td->mb;
1897 MACROBLOCKD *xd = &x->e_mbd;
1898 TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
1899 CommonModeInfoParams *mi_params = &cm->mi_params;
1900 BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1901 TX_SIZE tx_size = max_txsize_lookup[bsize];
1902 int mi_height = mi_size_high[bsize];
1903 int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;
1904
1905 av1_init_tpl_txfm_stats(tpl_txfm_stats);
1906
1907 for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
1908 mi_row += num_active_workers * mi_height) {
1909 // Motion estimation row boundary
1910 av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1911 cpi->oxcf.border_in_pixels);
1912 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1913 xd->mb_to_bottom_edge =
1914 GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1915 av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, x, mi_row, bsize, tx_size);
1916 }
1917 return 1;
1918 }
1919
1920 // Deallocate tpl synchronization related mutex and data.
av1_tpl_dealloc(AV1TplRowMultiThreadSync * tpl_sync)1921 void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
1922 assert(tpl_sync != NULL);
1923
1924 #if CONFIG_MULTITHREAD
1925 if (tpl_sync->mutex_ != NULL) {
1926 for (int i = 0; i < tpl_sync->rows; ++i)
1927 pthread_mutex_destroy(&tpl_sync->mutex_[i]);
1928 aom_free(tpl_sync->mutex_);
1929 }
1930 if (tpl_sync->cond_ != NULL) {
1931 for (int i = 0; i < tpl_sync->rows; ++i)
1932 pthread_cond_destroy(&tpl_sync->cond_[i]);
1933 aom_free(tpl_sync->cond_);
1934 }
1935 #endif // CONFIG_MULTITHREAD
1936
1937 aom_free(tpl_sync->num_finished_cols);
1938 // clear the structure as the source of this call may be a resize in which
1939 // case this call will be followed by an _alloc() which may fail.
1940 av1_zero(*tpl_sync);
1941 }
1942
1943 // Allocate memory for tpl row synchronization.
av1_tpl_alloc(AV1TplRowMultiThreadSync * tpl_sync,AV1_COMMON * cm,int mb_rows)1944 void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
1945 int mb_rows) {
1946 tpl_sync->rows = mb_rows;
1947 #if CONFIG_MULTITHREAD
1948 {
1949 CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
1950 aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
1951 if (tpl_sync->mutex_) {
1952 for (int i = 0; i < mb_rows; ++i)
1953 pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
1954 }
1955
1956 CHECK_MEM_ERROR(cm, tpl_sync->cond_,
1957 aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
1958 if (tpl_sync->cond_) {
1959 for (int i = 0; i < mb_rows; ++i)
1960 pthread_cond_init(&tpl_sync->cond_[i], NULL);
1961 }
1962 }
1963 #endif // CONFIG_MULTITHREAD
1964 CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
1965 aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
1966
1967 // Set up nsync.
1968 tpl_sync->sync_range = 1;
1969 }
1970
1971 // Each worker is prepared by assigning the hook function and individual thread
1972 // data.
prepare_tpl_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1973 static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1974 int num_workers) {
1975 MultiThreadInfo *mt_info = &cpi->mt_info;
1976 for (int i = num_workers - 1; i >= 0; i--) {
1977 AVxWorker *worker = &mt_info->workers[i];
1978 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
1979
1980 worker->hook = hook;
1981 worker->data1 = thread_data;
1982 worker->data2 = NULL;
1983
1984 thread_data->thread_id = i;
1985 // Set the starting tile for each thread.
1986 thread_data->start = i;
1987
1988 thread_data->cpi = cpi;
1989 if (i == 0) {
1990 thread_data->td = &cpi->td;
1991 } else {
1992 thread_data->td = thread_data->original_td;
1993 }
1994
1995 // Before encoding a frame, copy the thread data from cpi.
1996 if (thread_data->td != &cpi->td) {
1997 thread_data->td->mb = cpi->td.mb;
1998 // OBMC buffers are used only to init MS params and remain unused when
1999 // called from tpl, hence set the buffers to defaults.
2000 av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2001 thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
2002 thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
2003 }
2004 }
2005 }
2006
2007 // Accumulate transform stats after tpl.
tpl_accumulate_txfm_stats(ThreadData * main_td,const MultiThreadInfo * mt_info,int num_workers)2008 static void tpl_accumulate_txfm_stats(ThreadData *main_td,
2009 const MultiThreadInfo *mt_info,
2010 int num_workers) {
2011 TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
2012 for (int i = num_workers - 1; i >= 0; i--) {
2013 AVxWorker *const worker = &mt_info->workers[i];
2014 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2015 ThreadData *td = thread_data->td;
2016 if (td != main_td) {
2017 const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
2018 av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
2019 }
2020 }
2021 }
2022
2023 // Implements multi-threading for tpl.
av1_mc_flow_dispenser_mt(AV1_COMP * cpi)2024 void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
2025 AV1_COMMON *cm = &cpi->common;
2026 CommonModeInfoParams *mi_params = &cm->mi_params;
2027 MultiThreadInfo *mt_info = &cpi->mt_info;
2028 TplParams *tpl_data = &cpi->ppi->tpl_data;
2029 AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
2030 int mb_rows = mi_params->mb_rows;
2031 int num_workers =
2032 AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
2033
2034 if (mb_rows != tpl_sync->rows) {
2035 av1_tpl_dealloc(tpl_sync);
2036 av1_tpl_alloc(tpl_sync, cm, mb_rows);
2037 }
2038 tpl_sync->num_threads_working = num_workers;
2039
2040 // Initialize cur_mb_col to -1 for all MB rows.
