• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/av1_rtcd.h"
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/bitwriter.h"
17 #include "aom_dsp/quantize.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_ports/mem.h"
20 
21 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
22 #include "aom_util/debug_util.h"
23 #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
24 
25 #include "av1/common/cfl.h"
26 #include "av1/common/idct.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/scan.h"
30 
31 #include "av1/encoder/av1_quantize.h"
32 #include "av1/encoder/encodemb.h"
33 #include "av1/encoder/hybrid_fwd_txfm.h"
34 #include "av1/encoder/txb_rdopt.h"
35 #include "av1/encoder/rd.h"
36 #include "av1/encoder/rdopt.h"
37 
av1_subtract_block(BitDepthInfo bd_info,int rows,int cols,int16_t * diff,ptrdiff_t diff_stride,const uint8_t * src8,ptrdiff_t src_stride,const uint8_t * pred8,ptrdiff_t pred_stride)38 void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
39                         ptrdiff_t diff_stride, const uint8_t *src8,
40                         ptrdiff_t src_stride, const uint8_t *pred8,
41                         ptrdiff_t pred_stride) {
42   assert(rows >= 4 && cols >= 4);
43 #if CONFIG_AV1_HIGHBITDEPTH
44   if (bd_info.use_highbitdepth_buf) {
45     aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
46                               pred8, pred_stride);
47     return;
48   }
49 #endif
50   (void)bd_info;
51   aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
52                      pred_stride);
53 }
54 
av1_subtract_txb(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int blk_col,int blk_row,TX_SIZE tx_size)55 void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
56                       int blk_col, int blk_row, TX_SIZE tx_size) {
57   MACROBLOCKD *const xd = &x->e_mbd;
58   const BitDepthInfo bd_info = get_bit_depth_info(xd);
59   struct macroblock_plane *const p = &x->plane[plane];
60   const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
61   const int diff_stride = block_size_wide[plane_bsize];
62   const int src_stride = p->src.stride;
63   const int dst_stride = pd->dst.stride;
64   const int tx1d_width = tx_size_wide[tx_size];
65   const int tx1d_height = tx_size_high[tx_size];
66   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
67   uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
68   int16_t *src_diff =
69       &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
70   av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
71                      src, src_stride, dst, dst_stride);
72 }
73 
av1_subtract_plane(MACROBLOCK * x,BLOCK_SIZE plane_bsize,int plane)74 void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
75   struct macroblock_plane *const p = &x->plane[plane];
76   const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
77   assert(plane_bsize < BLOCK_SIZES_ALL);
78   const int bw = block_size_wide[plane_bsize];
79   const int bh = block_size_high[plane_bsize];
80   const MACROBLOCKD *xd = &x->e_mbd;
81   const BitDepthInfo bd_info = get_bit_depth_info(xd);
82 
83   av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
84                      p->src.stride, pd->dst.buf, pd->dst.stride);
85 }
86 
av1_optimize_b(const struct AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int * rate_cost)87 int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
88                    int block, TX_SIZE tx_size, TX_TYPE tx_type,
89                    const TXB_CTX *const txb_ctx, int *rate_cost) {
90   MACROBLOCKD *const xd = &x->e_mbd;
91   struct macroblock_plane *const p = &x->plane[plane];
92   const int eob = p->eobs[block];
93   const int segment_id = xd->mi[0]->segment_id;
94 
95   if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
96       xd->lossless[segment_id]) {
97     *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
98     return eob;
99   }
100 
101   return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
102                           rate_cost, cpi->oxcf.algo_cfg.sharpness);
103 }
104 
105 // Hyper-parameters for dropout optimization, based on following logics.
106 // TODO(yjshen): These settings are tuned by experiments. They may still be
107 // optimized for better performance.
108 // (1) Coefficients which are large enough will ALWAYS be kept.
109 const tran_low_t DROPOUT_COEFF_MAX = 2;  // Max dropout-able coefficient.
110 // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
111 //     NOT required. For example, `5 0 0 0 7` is treated as two continuous
112 //     coefficients if three zeros do not fulfill the dropout condition.
113 const int DROPOUT_CONTINUITY_MAX = 2;  // Max dropout-able continuous coeff.
114 // (3) Dropout operation is NOT applicable to blocks with large or small
115 //     quantization index.
