• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15 
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #if CONFIG_BITSTREAM_DEBUG
24 #include "aom_util/debug_util.h"
25 #endif  // CONFIG_BITSTREAM_DEBUG
26 
27 #include "av1/common/cdef.h"
28 #include "av1/common/cfl.h"
29 #include "av1/common/entropy.h"
30 #include "av1/common/entropymode.h"
31 #include "av1/common/entropymv.h"
32 #include "av1/common/mvref_common.h"
33 #include "av1/common/pred_common.h"
34 #include "av1/common/reconinter.h"
35 #include "av1/common/reconintra.h"
36 #include "av1/common/seg_common.h"
37 #include "av1/common/tile_common.h"
38 
39 #include "av1/encoder/bitstream.h"
40 #include "av1/encoder/cost.h"
41 #include "av1/encoder/encodemv.h"
42 #include "av1/encoder/encodetxb.h"
43 #include "av1/encoder/ethread.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/segmentation.h"
47 #include "av1/encoder/tokenize.h"
48 
49 #define ENC_MISMATCH_DEBUG 0
50 #define SETUP_TIME_OH_CONST 5     // Setup time overhead constant per worker
51 #define JOB_DISP_TIME_OH_CONST 1  // Job dispatch time overhead per tile
52 
write_uniform(aom_writer * w,int n,int v)53 static INLINE void write_uniform(aom_writer *w, int n, int v) {
54   const int l = get_unsigned_bits(n);
55   const int m = (1 << l) - n;
56   if (l == 0) return;
57   if (v < m) {
58     aom_write_literal(w, v, l - 1);
59   } else {
60     aom_write_literal(w, m + ((v - m) >> 1), l - 1);
61     aom_write_literal(w, (v - m) & 1, 1);
62   }
63 }
64 
65 #if !CONFIG_REALTIME_ONLY
66 static AOM_INLINE void loop_restoration_write_sb_coeffs(
67     const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
68     aom_writer *const w, int plane, FRAME_COUNTS *counts);
69 #endif
70 
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)71 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
72                                              const MB_MODE_INFO *mi,
73                                              const MB_MODE_INFO *above_mi,
74                                              const MB_MODE_INFO *left_mi,
75                                              PREDICTION_MODE mode,
76                                              aom_writer *w) {
77   assert(!is_intrabc_block(mi));
78   (void)mi;
79   aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
80                    INTRA_MODES);
81 }
82 
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)83 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
84                                         FRAME_CONTEXT *ec_ctx,
85                                         const int16_t mode_ctx) {
86   const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
87 
88   aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
89 
90   if (mode != NEWMV) {
91     const int16_t zeromv_ctx =
92         (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
93     aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
94 
95     if (mode != GLOBALMV) {
96       int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
97       aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
98     }
99   }
100 }
101 
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)102 static AOM_INLINE void write_drl_idx(
103     FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
104     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
105   assert(mbmi->ref_mv_idx < 3);
106 
107   const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
108   if (new_mv) {
109     int idx;
110     for (idx = 0; idx < 2; ++idx) {
111       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
112         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
113 
114         aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
115                          2);
116         if (mbmi->ref_mv_idx == idx) return;
117       }
118     }
119     return;
120   }
121 
122   if (have_nearmv_in_inter_mode(mbmi->mode)) {
123     int idx;
124     // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
125     for (idx = 1; idx < 3; ++idx) {
126       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
127         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
128         aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
129                          ec_ctx->drl_cdf[drl_ctx], 2);
130         if (mbmi->ref_mv_idx == (idx - 1)) return;
131       }
132     }
133     return;
134   }
135 }
136 
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)137 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
138                                                  PREDICTION_MODE mode,
139                                                  const int16_t mode_ctx) {
140   assert(is_inter_compound_mode(mode));
141   aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
142                    xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
143                    INTER_COMPOUND_MODES);
144 }
145 
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)146 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
147                                            const MB_MODE_INFO *mbmi,
148                                            TX_SIZE tx_size, int depth,
149                                            int blk_row, int blk_col,
150                                            aom_writer *w) {
151   FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
152   const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
153   const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
154 
155   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
156 
157   if (depth == MAX_VARTX_DEPTH) {
158     txfm_partition_update(xd->above_txfm_context + blk_col,
159                           xd->left_txfm_context + blk_row, tx_size, tx_size);
160     return;
161   }
162 
163   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
164                                          xd->left_txfm_context + blk_row,
165                                          mbmi->bsize, tx_size);
166   const int txb_size_index =
167       av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
168   const int write_txfm_partition =
169       tx_size == mbmi->inter_tx_size[txb_size_index];
170   if (write_txfm_partition) {
171     aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
172 
