• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <math.h>
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "av1/encoder/ml.h"
17 
av1_nn_output_prec_reduce(float * const output,int num_output)18 void av1_nn_output_prec_reduce(float *const output, int num_output) {
19   const int prec_bits = 9;
20   const int prec = 1 << prec_bits;
21   const float inv_prec = (float)(1.0 / prec);
22   for (int i = 0; i < num_output; i++) {
23     output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec;
24   }
25 }
26 
27 // Calculate prediction based on the given input features and neural net config.
28 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
29 // layer.
av1_nn_predict_c(const float * input_nodes,const NN_CONFIG * const nn_config,int reduce_prec,float * const output)30 void av1_nn_predict_c(const float *input_nodes,
31                       const NN_CONFIG *const nn_config, int reduce_prec,
32                       float *const output) {
33   int num_input_nodes = nn_config->num_inputs;
34   int buf_index = 0;
35   float buf[2][NN_MAX_NODES_PER_LAYER];
36 
37   // Propagate hidden layers.
38   const int num_layers = nn_config->num_hidden_layers;
39   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
40   for (int layer = 0; layer < num_layers; ++layer) {
41     const float *layer_weights = nn_config->weights[layer];
42     const float *layer_bias = nn_config->bias[layer];
43     float *output_nodes = buf[buf_index];
44     const int num_output_nodes = nn_config->num_hidden_nodes[layer];
45     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
46     for (int node = 0; node < num_output_nodes; ++node) {
47       float val = layer_bias[node];
48       for (int i = 0; i < num_input_nodes; ++i)
49         val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
50       // ReLU as activation function.
51       val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX().
52       output_nodes[node] = val;
53     }
54     num_input_nodes = num_output_nodes;
55     input_nodes = output_nodes;
56     buf_index = 1 - buf_index;
57   }
58 
59   // Final output layer.
60   const float *layer_weights = nn_config->weights[num_layers];
61   const float *layer_bias = nn_config->bias[num_layers];
62   for (int node = 0; node < nn_config->num_outputs; ++node) {
63     float val = layer_bias[node];
64     for (int i = 0; i < num_input_nodes; ++i)
65       val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
66     output[node] = val;
67   }
68   if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
69 }
70 
71 #if CONFIG_NN_V2
72 // Applies the ReLu activation to one fc layer
73 // output[i] = Max(input[i],0.0f)
nn_relu(const float * input,FC_LAYER * layer)74 static float *nn_relu(const float *input, FC_LAYER *layer) {
75   for (int i = 0; i < layer->num_outputs; ++i) {
76     layer->output[i] = AOMMAX(input[i], 0.0f);
77   }
78 
79   return layer->output;
80 }
81 
82 // Applies the Sigmoid activation to one fc layer
83 // output[i] = 1/(1+exp(input[i]))
nn_sigmoid(const float * input,FC_LAYER * layer)84 static float *nn_sigmoid(const float *input, FC_LAYER *layer) {
85   for (int i = 0; i < layer->num_outputs; ++i) {
86     const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f);
87     layer->output[i] = 1.0f / (1.0f + expf(-tmp));
88   }
89 
90   return layer->output;
91 }
92 
93 // Forward prediction in one fc layer, used in function av1_nn_predict_V2
nn_fc_forward(const float * input,FC_LAYER * layer)94 static float *nn_fc_forward(const float *input, FC_LAYER *layer) {
95   const float *weights = layer->weights;
96   const float *bias = layer->bias;
97   assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER);
98   // fc
99   for (int node = 0; node < layer->num_outputs; ++node) {
100     float val = bias[node];
101     for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i];
102     layer->output[node] = val;
103     weights += layer->num_inputs;
104   }
105 
106   // activation
107   switch (layer->activation) {
108     case NONE: return layer->output;
109     case RELU: return nn_relu(layer->output, layer);
110     case SIGMOID: return nn_sigmoid(layer->output, layer);
111     case SOFTSIGN:
112       assert(0 && "Softsign has not been supported in NN.");  // TO DO
113       return NULL;
114     default:
115       assert(0 && "Unknown activation");  // Unknown activation
116       return NULL;
117   }
118 }
119 
av1_nn_predict_v2(const float * feature,NN_CONFIG_V2 * nn_config,int reduce_prec,float * output)120 void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config,
121                        int reduce_prec, float *output) {
122   const float *input_nodes = feature;
123 
124   // Propagate the layers.
125   const int num_layers = nn_config->num_hidden_layers;
126   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
127   for (int i = 0; i < num_layers; ++i) {
128     input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i);
129     assert(nn_config->layer[i + 1].num_inputs ==
130            nn_config->layer[i].num_outputs);
131   }
132 
133   // Final layer
134   input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers);
135   assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits);
136   // Copy the final layer output
137   memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits);
138   if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits);
139 }
140 #endif  // CONFIG_NN_V2
141 
av1_nn_softmax(const float * input,float * output,int n)142 void av1_nn_softmax(const float *input, float *output, int n) {
143   // Softmax function is invariant to adding the same constant
144   // to all input values, so we subtract the maximum input to avoid
145   // possible overflow.
146   float max_input = input[0];
147   for (int i = 1; i < n; i++) max_input = AOMMAX(max_input, input[i]);
148   float sum_out = 0.0f;
149   for (int i = 0; i < n; i++) {
150     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
151     const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
152     output[i] = expf(normalized_input);
153     sum_out += output[i];
154   }
155   for (int i = 0; i < n; i++) output[i] /= sum_out;
156 }
157 
approx_exp(float y)158 static AOM_INLINE float approx_exp(float y) {
159 #define A ((1 << 23) / 0.69314718056f)  // (1 << 23) / ln(2)
160 #define B \
161   127  // Offset for the exponent according to IEEE floating point standard.
162 #define C 60801  // Magic number controls the accuracy of approximation
163   union {
164     float as_float;
165     int32_t as_int32;
166   } container;
167   container.as_int32 = ((int32_t)(y * A)) + ((B << 23) - C);
168   return container.as_float;
169 #undef A
170 #undef B
171 #undef C
172 }
173 
av1_nn_fast_softmax_16_c(const float * input,float * output)174 void av1_nn_fast_softmax_16_c(const float *input, float *output) {
175   const int kNumClasses = 16;
176   float max_input = input[0];
177   for (int i = 1; i < kNumClasses; i++) max_input = AOMMAX(max_input, input[i]);
178   float sum_out = 0.0f;
179   for (int i = 0; i < kNumClasses; i++) {
180     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
181     const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
182     output[i] = approx_exp(normalized_input);
183     sum_out += output[i];
184   }
185   for (int i = 0; i < kNumClasses; i++) output[i] /= sum_out;
186 }
187