116 const int DROPOUT_Q_MAX = 128;
117 const int DROPOUT_Q_MIN = 16;
118 // (4) Recall that dropout optimization will forcibly set some quantized
119 //     coefficients to zero. The key logic on determining whether a coefficient
120 //     should be dropped is to check the number of continuous zeros before AND
121 //     after this coefficient. The exact number of zeros for judgement depends
122 //     on block size and quantization index. More concretely, block size
123 //     determines the base number of zeros, while quantization index determines
124 //     the multiplier. Intuitively, larger block requires more zeros and larger
125 //     quantization index also requires more zeros (more information is lost
126 //     when using larger quantization index).
127 const int DROPOUT_BEFORE_BASE_MAX = 32;  // Max base number for leading zeros.
128 const int DROPOUT_BEFORE_BASE_MIN = 16;  // Min base number for leading zeros.
129 const int DROPOUT_AFTER_BASE_MAX = 32;   // Max base number for trailing zeros.
130 const int DROPOUT_AFTER_BASE_MIN = 16;   // Min base number for trailing zeros.
131 const int DROPOUT_MULTIPLIER_MAX = 8;    // Max multiplier on number of zeros.
132 const int DROPOUT_MULTIPLIER_MIN = 2;    // Min multiplier on number of zeros.
133 const int DROPOUT_MULTIPLIER_Q_BASE = 32;  // Base Q to compute multiplier.
134 
av1_dropout_qcoeff(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int qindex)135 void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
136                         TX_TYPE tx_type, int qindex) {
137   const int tx_width = tx_size_wide[tx_size];
138   const int tx_height = tx_size_high[tx_size];
139 
140   // Early return if `qindex` is out of range.
141   if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
142     return;
143   }
144 
145   // Compute number of zeros used for dropout judgement.
146   const int base_size = AOMMAX(tx_width, tx_height);
147   const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
148                               DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
149   const int dropout_num_before =
150       multiplier *
151       CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
152   const int dropout_num_after =
153       multiplier *
154       CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
155 
156   av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
157                          dropout_num_after);
158 }
159 
av1_dropout_qcoeff_num(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int dropout_num_before,int dropout_num_after)160 void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
161                             TX_SIZE tx_size, TX_TYPE tx_type,
162                             int dropout_num_before, int dropout_num_after) {
163   const struct macroblock_plane *const p = &mb->plane[plane];
164   tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
165   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
166   const int max_eob = av1_get_max_eob(tx_size);
167   const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
168 
169   // Early return if there are not enough non-zero coefficients.
170   if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before ||
171       max_eob <= dropout_num_before + dropout_num_after) {
172     return;
173   }
174 
175   int count_zeros_before = 0;
176   int count_zeros_after = 0;
177   int count_nonzeros = 0;
178   // Index of the first non-zero coefficient after sufficient number of
179   // continuous zeros. If equals to `-1`, it means number of leading zeros
180   // hasn't reach `dropout_num_before`.
181   int idx = -1;
182   int eob = 0;  // New end of block.
183 
184   for (int i = 0; i < p->eobs[block]; ++i) {
185     const int scan_idx = scan_order->scan[i];
186     if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
187       // Keep large coefficients.
188       count_zeros_before = 0;
189       count_zeros_after = 0;
190       idx = -1;
191       eob = i + 1;
192     } else if (qcoeff[scan_idx] == 0) {  // Count zeros.
193       if (idx == -1) {
194         ++count_zeros_before;
195       } else {
196         ++count_zeros_after;
197       }
198     } else {  // Count non-zeros.
199       if (count_zeros_before >= dropout_num_before) {
200         idx = (idx == -1) ? i : idx;
201         ++count_nonzeros;
202       } else {
203         count_zeros_before = 0;
204         eob = i + 1;
205       }
206     }
207 
208     // Handle continuity.
209     if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
210       count_zeros_before = 0;
211       count_zeros_after = 0;
212       count_nonzeros = 0;
213       idx = -1;
214       eob = i + 1;
215     }
216 
217     // Handle the trailing zeros after original end of block.
218     if (idx != -1 && i == p->eobs[block] - 1) {
219       count_zeros_after += (max_eob - p->eobs[block]);
220     }
221 
222     // Set redundant coefficients to zeros if needed.