173     txfm_partition_update(xd->above_txfm_context + blk_col,
174                           xd->left_txfm_context + blk_row, tx_size, tx_size);
175     // TODO(yuec): set correct txfm partition update for qttx
176   } else {
177     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
178     const int bsw = tx_size_wide_unit[sub_txs];
179     const int bsh = tx_size_high_unit[sub_txs];
180 
181     aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
182 
183     if (sub_txs == TX_4X4) {
184       txfm_partition_update(xd->above_txfm_context + blk_col,
185                             xd->left_txfm_context + blk_row, sub_txs, tx_size);
186       return;
187     }
188 
189     assert(bsw > 0 && bsh > 0);
190     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
191       const int offsetr = blk_row + row;
192       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
193         const int offsetc = blk_col + col;
194         write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
195       }
196     }
197   }
198 }
199 
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)200 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
201                                               aom_writer *w) {
202   const MB_MODE_INFO *const mbmi = xd->mi[0];
203   const BLOCK_SIZE bsize = mbmi->bsize;
204   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
205   if (block_signals_txsize(bsize)) {
206     const TX_SIZE tx_size = mbmi->tx_size;
207     const int tx_size_ctx = get_tx_size_context(xd);
208     const int depth = tx_size_to_depth(tx_size, bsize);
209     const int max_depths = bsize_to_max_depth(bsize);
210     const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
211 
212     assert(depth >= 0 && depth <= max_depths);
213     assert(!is_inter_block(mbmi));
214     assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
215 
216     aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
217                      max_depths + 1);
218   }
219 }
220 
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)221 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
222                       uint8_t segment_id, const MB_MODE_INFO *mi,
223                       aom_writer *w) {
224   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
225     return 1;
226   } else {
227     const int skip_txfm = mi->skip_txfm;
228     const int ctx = av1_get_skip_txfm_context(xd);
229     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
230     aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
231     return skip_txfm;
232   }
233 }
234 
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)235 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
236                            uint8_t segment_id, const MB_MODE_INFO *mi,
237                            aom_writer *w) {
238   if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
239   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
240     return 0;
241   }
242   const int skip_mode = mi->skip_mode;
243   if (!is_comp_ref_allowed(mi->bsize)) {
244     assert(!skip_mode);
245     return 0;
246   }
247   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
248       segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
249     // These features imply single-reference mode, while skip mode implies
250     // compound reference. Hence, the two are mutually exclusive.
251     // In other words, skip_mode is implicitly 0 here.
252     assert(!skip_mode);
253     return 0;
254   }
255   const int ctx = av1_get_skip_mode_context(xd);
256   aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
257   return skip_mode;
258 }
259 
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,aom_writer * w,const int is_inter)260 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
261                                       const MACROBLOCKD *xd, uint8_t segment_id,
262                                       aom_writer *w, const int is_inter) {
263   if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
264     if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
265       assert(is_inter);
266       return;
267     }
268     const int ctx = av1_get_intra_inter_context(xd);
269     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
270     aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
271   }
272 }
273 
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)274 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
275                                          const MB_MODE_INFO *mbmi,
276                                          aom_writer *w) {
277   MOTION_MODE last_motion_mode_allowed =
278       cm->features.switchable_motion_mode
279           ? motion_mode_allowed(cm->global_motion, xd, mbmi,
280                                 cm->features.allow_warped_motion)
281           : SIMPLE_TRANSLATION;
282   assert(mbmi->motion_mode <= last_motion_mode_allowed);
283   switch (last_motion_mode_allowed) {
284     case SIMPLE_TRANSLATION: break;
285     case OBMC_CAUSAL:
286       aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
287                        xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
288       break;
289     default:
290       aom_write_symbol(w, mbmi->motion_mode,
291                        xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
292                        MOTION_MODES);
293   }
294 }
295 
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)296 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
297                                           int delta_qindex, aom_writer *w) {
298   int sign = delta_qindex < 0;
299   int abs = sign ? -delta_qindex : delta_qindex;
300   int rem_bits, thr;
301   int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
302   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
303 
304   aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
305                    DELTA_Q_PROBS + 1);
306 
307   if (!smallval) {
308     rem_bits = get_msb(abs - 1);
309     thr = (1 << rem_bits) + 1;
310     aom_write_literal(w, rem_bits - 1, 3);
311     aom_write_literal(w, abs - thr, rem_bits);
312   }
313   if (abs > 0) {
314     aom_write_bit(w, sign);
315   }
316 }
317 
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)318 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