2041 memset(tpl_sync->num_finished_cols, -1,
2042 sizeof(*tpl_sync->num_finished_cols) * mb_rows);
2043
2044 prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
2045 launch_workers(&cpi->mt_info, num_workers);
2046 sync_enc_workers(&cpi->mt_info, cm, num_workers);
2047 tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
2048 }
2049
2050 // Deallocate memory for temporal filter multi-thread synchronization.
av1_tf_mt_dealloc(AV1TemporalFilterSync * tf_sync)2051 void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
2052 assert(tf_sync != NULL);
2053 #if CONFIG_MULTITHREAD
2054 if (tf_sync->mutex_ != NULL) {
2055 pthread_mutex_destroy(tf_sync->mutex_);
2056 aom_free(tf_sync->mutex_);
2057 }
2058 #endif // CONFIG_MULTITHREAD
2059 tf_sync->next_tf_row = 0;
2060 }
2061
2062 // Checks if a job is available. If job is available,
2063 // populates next_tf_row and returns 1, else returns 0.
tf_get_next_job(AV1TemporalFilterSync * tf_mt_sync,int * current_mb_row,int mb_rows)2064 static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
2065 int *current_mb_row, int mb_rows) {
2066 int do_next_row = 0;
2067 #if CONFIG_MULTITHREAD
2068 pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
2069 pthread_mutex_lock(tf_mutex_);
2070 #endif
2071 if (tf_mt_sync->next_tf_row < mb_rows) {
2072 *current_mb_row = tf_mt_sync->next_tf_row;
2073 tf_mt_sync->next_tf_row++;
2074 do_next_row = 1;
2075 }
2076 #if CONFIG_MULTITHREAD
2077 pthread_mutex_unlock(tf_mutex_);
2078 #endif
2079 return do_next_row;
2080 }
2081
2082 // Hook function for each thread in temporal filter multi-threading.
tf_worker_hook(void * arg1,void * unused)2083 static int tf_worker_hook(void *arg1, void *unused) {
2084 (void)unused;
2085 EncWorkerData *thread_data = (EncWorkerData *)arg1;
2086 AV1_COMP *cpi = thread_data->cpi;
2087 ThreadData *td = thread_data->td;
2088 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
2089 AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
2090 const struct scale_factors *scale = &cpi->tf_ctx.sf;
2091 const int num_planes = av1_num_planes(&cpi->common);
2092 assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
2093
2094 MACROBLOCKD *mbd = &td->mb.e_mbd;
2095 uint8_t *input_buffer[MAX_MB_PLANE];
2096 MB_MODE_INFO **input_mb_mode_info;
2097 tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
2098 tf_setup_macroblockd(mbd, &td->tf_data, scale);
2099
2100 int current_mb_row = -1;
2101
2102 while (tf_get_next_job(tf_sync, ¤t_mb_row, tf_ctx->mb_rows))
2103 av1_tf_do_filtering_row(cpi, td, current_mb_row);
2104
2105 tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
2106
2107 return 1;
2108 }
2109
2110 // Assigns temporal filter hook function and thread data to each worker.
prepare_tf_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers,int is_highbitdepth)2111 static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2112 int num_workers, int is_highbitdepth) {
2113 MultiThreadInfo *mt_info = &cpi->mt_info;
2114 mt_info->tf_sync.next_tf_row = 0;
2115 for (int i = num_workers - 1; i >= 0; i--) {
2116 AVxWorker *worker = &mt_info->workers[i];
2117 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2118
2119 worker->hook = hook;
2120 worker->data1 = thread_data;
2121 worker->data2 = NULL;
2122
2123 thread_data->thread_id = i;
2124 // Set the starting tile for each thread.
2125 thread_data->start = i;
2126
2127 thread_data->cpi = cpi;
2128 if (i == 0) {
2129 thread_data->td = &cpi->td;
2130 } else {
2131 thread_data->td = thread_data->original_td;
2132 }
2133
2134 // Before encoding a frame, copy the thread data from cpi.
2135 if (thread_data->td != &cpi->td) {
2136 thread_data->td->mb = cpi->td.mb;
2137 // OBMC buffers are used only to init MS params and remain unused when
2138 // called from tf, hence set the buffers to defaults.
2139 av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2140 if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
2141 cpi->tf_ctx.num_pels, is_highbitdepth)) {
2142 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2143 "Error allocating temporal filter data");
2144 }
2145 }
2146 }
2147 }
2148
2149 // Deallocate thread specific data for temporal filter.
tf_dealloc_thread_data(AV1_COMP * cpi,int num_workers,int is_highbitdepth)2150 static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
2151 int is_highbitdepth) {
2152 MultiThreadInfo *mt_info = &cpi->mt_info;
2153 for (int i = num_workers - 1; i >= 0; i--) {
2154 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2155 ThreadData *td = thread_data->td;
2156 if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
2157 }
2158 }
2159
2160 // Accumulate sse and sum after temporal filtering.
tf_accumulate_frame_diff(AV1_COMP * cpi,int num_workers)2161 static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
2162 FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
2163 for (int i = num_workers - 1; i >= 0; i--) {
2164 AVxWorker *const worker = &cpi->mt_info.workers[i];
2165 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2166 ThreadData *td = thread_data->td;
2167 FRAME_DIFF *diff = &td->tf_data.diff;
2168 if (td != &cpi->td) {
2169 total_diff->sse += diff->sse;
2170 total_diff->sum += diff->sum;
2171 }
2172 }
2173 }
2174
2175 // Implements multi-threading for temporal filter.
av1_tf_do_filtering_mt(AV1_COMP * cpi)2176 void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
2177 AV1_COMMON *cm = &cpi->common;
2178 MultiThreadInfo *mt_info = &cpi->mt_info;
2179 const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
2180
2181 int num_workers =
2182 AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
2183
2184 prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
2185 launch_workers(mt_info, num_workers);
2186 sync_enc_workers(mt_info, cm, num_workers);
2187 tf_accumulate_frame_diff(cpi, num_workers);
2188 tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
2189 }
2190
2191 // Checks if a job is available in the current direction. If a job is available,
2192 // frame_idx will be populated and returns 1, else returns 0.
get_next_gm_job(AV1_COMP * cpi,int * frame_idx,int cur_dir)2193 static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
2194 int cur_dir) {
2195 GlobalMotionInfo *gm_info = &cpi->gm_info;
2196 JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2197
2198 int total_refs = gm_info->num_ref_frames[cur_dir];
2199 int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
2200
2201 if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
2202 *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
2203 job_info->next_frame_to_process[cur_dir] += 1;
2204 return 1;
2205 }
2206 return 0;
2207 }
2208
2209 // Switches the current direction and calls the function get_next_gm_job() if
2210 // the speed feature 'prune_ref_frame_for_gm_search' is not set.