223     if (count_zeros_after >= dropout_num_after) {
224       for (int j = idx; j <= i; ++j) {
225         qcoeff[scan_order->scan[j]] = 0;
226         dqcoeff[scan_order->scan[j]] = 0;
227       }
228       count_zeros_before += (i - idx + 1);
229       count_zeros_after = 0;
230       count_nonzeros = 0;
231     } else if (i == p->eobs[block] - 1) {
232       eob = i + 1;
233     }
234   }
235 
236   if (eob != p->eobs[block]) {
237     p->eobs[block] = eob;
238     p->txb_entropy_ctx[block] =
239         av1_get_txb_entropy_context(qcoeff, scan_order, eob);
240   }
241 }
242 
243 // Settings for optimization type. NOTE: To set optimization type for all intra
244 // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
245 // TODO(yjshen): These settings are hard-coded and look okay for now. They
246 // should be made configurable later.
247 // Blocks of key frames ONLY.
248 const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
249 // Blocks of intra frames (key frames EXCLUSIVE).
250 const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
251 // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
252 // if trellis optimization is on for inter frames.)
253 const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
254 
255 enum {
256   QUANT_FUNC_LOWBD = 0,
257   QUANT_FUNC_HIGHBD = 1,
258   QUANT_FUNC_TYPES = 2
259 } UENUM1BYTE(QUANT_FUNC);
260 
261 #if CONFIG_AV1_HIGHBITDEPTH
262 static AV1_QUANT_FACADE
263     quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
264       { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
265       { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
266       { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
267       { NULL, NULL }
268     };
269 #else
270 static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
271   av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
272 };
273 #endif
274 
275 // Computes the transform for DC only blocks
av1_xform_dc_only(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,int64_t per_px_mean)276 void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
277                        TxfmParam *txfm_param, int64_t per_px_mean) {
278   assert(per_px_mean != INT64_MAX);
279   const struct macroblock_plane *const p = &x->plane[plane];
280   const int block_offset = BLOCK_OFFSET(block);
281   tran_low_t *const coeff = p->coeff + block_offset;
282   const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
283   memset(coeff, 0, sizeof(*coeff) * n_coeffs);
284   coeff[0] =
285       (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
286 }
287 
av1_xform_quant(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param,const QUANT_PARAM * qparam)288 void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
289                      int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
290                      const QUANT_PARAM *qparam) {
291   av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
292   av1_quant(x, plane, block, txfm_param, qparam);
293 }
294 
av1_xform(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param)295 void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
296                BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
297   const struct macroblock_plane *const p = &x->plane[plane];
298   const int block_offset = BLOCK_OFFSET(block);
299   tran_low_t *const coeff = p->coeff + block_offset;
300   const int diff_stride = block_size_wide[plane_bsize];
301 
302   const int src_offset = (blk_row * diff_stride + blk_col);
303   const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
304 
305   av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
306 }
307 
av1_quant(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,const QUANT_PARAM * qparam)308 void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
309                const QUANT_PARAM *qparam) {
310   const struct macroblock_plane *const p = &x->plane[plane];
311   const SCAN_ORDER *const scan_order =
312       get_scan(txfm_param->tx_size, txfm_param->tx_type);
313   const int block_offset = BLOCK_OFFSET(block);
314   tran_low_t *const coeff = p->coeff + block_offset;
315   tran_low_t *const qcoeff = p->qcoeff + block_offset;
316   tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
317   uint16_t *const eob = &p->eobs[block];
318 
319   if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
320     const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
321     if (LIKELY(!x->seg_skip_block)) {
322 #if CONFIG_AV1_HIGHBITDEPTH
323       quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
324           coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
325 #else
326       quant_func_list[qparam->xform_quant_idx](
327           coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
328 #endif
329     } else {
330       av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
331     }
332   }
333   // use_optimize_b is true means av1_optimze_b will be called,
334   // thus cannot update entropy ctx now (performed in optimize_b)
335   if (qparam->use_optimize_b) {
336     p->txb_entropy_ctx[block] = 0;
337   } else {
338     p->txb_entropy_ctx[block] =
339         av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
340   }
341 }
342 
av1_setup_xform(const AV1_COMMON * cm,MACROBLOCK * x,TX_SIZE tx_size,TX_TYPE tx_type,TxfmParam * txfm_param)343 void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
344                      TX_TYPE tx_type, TxfmParam *txfm_param) {
345   MACROBLOCKD *const xd = &x->e_mbd;
346   MB_MODE_INFO *const mbmi = xd->mi[0];
347 
348   txfm_param->tx_type = tx_type;
349   txfm_param->tx_size = tx_size;
350   txfm_param->lossless = xd->lossless[mbmi->segment_id];
351   txfm_param->tx_set_type = av1_get_ext_tx_set_type(
352       tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
353 
354   txfm_param->bd = xd->bd;
355   txfm_param->is_hbd = is_cur_buf_hbd(xd);
356 }
av1_setup_quant(TX_SIZE tx_size,int use_optimize_b,int xform_quant_idx,int use_quant_b_adapt,QUANT_PARAM * qparam)357 void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
358                      int use_quant_b_adapt, QUANT_PARAM *qparam) {
359   qparam->log_scale = av1_get_tx_scale(tx_size);
360   qparam->tx_size = tx_size;
361 
362   qparam->use_quant_b_adapt = use_quant_b_adapt;
363 
364   // TODO(bohanli): optimize_b and quantization idx has relationship,
365   // but is kind of buried and complicated in different encoding stages.