319                                            const MACROBLOCKD *xd, int lf_id,
320                                            int delta_lflevel,
321                                            int delta_lf_multi, aom_writer *w) {
322   int sign = delta_lflevel < 0;
323   int abs = sign ? -delta_lflevel : delta_lflevel;
324   int rem_bits, thr;
325   int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
326   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
327   (void)cm;
328 
329   if (delta_lf_multi) {
330     assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
331                                                          : FRAME_LF_COUNT - 2));
332     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
333                      ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
334   } else {
335     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
336                      DELTA_LF_PROBS + 1);
337   }
338 
339   if (!smallval) {
340     rem_bits = get_msb(abs - 1);
341     thr = (1 << rem_bits) + 1;
342     aom_write_literal(w, rem_bits - 1, 3);
343     aom_write_literal(w, abs - thr, rem_bits);
344   }
345   if (abs > 0) {
346     aom_write_bit(w, sign);
347   }
348 }
349 
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)350 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
351                                        int n, int num, MapCdf map_pb_cdf) {
352   const TokenExtra *p = *tp;
353   const int palette_size_idx = n - PALETTE_MIN_SIZE;
354   write_uniform(w, n, p->token);  // The first color index.
355   ++p;
356   --num;
357   for (int i = 0; i < num; ++i) {
358     assert((p->color_ctx >= 0) &&
359            (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
360     aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
361     aom_write_symbol(w, p->token, color_map_cdf, n);
362     ++p;
363   }
364   *tp = p;
365 }
366 
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)367 static AOM_INLINE void pack_txb_tokens(
368     aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
369     const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
370     int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
371     int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
372   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
373   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
374 
375   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
376 
377   const struct macroblockd_plane *const pd = &xd->plane[plane];
378   const TX_SIZE plane_tx_size =
379       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
380                                     pd->subsampling_y)
381             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
382                                                          blk_col)];
383 
384   if (tx_size == plane_tx_size || plane) {
385     av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
386 #if CONFIG_RD_DEBUG
387     TOKEN_STATS tmp_token_stats;
388     init_token_stats(&tmp_token_stats);
389     token_stats->cost += tmp_token_stats.cost;
390 #endif
391   } else {
392     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
393     const int bsw = tx_size_wide_unit[sub_txs];
394     const int bsh = tx_size_high_unit[sub_txs];
395     const int step = bsh * bsw;
396     const int row_end =
397         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
398     const int col_end =
399         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
400 
401     assert(bsw > 0 && bsh > 0);
402 
403     for (int r = 0; r < row_end; r += bsh) {
404       const int offsetr = blk_row + r;
405       for (int c = 0; c < col_end; c += bsw) {
406         const int offsetc = blk_col + c;
407         pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
408                         bit_depth, block, offsetr, offsetc, sub_txs,
409                         token_stats);
410         block += step;
411       }
412     }
413   }
414 }
415 
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,uint8_t segment_id)416 static INLINE void set_spatial_segment_id(
417     const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
418     BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
419   const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
420   const int bw = mi_size_wide[bsize];
421   const int bh = mi_size_high[bsize];
422   const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
423   const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
424 
425   const int mi_stride = mi_params->mi_cols;
426 
427   set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
428 }
429 
av1_neg_interleave(int x,int ref,int max)430 int av1_neg_interleave(int x, int ref, int max) {
431   assert(x < max);
432   const int diff = x - ref;
433   if (!ref) return x;
434   if (ref >= (max - 1)) return -x + max - 1;
435   if (2 * ref < max) {
436     if (abs(diff) <= ref) {
437       if (diff > 0)
438         return (diff << 1) - 1;
439       else
440         return ((-diff) << 1);
441     }
442     return x;
443   } else {
444     if (abs(diff) < (max - ref)) {
445       if (diff > 0)
446         return (diff << 1) - 1;
447       else
448         return ((-diff) << 1);
449     }
450     return (max - x) - 1;
451   }
452 }
453 
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)454 static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
455                                         const MB_MODE_INFO *const mbmi,
456                                         aom_writer *w,
457                                         const struct segmentation *seg,
458                                         struct segmentation_probs *segp,
459                                         int skip_txfm) {
460   if (!seg->enabled || !seg->update_map) return;
461 
462   AV1_COMMON *const cm = &cpi->common;
463   int cdf_num;
464   const uint8_t pred = av1_get_spatial_seg_pred(
465       cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
466   const int mi_row = xd->mi_row;
467   const int mi_col = xd->mi_col;
468 
469   if (skip_txfm) {
470     // Still need to transmit tx size for intra blocks even if skip_txfm is
471     // true. Changing segment_id may make the tx size become invalid, e.g
472     // changing from lossless to lossy.