switch_direction(AV1_COMP * cpi,int * frame_idx,int * cur_dir)2211 static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
2212 int *cur_dir) {
2213 if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
2214 // Switch the direction and get next job
2215 *cur_dir = !(*cur_dir);
2216 get_next_gm_job(cpi, frame_idx, *(cur_dir));
2217 }
2218
2219 // Initializes inliers, num_inliers and segment_map.
init_gm_thread_data(const GlobalMotionInfo * gm_info,GlobalMotionThreadData * thread_data)2220 static AOM_INLINE void init_gm_thread_data(
2221 const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) {
2222 for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
2223 MotionModel motion_params = thread_data->params_by_motion[m];
2224 av1_zero(motion_params.params);
2225 motion_params.num_inliers = 0;
2226 }
2227
2228 av1_zero_array(thread_data->segment_map,
2229 gm_info->segment_map_w * gm_info->segment_map_h);
2230 }
2231
2232 // Hook function for each thread in global motion multi-threading.
gm_mt_worker_hook(void * arg1,void * unused)2233 static int gm_mt_worker_hook(void *arg1, void *unused) {
2234 (void)unused;
2235
2236 EncWorkerData *thread_data = (EncWorkerData *)arg1;
2237 AV1_COMP *cpi = thread_data->cpi;
2238 GlobalMotionInfo *gm_info = &cpi->gm_info;
2239 MultiThreadInfo *mt_info = &cpi->mt_info;
2240 JobInfo *job_info = &mt_info->gm_sync.job_info;
2241 int thread_id = thread_data->thread_id;
2242 GlobalMotionThreadData *gm_thread_data =
2243 &mt_info->gm_sync.thread_data[thread_id];
2244 int cur_dir = job_info->thread_id_to_dir[thread_id];
2245 #if CONFIG_MULTITHREAD
2246 pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_;
2247 #endif
2248
2249 while (1) {
2250 int ref_buf_idx = -1;
2251 int ref_frame_idx = -1;
2252
2253 #if CONFIG_MULTITHREAD
2254 pthread_mutex_lock(gm_mt_mutex_);
2255 #endif
2256
2257 // Populates ref_buf_idx(the reference frame type) for which global motion
2258 // estimation will be done.
2259 if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
2260 // No jobs are available for the current direction. Switch
2261 // to other direction and get the next job, if available.
2262 switch_direction(cpi, &ref_buf_idx, &cur_dir);
2263 }
2264
2265 // 'ref_frame_idx' holds the index of the current reference frame type in
2266 // gm_info->reference_frames. job_info->next_frame_to_process will be
2267 // incremented in get_next_gm_job() and hence subtracting by 1.
2268 ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1;
2269
2270 #if CONFIG_MULTITHREAD
2271 pthread_mutex_unlock(gm_mt_mutex_);
2272 #endif
2273
2274 if (ref_buf_idx == -1) break;
2275
2276 init_gm_thread_data(gm_info, gm_thread_data);
2277
2278 // Compute global motion for the given ref_buf_idx.
2279 av1_compute_gm_for_valid_ref_frames(
2280 cpi, gm_info->ref_buf, ref_buf_idx, gm_info->num_src_corners,
2281 gm_info->src_corners, gm_info->src_buffer,
2282 gm_thread_data->params_by_motion, gm_thread_data->segment_map,
2283 gm_info->segment_map_w, gm_info->segment_map_h);
2284
2285 #if CONFIG_MULTITHREAD
2286 pthread_mutex_lock(gm_mt_mutex_);
2287 #endif
2288 assert(ref_frame_idx != -1);
2289 // If global motion w.r.t. current ref frame is
2290 // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
2291 // the remaining ref frames in that direction. The below exit is disabled
2292 // when ref frame distance w.r.t. current frame is zero. E.g.:
2293 // source_alt_ref_frame w.r.t. ARF frames.
2294 if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
2295 gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 &&
2296 cpi->common.global_motion[ref_buf_idx].wmtype != ROTZOOM)
2297 job_info->early_exit[cur_dir] = 1;
2298
2299 #if CONFIG_MULTITHREAD
2300 pthread_mutex_unlock(gm_mt_mutex_);
2301 #endif
2302 }
2303 return 1;
2304 }
2305
2306 // Assigns global motion hook function and thread data to each worker.
prepare_gm_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)2307 static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2308 int num_workers) {
2309 MultiThreadInfo *mt_info = &cpi->mt_info;
2310 for (int i = num_workers - 1; i >= 0; i--) {
2311 AVxWorker *worker = &mt_info->workers[i];
2312 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2313
2314 worker->hook = hook;
2315 worker->data1 = thread_data;
2316 worker->data2 = NULL;
2317
2318 thread_data->thread_id = i;
2319 // Set the starting tile for each thread.
2320 thread_data->start = i;
2321
2322 thread_data->cpi = cpi;
2323 if (i == 0) {
2324 thread_data->td = &cpi->td;
2325 } else {
2326 thread_data->td = thread_data->original_td;
2327 }
2328 }
2329 }
2330
2331 // Assigns available threads to past/future direction.
assign_thread_to_dir(int8_t * thread_id_to_dir,int num_workers)2332 static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
2333 int num_workers) {
2334 int8_t frame_dir_idx = 0;
2335
2336 for (int i = 0; i < num_workers; i++) {
2337 thread_id_to_dir[i] = frame_dir_idx++;
2338 if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
2339 }
2340 }
2341
2342 // Computes number of workers for global motion multi-threading.
compute_gm_workers(const AV1_COMP * cpi)2343 static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
2344 int total_refs =
2345 cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
2346 int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
2347 ? AOMMIN(MAX_DIRECTIONS, total_refs)
2348 : total_refs;
2349 num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
2350 return (num_gm_workers);
2351 }
2352
2353 // Frees the memory allocated for each worker in global motion multi-threading.
av1_gm_dealloc(AV1GlobalMotionSync * gm_sync_data)2354 void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) {
2355 if (gm_sync_data->thread_data != NULL) {
2356 for (int j = 0; j < gm_sync_data->allocated_workers; j++) {
2357 GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j];
2358 aom_free(thread_data->segment_map);
2359
2360 for (int m = 0; m < RANSAC_NUM_MOTIONS; m++)
2361 aom_free(thread_data->params_by_motion[m].inliers);
2362 }
2363 aom_free(gm_sync_data->thread_data);
2364 }
2365 }
2366
2367 // Allocates memory for inliers and segment_map for each worker in global motion
2368 // multi-threading.