366   // Should have a unified function to derive quant_idx, rather than
367   // determine and pass in the quant_idx
368   qparam->use_optimize_b = use_optimize_b;
369   qparam->xform_quant_idx = xform_quant_idx;
370 
371   qparam->qmatrix = NULL;
372   qparam->iqmatrix = NULL;
373 }
av1_setup_qmatrix(const CommonQuantParams * quant_params,const MACROBLOCKD * xd,int plane,TX_SIZE tx_size,TX_TYPE tx_type,QUANT_PARAM * qparam)374 void av1_setup_qmatrix(const CommonQuantParams *quant_params,
375                        const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
376                        TX_TYPE tx_type, QUANT_PARAM *qparam) {
377   qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
378   qparam->iqmatrix =
379       av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
380 }
381 
encode_block(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)382 static void encode_block(int plane, int block, int blk_row, int blk_col,
383                          BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
384                          RUN_TYPE dry_run) {
385   (void)dry_run;
386   struct encode_b_args *const args = arg;
387   const AV1_COMP *const cpi = args->cpi;
388   const AV1_COMMON *const cm = &cpi->common;
389   MACROBLOCK *const x = args->x;
390   MACROBLOCKD *const xd = &x->e_mbd;
391   MB_MODE_INFO *mbmi = xd->mi[0];
392   struct macroblock_plane *const p = &x->plane[plane];
393   struct macroblockd_plane *const pd = &xd->plane[plane];
394   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
395   uint8_t *dst;
396   ENTROPY_CONTEXT *a, *l;
397   int dummy_rate_cost = 0;
398 
399   const int bw = mi_size_wide[plane_bsize];
400   dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
401 
402   a = &args->ta[blk_col];
403   l = &args->tl[blk_row];
404 
405   TX_TYPE tx_type = DCT_DCT;
406   const int blk_skip_idx =
407       (cpi->sf.rt_sf.use_nonrd_pick_mode && is_inter_block(mbmi))
408           ? blk_row * bw / 4 + blk_col / 2
409           : blk_row * bw + blk_col;
410   if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) &&
411       !mbmi->skip_mode) {
412     tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
413                               cm->features.reduced_tx_set_used);
414     TxfmParam txfm_param;
415     QUANT_PARAM quant_param;
416     const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
417     int quant_idx;
418     if (use_trellis)
419       quant_idx = AV1_XFORM_QUANT_FP;
420     else
421       quant_idx =
422           USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
423     av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
424     av1_setup_quant(tx_size, use_trellis, quant_idx,
425                     cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
426     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
427                       &quant_param);
428     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
429                     &quant_param);
430 
431     // Whether trellis or dropout optimization is required for inter frames.