gm_alloc(AV1_COMP * cpi,int num_workers)2369 static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) {
2370 AV1_COMMON *cm = &cpi->common;
2371 AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
2372 GlobalMotionInfo *gm_info = &cpi->gm_info;
2373
2374 gm_sync->allocated_workers = num_workers;
2375 gm_sync->allocated_width = cpi->source->y_width;
2376 gm_sync->allocated_height = cpi->source->y_height;
2377
2378 CHECK_MEM_ERROR(cm, gm_sync->thread_data,
2379 aom_malloc(sizeof(*gm_sync->thread_data) * num_workers));
2380
2381 for (int i = 0; i < num_workers; i++) {
2382 GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i];
2383 CHECK_MEM_ERROR(
2384 cm, thread_data->segment_map,
2385 aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w *
2386 gm_info->segment_map_h));
2387
2388 for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
2389 CHECK_MEM_ERROR(
2390 cm, thread_data->params_by_motion[m].inliers,
2391 aom_malloc(sizeof(*thread_data->params_by_motion[m].inliers) * 2 *
2392 MAX_CORNERS));
2393 }
2394 }
2395 }
2396
2397 // Implements multi-threading for global motion.
av1_global_motion_estimation_mt(AV1_COMP * cpi)2398 void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
2399 AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
2400 JobInfo *job_info = &gm_sync->job_info;
2401
2402 av1_zero(*job_info);
2403
2404 int num_workers = compute_gm_workers(cpi);
2405
2406 if (num_workers > gm_sync->allocated_workers ||
2407 cpi->source->y_width != gm_sync->allocated_width ||
2408 cpi->source->y_height != gm_sync->allocated_height) {
2409 av1_gm_dealloc(gm_sync);
2410 gm_alloc(cpi, num_workers);
2411 }
2412
2413 assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
2414 prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
2415 launch_workers(&cpi->mt_info, num_workers);
2416 sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
2417 }
2418 #endif // !CONFIG_REALTIME_ONLY
2419
2420 // Allocate memory for row synchronization
wiener_var_sync_mem_alloc(AV1EncRowMultiThreadSync * const row_mt_sync,AV1_COMMON * const cm,const int rows)2421 static void wiener_var_sync_mem_alloc(
2422 AV1EncRowMultiThreadSync *const row_mt_sync, AV1_COMMON *const cm,
2423 const int rows) {
2424 #if CONFIG_MULTITHREAD
2425 int i;
2426
2427 CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
2428 aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
2429 if (row_mt_sync->mutex_) {
2430 for (i = 0; i < rows; ++i) {
2431 pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
2432 }
2433 }
2434
2435 CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
2436 aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
2437 if (row_mt_sync->cond_) {
2438 for (i = 0; i < rows; ++i) {
2439 pthread_cond_init(&row_mt_sync->cond_[i], NULL);
2440 }
2441 }
2442 #endif // CONFIG_MULTITHREAD
2443
2444 CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
2445 aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
2446
2447 row_mt_sync->rows = rows;
2448 // Set up nsync.
2449 row_mt_sync->sync_range = 1;
2450 }
2451
2452 // Deallocate row based multi-threading synchronization related mutex and data
wiener_var_sync_mem_dealloc(AV1EncRowMultiThreadSync * row_mt_sync)2453 static void wiener_var_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
2454 if (row_mt_sync != NULL) {
2455 #if CONFIG_MULTITHREAD
2456 int i;
2457
2458 if (row_mt_sync->mutex_ != NULL) {
2459 for (i = 0; i < row_mt_sync->rows; ++i) {
2460 pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
2461 }
2462 aom_free(row_mt_sync->mutex_);
2463 }
2464 if (row_mt_sync->cond_ != NULL) {
2465 for (i = 0; i < row_mt_sync->rows; ++i) {
2466 pthread_cond_destroy(&row_mt_sync->cond_[i]);
2467 }
2468 aom_free(row_mt_sync->cond_);
2469 }
2470 #endif // CONFIG_MULTITHREAD
2471 aom_free(row_mt_sync->num_finished_cols);
2472
2473 // clear the structure as the source of this call may be dynamic change
2474 // in tiles in which case this call will be followed by an _alloc()
2475 // which may fail.
2476 av1_zero(*row_mt_sync);
2477 }
2478 }
2479
prepare_wiener_var_workers(AV1_COMP * const cpi,AVxWorkerHook hook,const int num_workers)2480 static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi,
2481 AVxWorkerHook hook,
2482 const int num_workers) {
2483 MultiThreadInfo *const mt_info = &cpi->mt_info;
2484 for (int i = num_workers - 1; i >= 0; i--) {
2485 AVxWorker *const worker = &mt_info->workers[i];
2486 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
2487
2488 worker->hook = hook;
2489 worker->data1 = thread_data;
2490 worker->data2 = NULL;
2491
2492 thread_data->thread_id = i;
2493 // Set the starting tile for each thread, in this case the preprocessing
2494 // stage does not need tiles. So we set it to 0.
2495 thread_data->start = 0;
2496
2497 thread_data->cpi = cpi;
2498 if (i == 0) {
2499 thread_data->td = &cpi->td;
2500 } else {
2501 thread_data->td = thread_data->original_td;
2502 }
2503
2504 if (thread_data->td != &cpi->td) {
2505 thread_data->td->mb = cpi->td.mb;
2506 }
2507 }
2508 }
2509
cal_mb_wiener_var_hook(void * arg1,void * unused)2510 static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
2511 (void)unused;
2512 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
2513 AV1_COMP *const cpi = thread_data->cpi;
2514 MACROBLOCK *x = &thread_data->td->mb;
2515 MACROBLOCKD *xd = &x->e_mbd;
2516 const BLOCK_SIZE bsize = cpi->weber_bsize;
2517 const int mb_step = mi_size_wide[bsize];
2518 AV1EncRowMultiThreadSync *const row_mt_sync = &cpi->tile_data[0].row_mt_sync;
2519 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
2520 (void)enc_row_mt;
2521 #if CONFIG_MULTITHREAD
2522 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
2523 #endif
2524 DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
2525 DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
2526 DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
2527 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
2528 double sum_rec_distortion = 0;
2529 double sum_est_rate = 0;
2530 int has_jobs = 1;
2531 while (has_jobs) {
2532 int current_mi_row = -1;
2533 #if CONFIG_MULTITHREAD
2534 pthread_mutex_lock(enc_row_mt_mutex_);
2535 #endif
2536 has_jobs = get_next_job(&cpi->tile_data[0], ¤t_mi_row, mb_step);
2537 #if CONFIG_MULTITHREAD
2538 pthread_mutex_unlock(enc_row_mt_mutex_);
2539 #endif
2540 if (!has_jobs) break;
2541 // TODO(chengchen): properly accumulate the distortion and rate.