432     const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
433                             INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
434     const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
435                             INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
436 
437     if (quant_param.use_optimize_b && do_trellis) {
438       TXB_CTX txb_ctx;
439       get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
440       av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
441                      &dummy_rate_cost);
442     }
443     if (!quant_param.use_optimize_b && do_dropout) {
444       av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
445                          cm->quant_params.base_qindex);
446     }
447   } else {
448     p->eobs[block] = 0;
449     p->txb_entropy_ctx[block] = 0;
450   }
451 
452   av1_set_txb_context(x, plane, block, tx_size, a, l);
453 
454   if (p->eobs[block]) {
455     *(args->skip) = 0;
456     av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
457                                 pd->dst.stride, p->eobs[block],
458                                 cm->features.reduced_tx_set_used);
459   }
460 
461   // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
462   // case. It is possible that certain collision in hash index would cause
463   // the assertion failure. To further optimize the rate-distortion
464   // performance, we need to re-visit this part and enable this assert
465   // again.
466   if (p->eobs[block] == 0 && plane == 0) {
467 #if 0
468     if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
469         args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
470       // TODO(jingning,angiebird,huisu@google.com): enable txk_check when
471       // enable_optimize_b is true to detect potential RD bug.
472       const uint8_t disable_txk_check = args->enable_optimize_b;
473       if (!disable_txk_check) {
474         assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
475             DCT_DCT);
476       }
477     }
478 #endif
479     update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
480   }
481 
482 #if CONFIG_MISMATCH_DEBUG
483   if (dry_run == OUTPUT_ENABLED) {
484     int pixel_c, pixel_r;
485     BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
486     int blk_w = block_size_wide[bsize];
487     int blk_h = block_size_high[bsize];
488     mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
489                     blk_row, pd->subsampling_x, pd->subsampling_y);
490     mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
491                              plane, pixel_c, pixel_r, blk_w, blk_h,
492                              xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
493   }
494 #endif
495 }
496 
encode_block_inter(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)497 static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
498                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
499                                void *arg, RUN_TYPE dry_run) {
500   struct encode_b_args *const args = arg;
501   MACROBLOCK *const x = args->x;
502   MACROBLOCKD *const xd = &x->e_mbd;
503   MB_MODE_INFO *const mbmi = xd->mi[0];
504   const struct macroblockd_plane *const pd = &xd->plane[plane];
505   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
506   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
507 
508   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
509 
510   const TX_SIZE plane_tx_size =
511       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
512                                     pd->subsampling_y)
513             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
514                                                          blk_col)];
515   if (!plane) {
516     assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
517            tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
518   }
519 
520   if (tx_size == plane_tx_size || plane) {
521     encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
522                  dry_run);
523   } else {
524     assert(tx_size < TX_SIZES_ALL);
525     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
526     assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
527     assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
528     // This is the square transform block partition entry point.
529     const int bsw = tx_size_wide_unit[sub_txs];
530     const int bsh = tx_size_high_unit[sub_txs];
531     const int step = bsh * bsw;
532     const int row_end =
533         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
534     const int col_end =
535         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
536     assert(bsw > 0 && bsh > 0);
537 
538     for (int row = 0; row < row_end; row += bsh) {
539       const int offsetr = blk_row + row;
540       for (int col = 0; col < col_end; col += bsw) {
541         const int offsetc = blk_col + col;
542 
543         encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
544                            arg, dry_run);
545         block += step;
546       }
547     }
548   }
549 }
550 
av1_foreach_transformed_block_in_plane(const MACROBLOCKD * const xd,BLOCK_SIZE plane_bsize,int plane,foreach_transformed_block_visitor visit,void * arg)551 void av1_foreach_transformed_block_in_plane(
552     const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
553     foreach_transformed_block_visitor visit, void *arg) {
554   const struct macroblockd_plane *const pd = &xd->plane[plane];
555   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
556   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
557   // transform size varies per plane, look it up in a common way.
558   const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
559   const uint8_t txw_unit = tx_size_wide_unit[tx_size];
560   const uint8_t txh_unit = tx_size_high_unit[tx_size];
561   const int step = txw_unit * txh_unit;
562 
563   // If mb_to_right_edge is < 0 we are in a situation in which
564   // the current block size extends into the UMV and we won't
565   // visit the sub blocks that are wholly within the UMV.
566   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
567   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
568   const BLOCK_SIZE max_unit_bsize =
569       get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
570   const int mu_blocks_wide =
571       AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
572   const int mu_blocks_high =
573       AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
574 
575   // Keep track of the row and column of the blocks we use so that we know
576   // if we are in the unrestricted motion border.
577   int i = 0;
578   for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
579     const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
580     // Skip visiting the sub blocks that are wholly within the UMV.
581     for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
582       const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
583       for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
584         for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
585           visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
586           i += step;
587         }
588       }
589     }
590   }
591 }
592 
593 typedef struct encode_block_pass1_args {
594   AV1_COMP *cpi;
595   MACROBLOCK *x;
596 } encode_block_pass1_args;
597 
encode_block_pass1(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)598 static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
599                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
600                                void *arg) {
601   encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
602   AV1_COMP *cpi = args->cpi;
603   AV1_COMMON *cm = &cpi->common;
604   MACROBLOCK *const x = args->x;
605   MACROBLOCKD *const xd = &x->e_mbd;
606   struct macroblock_plane *const p = &x->plane[plane];
607   struct macroblockd_plane *const pd = &xd->plane[plane];
608   tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
609 
610   uint8_t *dst;
611   dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
612 
613   TxfmParam txfm_param;
614   QUANT_PARAM quant_param;
615 
616   av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
617   av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
618                   &quant_param);
619   av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
620                     &quant_param);
621 
622   av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
623                   &quant_param);
624 
625   if (p->eobs[block] > 0) {
626     txfm_param.eob = p->eobs[block];
627     if (txfm_param.is_hbd) {
628       av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
629       return;
630     }
631     av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
632   }
633 }
634 
av1_encode_sby_pass1(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize)635 void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
636   encode_block_pass1_args args = { cpi, x };
637   av1_subtract_plane(x, bsize, 0);
638   av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
639                                          encode_block_pass1, &args);
640 }
641 
av1_encode_sb(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RUN_TYPE dry_run)642 void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
643                    RUN_TYPE dry_run) {
644   assert(bsize < BLOCK_SIZES_ALL);
645   MACROBLOCKD *const xd = &x->e_mbd;
646   MB_MODE_INFO *mbmi = xd->mi[0];
647   mbmi->skip_txfm = 1;
648   if (x->txfm_search_info.skip_txfm) return;
649 
650   struct optimize_ctx ctx;
651   struct encode_b_args arg = {
652     cpi,  x,    &ctx,    &mbmi->skip_txfm,
653     NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
654   };
655   const AV1_COMMON *const cm = &cpi->common;
656   const int num_planes = av1_num_planes(cm);
657   for (int plane = 0; plane < num_planes; ++plane) {
658     const struct macroblockd_plane *const pd = &xd->plane[plane];
659     const int subsampling_x = pd->subsampling_x;
660     const int subsampling_y = pd->subsampling_y;
661     if (plane && !xd->is_chroma_ref) break;
662     const BLOCK_SIZE plane_bsize =
663         get_plane_block_size(bsize, subsampling_x, subsampling_y);
664     assert(plane_bsize < BLOCK_SIZES_ALL);
665     const int mi_width = mi_size_wide[plane_bsize];
666     const int mi_height = mi_size_high[plane_bsize];
667     const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
668     const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
669     const int bw = mi_size_wide[txb_size];
670     const int bh = mi_size_high[txb_size];
671     int block = 0;
672     const int step =
673         tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
674     av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
675     av1_subtract_plane(x, plane_bsize, plane);
676     arg.ta = ctx.ta[plane];
677     arg.tl = ctx.tl[plane];
678     const BLOCK_SIZE max_unit_bsize =
679         get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
680     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
681     int mu_blocks_high = mi_size_high[max_unit_bsize];
682     mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
683     mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
684 
685     for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
686       for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
687         int blk_row, blk_col;
688         const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
689         const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
690         for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
691           for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
692             encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
693                                max_tx_size, &arg, dry_run);
694             block += step;
695           }
696         }
697       }
698     }
699   }
700 }
701 
encode_block_intra_and_set_context(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)702 static void encode_block_intra_and_set_context(int plane, int block,
703                                                int blk_row, int blk_col,
704                                                BLOCK_SIZE plane_bsize,
705                                                TX_SIZE tx_size, void *arg) {
706   av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
707                          arg);
708 
709   struct encode_b_args *const args = arg;
710   MACROBLOCK *x = args->x;
711   ENTROPY_CONTEXT *a = &args->ta[blk_col];
712   ENTROPY_CONTEXT *l = &args->tl[blk_row];
713   av1_set_txb_context(x, plane, block, tx_size, a, l);
714 }
715 
av1_encode_block_intra(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)716 void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