2542 av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
2543 qcoeff, dqcoeff, &sum_rec_distortion,
2544 &sum_est_rate);
2545 #if CONFIG_MULTITHREAD
2546 pthread_mutex_lock(enc_row_mt_mutex_);
2547 #endif
2548 row_mt_sync->num_threads_working--;
2549 #if CONFIG_MULTITHREAD
2550 pthread_mutex_unlock(enc_row_mt_mutex_);
2551 #endif
2552 }
2553 return 1;
2554 }
2555
2556 // This function is the multi-threading version of computing the wiener
2557 // variance.
2558 // Note that the wiener variance is used for allintra mode (1 pass) and its
2559 // computation is before the frame encoding, so we don't need to consider
2560 // the number of tiles, instead we allocate all available threads to
2561 // the computation.
av1_calc_mb_wiener_var_mt(AV1_COMP * cpi,int num_workers,double * sum_rec_distortion,double * sum_est_rate)2562 void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
2563 double *sum_rec_distortion,
2564 double *sum_est_rate) {
2565 (void)sum_rec_distortion;
2566 (void)sum_est_rate;
2567 AV1_COMMON *const cm = &cpi->common;
2568 MultiThreadInfo *const mt_info = &cpi->mt_info;
2569 const int tile_cols = 1;
2570 const int tile_rows = 1;
2571 if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
2572 CHECK_MEM_ERROR(
2573 cm, cpi->tile_data,
2574 aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
2575 cpi->allocated_tiles = tile_cols * tile_rows;
2576 cpi->tile_data->tile_info.mi_row_end = cm->mi_params.mi_rows;
2577 AV1EncRowMultiThreadSync *const row_mt_sync = &cpi->tile_data[0].row_mt_sync;
2578
2579 // TODO(chengchen): the memory usage could be improved.
2580 const int mi_rows = cm->mi_params.mi_rows;
2581 wiener_var_sync_mem_alloc(row_mt_sync, cm, mi_rows);
2582
2583 row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2584 row_mt_sync->num_threads_working = num_workers;
2585 row_mt_sync->next_mi_row = 0;
2586 memset(row_mt_sync->num_finished_cols, -1,
2587 sizeof(*row_mt_sync->num_finished_cols) * num_workers);
2588
2589 prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
2590 launch_workers(mt_info, num_workers);
2591 sync_enc_workers(mt_info, cm, num_workers);
2592
2593 wiener_var_sync_mem_dealloc(row_mt_sync);
2594 }
2595
2596 // Compare and order tiles based on absolute sum of tx coeffs.
compare_tile_order(const void * a,const void * b)2597 static int compare_tile_order(const void *a, const void *b) {
2598 const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
2599 const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;
2600
2601 if (tile_a->abs_sum_level > tile_b->abs_sum_level)
2602 return -1;
2603 else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
2604 return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
2605 else
2606 return 1;
2607 }
2608
2609 // Get next tile index to be processed for pack bitstream
get_next_pack_bs_tile_idx(AV1EncPackBSSync * const pack_bs_sync,const int num_tiles)2610 static AOM_INLINE int get_next_pack_bs_tile_idx(
2611 AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
2612 assert(pack_bs_sync->next_job_idx <= num_tiles);
2613 if (pack_bs_sync->next_job_idx == num_tiles) return -1;
2614
2615 return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
2616 .tile_idx;
2617 }
2618
2619 // Calculates bitstream chunk size based on total buffer size and tile or tile
2620 // group size.
get_bs_chunk_size(int tg_or_tile_size,const int frame_or_tg_size,size_t * remain_buf_size,size_t max_buf_size,int is_last_chunk)2621 static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size,
2622 const int frame_or_tg_size,
2623 size_t *remain_buf_size,
2624 size_t max_buf_size,
2625 int is_last_chunk) {
2626 size_t this_chunk_size;
2627 assert(*remain_buf_size > 0);
2628 if (is_last_chunk) {
2629 this_chunk_size = *remain_buf_size;
2630 *remain_buf_size = 0;
2631 } else {
2632 const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
2633 this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
2634 *remain_buf_size -= this_chunk_size;
2635 assert(*remain_buf_size > 0);
2636 }
2637 assert(this_chunk_size > 0);
2638 return this_chunk_size;
2639 }
2640
2641 // Initializes params required for pack bitstream tile.
init_tile_pack_bs_params(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,PackBSParams * const pack_bs_params_arr,uint8_t obu_extn_header)2642 static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
2643 struct aom_write_bit_buffer *saved_wb,
2644 PackBSParams *const pack_bs_params_arr,
2645 uint8_t obu_extn_header) {
2646 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2647 AV1_COMMON *const cm = &cpi->common;
2648 const CommonTileParams *const tiles = &cm->tiles;
2649 const int num_tiles = tiles->cols * tiles->rows;
2650 // Fixed size tile groups for the moment
2651 const int num_tg_hdrs = cpi->num_tg;
2652 // Tile group size in terms of number of tiles.
2653 const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
2654 uint8_t *tile_dst = dst;
2655 uint8_t *tile_data_curr = dst;
2656 // Max tile group count can not be more than MAX_TILES.
2657 int tg_size_mi[MAX_TILES] = { 0 }; // Size of tile group in mi units
2658 int tile_idx;
2659 int tg_idx = 0;
2660 int tile_count_in_tg = 0;
2661 int new_tg = 1;
2662
2663 // Populate pack bitstream params of all tiles.
2664 for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2665 const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
2666 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2667 // Calculate tile size in mi units.