717                             BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
718                             void *arg) {
719   struct encode_b_args *const args = arg;
720   const AV1_COMP *const cpi = args->cpi;
721   const AV1_COMMON *const cm = &cpi->common;
722   MACROBLOCK *const x = args->x;
723   MACROBLOCKD *const xd = &x->e_mbd;
724   struct macroblock_plane *const p = &x->plane[plane];
725   struct macroblockd_plane *const pd = &xd->plane[plane];
726   tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
727   PLANE_TYPE plane_type = get_plane_type(plane);
728   uint16_t *eob = &p->eobs[block];
729   const int dst_stride = pd->dst.stride;
730   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
731   int dummy_rate_cost = 0;
732 
733   av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
734 
735   TX_TYPE tx_type = DCT_DCT;
736   const int bw = mi_size_wide[plane_bsize];
737   if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
738                                 blk_row * bw + blk_col)) {
739     *eob = 0;
740     p->txb_entropy_ctx[block] = 0;
741   } else {
742     av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
743 
744     const ENTROPY_CONTEXT *a = &args->ta[blk_col];
745     const ENTROPY_CONTEXT *l = &args->tl[blk_row];
746     tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
747                               cm->features.reduced_tx_set_used);
748     TxfmParam txfm_param;
749     QUANT_PARAM quant_param;
750     const int use_trellis =
751         is_trellis_used(args->enable_optimize_b, args->dry_run);
752     int quant_idx;
753     if (use_trellis)
754       quant_idx = AV1_XFORM_QUANT_FP;
755     else
756       quant_idx =
757           USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
758 
759     av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
760     av1_setup_quant(tx_size, use_trellis, quant_idx,
761                     cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
762     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
763                       &quant_param);
764 
765     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
766                     &quant_param);
767 
768     // Whether trellis or dropout optimization is required for key frames and
769     // intra frames.
770     const bool do_trellis = (frame_is_intra_only(cm) &&
771                              (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
772                               KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
773                             (!frame_is_intra_only(cm) &&
774                              (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
775                               INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
776     const bool do_dropout = (frame_is_intra_only(cm) &&
777                              (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
778                               KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
779                             (!frame_is_intra_only(cm) &&
780                              (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
781                               INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
782 
783     if (quant_param.use_optimize_b && do_trellis) {
784       TXB_CTX txb_ctx;
785       get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
786       av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
787                      &dummy_rate_cost);
788     }
789     if (do_dropout) {
790       av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
791                          cm->quant_params.base_qindex);
792     }
793   }
794 
795   if (*eob) {
796     av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
797                                 dst_stride, *eob,
798                                 cm->features.reduced_tx_set_used);
799   }
800 
801   // TODO(jingning): Temporarily disable txk_type check for eob=0 case.
802   // It is possible that certain collision in hash index would cause
803   // the assertion failure. To further optimize the rate-distortion
804   // performance, we need to re-visit this part and enable this assert
805   // again.
806   if (*eob == 0 && plane == 0) {
807 #if 0
808     if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
809         && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
810       assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
811           DCT_DCT);
812     }
813 #endif
814     update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
815   }
816 
817   // For intra mode, skipped blocks are so rare that transmitting skip=1 is
818   // very expensive.
819   *(args->skip) = 0;
820 
821   if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
822     cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
823   }
824 }
825 
av1_encode_intra_block_plane(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int plane,RUN_TYPE dry_run,TRELLIS_OPT_TYPE enable_optimize_b)826 void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
827                                   BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
828                                   TRELLIS_OPT_TYPE enable_optimize_b) {
829   assert(bsize < BLOCK_SIZES_ALL);
830   const MACROBLOCKD *const xd = &x->e_mbd;
831   if (plane && !xd->is_chroma_ref) return;
832 
833   const struct macroblockd_plane *const pd = &xd->plane[plane];
834   const int ss_x = pd->subsampling_x;
835   const int ss_y = pd->subsampling_y;
836   ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
837   ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
838   struct encode_b_args arg = { cpi, x,  NULL,    &(xd->mi[0]->skip_txfm),
839                                ta,  tl, dry_run, enable_optimize_b };
840   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
841   if (enable_optimize_b) {
842     av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
843   }
844   av1_foreach_transformed_block_in_plane(
845       xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
846 }
847