2668 const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
2669 (tile_info->mi_row_end - tile_info->mi_row_start);
2670 int is_last_tile_in_tg = 0;
2671 tile_count_in_tg++;
2672 if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
2673 is_last_tile_in_tg = 1;
2674
2675 // Populate pack bitstream params of this tile.
2676 pack_bs_params->curr_tg_hdr_size = 0;
2677 pack_bs_params->obu_extn_header = obu_extn_header;
2678 pack_bs_params->saved_wb = saved_wb;
2679 pack_bs_params->obu_header_size = 0;
2680 pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
2681 pack_bs_params->new_tg = new_tg;
2682 pack_bs_params->tile_col = tile_info->tile_col;
2683 pack_bs_params->tile_row = tile_info->tile_row;
2684 pack_bs_params->tile_size_mi = tile_size_mi;
2685 tg_size_mi[tg_idx] += tile_size_mi;
2686
2687 if (new_tg) new_tg = 0;
2688 if (is_last_tile_in_tg) {
2689 tile_count_in_tg = 0;
2690 new_tg = 1;
2691 tg_idx++;
2692 }
2693 }
2694
2695 assert(cpi->available_bs_size > 0);
2696 size_t tg_buf_size[MAX_TILES] = { 0 };
2697 size_t max_buf_size = cpi->available_bs_size;
2698 size_t remain_buf_size = max_buf_size;
2699 const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;
2700
2701 tile_idx = 0;
2702 // Prepare obu, tile group and frame header of each tile group.
2703 for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
2704 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2705 int is_last_tg = tg_idx == cpi->num_tg - 1;
2706 // Prorate bitstream buffer size based on tile group size and available
2707 // buffer size. This buffer will be used to store headers and tile data.
2708 tg_buf_size[tg_idx] =
2709 get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
2710 max_buf_size, is_last_tg);
2711
2712 pack_bs_params->dst = tile_dst;
2713 pack_bs_params->tile_data_curr = tile_dst;
2714
2715 // Write obu, tile group and frame header at first tile in the tile
2716 // group.
2717 av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
2718 tile_dst += tg_buf_size[tg_idx];
2719
2720 // Exclude headers from tile group buffer size.
2721 tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
2722 tile_idx += tg_size_in_tiles;
2723 }
2724
2725 tg_idx = 0;
2726 // Calculate bitstream buffer size of each tile in the tile group.
2727 for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2728 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2729
2730 if (pack_bs_params->new_tg) {
2731 max_buf_size = tg_buf_size[tg_idx];
2732 remain_buf_size = max_buf_size;
2733 }
2734
2735 // Prorate bitstream buffer size of this tile based on tile size and
2736 // available buffer size. For this proration, header size is not accounted.
2737 const size_t tile_buf_size = get_bs_chunk_size(
2738 pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
2739 max_buf_size, pack_bs_params->is_last_tile_in_tg);
2740 pack_bs_params->tile_buf_size = tile_buf_size;
2741
2742 // Update base address of bitstream buffer for tile and tile group.
2743 if (pack_bs_params->new_tg) {
2744 tile_dst = pack_bs_params->dst;
2745 tile_data_curr = pack_bs_params->tile_data_curr;
2746 // Account header size in first tile of a tile group.
2747 pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
2748 } else {
2749 pack_bs_params->dst = tile_dst;
2750 pack_bs_params->tile_data_curr = tile_data_curr;
2751 }
2752
2753 if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
2754 tile_dst += pack_bs_params->tile_buf_size;
2755 }
2756 }
2757
2758 // Worker hook function of pack bitsteam multithreading.
pack_bs_worker_hook(void * arg1,void * arg2)2759 static int pack_bs_worker_hook(void *arg1, void *arg2) {
2760 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
2761 PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
2762 AV1_COMP *const cpi = thread_data->cpi;
2763 AV1_COMMON *const cm = &cpi->common;
2764 AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
2765 const CommonTileParams *const tiles = &cm->tiles;
2766 const int num_tiles = tiles->cols * tiles->rows;
2767
2768 while (1) {
2769 #if CONFIG_MULTITHREAD
2770 pthread_mutex_lock(pack_bs_sync->mutex_);
2771 #endif
2772 const int tile_idx = get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
2773 #if CONFIG_MULTITHREAD
2774 pthread_mutex_unlock(pack_bs_sync->mutex_);
2775 #endif
2776 if (tile_idx == -1) break;
2777 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
2778 thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
2779
2780 av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
2781 }
2782
2783 return 1;
2784 }
2785
2786 // Prepares thread data and workers of pack bitsteam multithreading.
prepare_pack_bs_workers(AV1_COMP * const cpi,PackBSParams * const pack_bs_params,AVxWorkerHook hook,const int num_workers)2787 static void prepare_pack_bs_workers(AV1_COMP *const cpi,
2788 PackBSParams *const pack_bs_params,
2789 AVxWorkerHook hook, const int num_workers) {
2790 MultiThreadInfo *const mt_info = &cpi->mt_info;
2791 for (int i = num_workers - 1; i >= 0; i--) {
2792 AVxWorker *worker = &mt_info->workers[i];
2793 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
2794 if (i == 0) {
2795 thread_data->td = &cpi->td;
2796 } else {
2797 thread_data->td = thread_data->original_td;
2798 }
2799
2800 if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;
2801
2802 thread_data->cpi = cpi;
2803 thread_data->start = i;
2804 thread_data->thread_id = i;
2805 av1_reset_pack_bs_thread_data(thread_data->td);
2806
2807 worker->hook = hook;
2808 worker->data1 = thread_data;
2809 worker->data2 = pack_bs_params;
2810 }
2811
2812 AV1_COMMON *const cm = &cpi->common;
2813 AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
2814 const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
2815 pack_bs_sync->next_job_idx = 0;
2816
2817 PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
2818 // Reset tile order data of pack bitstream
2819 av1_zero_array(pack_bs_tile_order, num_tiles);
2820
2821 // Populate pack bitstream tile order structure
2822 for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2823 pack_bs_tile_order[tile_idx].abs_sum_level =
2824 cpi->tile_data[tile_idx].abs_sum_level;
2825 pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
2826 }
2827
2828 // Sort tiles in descending order based on tile area.
2829 qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
2830 compare_tile_order);
2831 }
2832
2833 // Accumulates data after pack bitsteam processing.
accumulate_pack_bs_data(AV1_COMP * const cpi,const PackBSParams * const pack_bs_params_arr,uint8_t * const dst,uint32_t * total_size,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)2834 static void accumulate_pack_bs_data(
2835 AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
2836 uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
2837 int *const largest_tile_id, unsigned int *max_tile_size,
2838 uint32_t *const obu_header_size, uint8_t **tile_data_start,
2839 const int num_workers) {
2840 const AV1_COMMON *const cm = &cpi->common;
2841 const CommonTileParams *const tiles = &cm->tiles;
2842 const int tile_count = tiles->cols * tiles->rows;
2843 // Fixed size tile groups for the moment
2844 size_t curr_tg_data_size = 0;
2845 int is_first_tg = 1;
2846 uint8_t *curr_tg_start = dst;
2847 size_t src_offset = 0;
2848 size_t dst_offset = 0;
2849
2850 for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
2851 // PackBSParams stores all parameters required to pack tile and header
2852 // info.
2853 const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2854 uint32_t tile_size = 0;
2855
2856 if (pack_bs_params->new_tg) {
2857 curr_tg_start = dst + *total_size;
2858 curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
2859 *tile_data_start += pack_bs_params->curr_tg_hdr_size;
2860 *obu_header_size = pack_bs_params->obu_header_size;
2861 }
2862 curr_tg_data_size +=
2863 pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);
2864
2865 if (pack_bs_params->buf.size > *max_tile_size) {
2866 *largest_tile_id = tile_idx;
2867 *max_tile_size = (unsigned int)pack_bs_params->buf.size;
2868 }
2869 tile_size +=
2870 (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;
2871
2872 // Pack all the chunks of tile bitstreams together
2873 if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);
2874
2875 if (pack_bs_params->is_last_tile_in_tg)
2876 av1_write_last_tile_info(
2877 cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
2878 curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
2879 &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
2880 src_offset += pack_bs_params->tile_buf_size;
2881 dst_offset += tile_size;
2882 *total_size += tile_size;
2883 }
2884
2885 // Accumulate thread data
2886 MultiThreadInfo *const mt_info = &cpi->mt_info;
2887 for (int idx = num_workers - 1; idx >= 0; idx--) {
2888 ThreadData const *td = mt_info->tile_thr_data[idx].td;
2889 av1_accumulate_pack_bs_thread_data(cpi, td);
2890 }
2891 }
2892
av1_write_tile_obu_mt(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)2893 void av1_write_tile_obu_mt(
2894 AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
2895 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
2896 const FrameHeaderInfo *fh_info, int *const largest_tile_id,
2897 unsigned int *max_tile_size, uint32_t *const obu_header_size,
2898 uint8_t **tile_data_start, const int num_workers) {
2899 MultiThreadInfo *const mt_info = &cpi->mt_info;
2900
2901 PackBSParams pack_bs_params[MAX_TILES];
2902 uint32_t tile_size[MAX_TILES] = { 0 };
2903
2904 for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
2905 pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];
2906
2907 init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
2908 prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
2909 num_workers);
2910 launch_workers(mt_info, num_workers);
2911 sync_enc_workers(mt_info, &cpi->common, num_workers);
2912 accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
2913 largest_tile_id, max_tile_size, obu_header_size,
2914 tile_data_start, num_workers);
2915 }
2916
2917 // Deallocate memory for CDEF search multi-thread synchronization.
av1_cdef_mt_dealloc(AV1CdefSync * cdef_sync)2918 void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
2919 (void)cdef_sync;
2920 assert(cdef_sync != NULL);
2921 #if CONFIG_MULTITHREAD
2922 if (cdef_sync->mutex_ != NULL) {
2923 pthread_mutex_destroy(cdef_sync->mutex_);
2924 aom_free(cdef_sync->mutex_);
2925 }
2926 #endif // CONFIG_MULTITHREAD
2927 }
2928
2929 // Updates the row and column indices of the next job to be processed.
2930 // Also updates end_of_frame flag when the processing of all blocks is complete.
update_next_job_info(AV1CdefSync * cdef_sync,int nvfb,int nhfb)2931 static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
2932 cdef_sync->fbc++;
2933 if (cdef_sync->fbc == nhfb) {
2934 cdef_sync->fbr++;
2935 if (cdef_sync->fbr == nvfb) {
2936 cdef_sync->end_of_frame = 1;
2937 } else {
2938 cdef_sync->fbc = 0;
2939 }
2940 }
2941 }
2942
2943 // Initializes cdef_sync parameters.
cdef_reset_job_info(AV1CdefSync * cdef_sync)2944 static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
2945 #if CONFIG_MULTITHREAD
2946 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
2947 #endif // CONFIG_MULTITHREAD
2948 cdef_sync->end_of_frame = 0;
2949 cdef_sync->fbr = 0;
2950 cdef_sync->fbc = 0;
2951 }
2952
2953 // Checks if a job is available. If job is available,
2954 // populates next job information and returns 1, else returns 0.
cdef_get_next_job(AV1CdefSync * cdef_sync,CdefSearchCtx * cdef_search_ctx,int * cur_fbr,int * cur_fbc,int * sb_count)2955 static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync,
2956 CdefSearchCtx *cdef_search_ctx,
2957 int *cur_fbr, int *cur_fbc,
2958 int *sb_count) {
2959 #if CONFIG_MULTITHREAD
2960 pthread_mutex_lock(cdef_sync->mutex_);
2961 #endif // CONFIG_MULTITHREAD
2962 int do_next_block = 0;
2963 const int nvfb = cdef_search_ctx->nvfb;
2964 const int nhfb = cdef_search_ctx->nhfb;
2965
2966 // If a block is skip, do not process the block and
2967 // check the skip condition for the next block.
2968 while ((!cdef_sync->end_of_frame) &&
2969 (cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
2970 cdef_sync->fbc))) {
2971 update_next_job_info(cdef_sync, nvfb, nhfb);
2972 }
2973
2974 // Populates information needed for current job and update the row,
2975 // column indices of the next block to be processed.
2976 if (cdef_sync->end_of_frame == 0) {
2977 do_next_block = 1;
2978 *cur_fbr = cdef_sync->fbr;
2979 *cur_fbc = cdef_sync->fbc;
2980 *sb_count = cdef_search_ctx->sb_count;
2981 cdef_search_ctx->sb_count++;
2982 update_next_job_info(cdef_sync, nvfb, nhfb);
2983 }
2984 #if CONFIG_MULTITHREAD
2985 pthread_mutex_unlock(cdef_sync->mutex_);
2986 #endif // CONFIG_MULTITHREAD
2987 return do_next_block;
2988 }
2989
2990 // Hook function for each thread in CDEF search multi-threading.
cdef_filter_block_worker_hook(void * arg1,void * arg2)2991 static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
2992 AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
2993 CdefSearchCtx *cdef_search_ctx = (CdefSearchCtx *)arg2;
2994 int cur_fbr, cur_fbc, sb_count;
2995 while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
2996 &sb_count)) {
2997 av1_cdef_mse_calc_block(cdef_search_ctx, cur_fbr, cur_fbc, sb_count);
2998 }
2999 return 1;
3000 }
3001
3002 // Assigns CDEF search hook function and thread data to each worker.
prepare_cdef_workers(MultiThreadInfo * mt_info,CdefSearchCtx * cdef_search_ctx,AVxWorkerHook hook,int num_workers)3003 static void prepare_cdef_workers(MultiThreadInfo *mt_info,
3004 CdefSearchCtx *cdef_search_ctx,
3005 AVxWorkerHook hook, int num_workers) {
3006 for (int i = num_workers - 1; i >= 0; i--) {
3007 AVxWorker *worker = &mt_info->workers[i];
3008 worker->hook = hook;
3009 worker->data1 = &mt_info->cdef_sync;
3010 worker->data2 = cdef_search_ctx;
3011 }
3012 }
3013
3014 // Implements multi-threading for CDEF search.
av1_cdef_mse_calc_frame_mt(AV1_COMMON * cm,MultiThreadInfo * mt_info,CdefSearchCtx * cdef_search_ctx)3015 void av1_cdef_mse_calc_frame_mt(AV1_COMMON *cm, MultiThreadInfo *mt_info,
3016 CdefSearchCtx *cdef_search_ctx) {
3017 AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
3018 const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
3019
3020 cdef_reset_job_info(cdef_sync);
3021 prepare_cdef_workers(mt_info, cdef_search_ctx, cdef_filter_block_worker_hook,
3022 num_workers);
3023 launch_workers(mt_info, num_workers);
3024 sync_enc_workers(mt_info, cm, num_workers);
3025 }
3026
3027 // Computes num_workers for temporal filter multi-threading.
compute_num_tf_workers(AV1_COMP * cpi)3028 static AOM_INLINE int compute_num_tf_workers(AV1_COMP *cpi) {
3029 // For single-pass encode, using no. of workers as per tf block size was not
3030 // found to improve speed. Hence the thread assignment for single-pass encode
3031 // is kept based on compute_num_enc_workers().
3032 if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
3033 return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads));
3034
3035 if (cpi->oxcf.max_threads <= 1) return 1;
3036
3037 const int frame_height = cpi->common.height;
3038 const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
3039 const int mb_height = block_size_high[block_size];
3040 const int mb_rows = get_num_blocks(frame_height, mb_height);
3041 return AOMMIN(cpi->oxcf.max_threads, mb_rows);
3042 }
3043
3044 // Computes num_workers for tpl multi-threading.
compute_num_tpl_workers(AV1_COMP * cpi)3045 static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
3046 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3047 }
3048
3049 // Computes num_workers for loop filter multi-threading.
compute_num_lf_workers(AV1_COMP * cpi)3050 static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) {
3051 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3052 }
3053
3054 // Computes num_workers for cdef multi-threading.
compute_num_cdef_workers(AV1_COMP * cpi)3055 static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) {
3056 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3057 }
3058
3059 // Computes num_workers for loop-restoration multi-threading.
compute_num_lr_workers(AV1_COMP * cpi)3060 static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) {
3061 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3062 }
3063
3064 // Computes num_workers for pack bitstream multi-threading.
compute_num_pack_bs_workers(AV1_COMP * cpi)3065 static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) {
3066 if (cpi->oxcf.max_threads <= 1) return 1;
3067 return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
3068 }
3069
3070 // Computes num_workers for all intra multi-threading.
compute_num_ai_workers(AV1_COMP * cpi)3071 static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) {
3072 if (cpi->oxcf.max_threads <= 1) return 1;
3073 cpi->weber_bsize = BLOCK_8X8;
3074 const BLOCK_SIZE bsize = cpi->weber_bsize;
3075 const int mb_step = mi_size_wide[bsize];
3076 const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
3077 return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
3078 }
3079
compute_num_mod_workers(AV1_COMP * cpi,MULTI_THREADED_MODULES mod_name)3080 int compute_num_mod_workers(AV1_COMP *cpi, MULTI_THREADED_MODULES mod_name) {
3081 int num_mod_workers = 0;
3082 switch (mod_name) {
3083 case MOD_FP:
3084 if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
3085 num_mod_workers = 0;
3086 else
3087 num_mod_workers =
3088 av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3089 break;
3090 case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
3091 case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
3092 case MOD_GME: num_mod_workers = 1; break;
3093 case MOD_ENC:
3094 num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3095 break;
3096 case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
3097 case MOD_CDEF_SEARCH:
3098 num_mod_workers = compute_num_cdef_workers(cpi);
3099 break;
3100 case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
3101 case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
3102 case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
3103 case MOD_FRAME_ENC:
3104 num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
3105 break;
3106 case MOD_AI:
3107 if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
3108 num_mod_workers = compute_num_ai_workers(cpi);
3109 break;
3110 } else {
3111 num_mod_workers = 0;
3112 break;
3113 }
3114 default: assert(0); break;
3115 }
3116 return (num_mod_workers);
3117 }
3118 // Computes the number of workers for each MT modules in the encoder
av1_compute_num_workers_for_mt(AV1_COMP * cpi)3119 void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
3120 for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
3121 cpi->ppi->p_mt_info.num_mod_workers[i] =
3122 compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
3123 }
3124