473     assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
474 
475     set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
476                            mi_row, mi_col, pred);
477     set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
478                            mi_row, mi_col, pred);
479     /* mbmi is read only but we need to update segment_id */
480     ((MB_MODE_INFO *)mbmi)->segment_id = pred;
481     return;
482   }
483 
484   const int coded_id =
485       av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
486   aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
487   aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
488   set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
489                          mi_row, mi_col, mbmi->segment_id);
490 }
491 
492 #define WRITE_REF_BIT(bname, pname) \
493   aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
494 
495 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)496 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
497                                         const MACROBLOCKD *xd, aom_writer *w) {
498   const MB_MODE_INFO *const mbmi = xd->mi[0];
499   const int is_compound = has_second_ref(mbmi);
500   const uint8_t segment_id = mbmi->segment_id;
501 
502   // If segment level coding of this signal is disabled...
503   // or the segment allows multiple reference frame options
504   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
505     assert(!is_compound);
506     assert(mbmi->ref_frame[0] ==
507            get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
508   } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
509              segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
510     assert(!is_compound);
511     assert(mbmi->ref_frame[0] == LAST_FRAME);
512   } else {
513     // does the feature use compound prediction or not
514     // (if not specified at the frame/segment level)
515     if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
516       if (is_comp_ref_allowed(mbmi->bsize))
517         aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
518     } else {
519       assert((!is_compound) ==
520              (cm->current_frame.reference_mode == SINGLE_REFERENCE));
521     }
522 
523     if (is_compound) {
524       const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
525                                                     ? UNIDIR_COMP_REFERENCE
526                                                     : BIDIR_COMP_REFERENCE;
527       aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
528                        2);
529 
530       if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
531         const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
532         WRITE_REF_BIT(bit, uni_comp_ref_p);
533 
534         if (!bit) {
535           assert(mbmi->ref_frame[0] == LAST_FRAME);
536           const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
537                            mbmi->ref_frame[1] == GOLDEN_FRAME;
538           WRITE_REF_BIT(bit1, uni_comp_ref_p1);
539           if (bit1) {
540             const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
541             WRITE_REF_BIT(bit2, uni_comp_ref_p2);
542           }
543         } else {
544           assert(mbmi->ref_frame[1] == ALTREF_FRAME);
545         }
546 
547         return;
548       }
549 
550       assert(comp_ref_type == BIDIR_COMP_REFERENCE);
551 
552       const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
553                        mbmi->ref_frame[0] == LAST3_FRAME);
554       WRITE_REF_BIT(bit, comp_ref_p);
555 
556       if (!bit) {
557         const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
558         WRITE_REF_BIT(bit1, comp_ref_p1);
559       } else {
560         const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
561         WRITE_REF_BIT(bit2, comp_ref_p2);
562       }
563 
564       const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
565       WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
566 
567       if (!bit_bwd) {
568         WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
569       }
570 
571     } else {
572       const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
573                         mbmi->ref_frame[0] >= BWDREF_FRAME);
574       WRITE_REF_BIT(bit0, single_ref_p1);
575 
576       if (bit0) {
577         const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
578         WRITE_REF_BIT(bit1, single_ref_p2);
579 
580         if (!bit1) {
581           WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
582         }
583       } else {
584         const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
585                           mbmi->ref_frame[0] == GOLDEN_FRAME);
586         WRITE_REF_BIT(bit2, single_ref_p3);
587 
588         if (!bit2) {
589           const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
590           WRITE_REF_BIT(bit3, single_ref_p4);
591         } else {
592           const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
593           WRITE_REF_BIT(bit4, single_ref_p5);
594         }
595       }
596     }
597   }
598 }
599 
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)600 static AOM_INLINE void write_filter_intra_mode_info(
601     const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
602     aom_writer *w) {
603   if (av1_filter_intra_allowed(cm, mbmi)) {
604     aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
605                      xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
606     if (mbmi->filter_intra_mode_info.use_filter_intra) {
607       const FILTER_INTRA_MODE mode =
608           mbmi->filter_intra_mode_info.filter_intra_mode;
609       aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
610                        FILTER_INTRA_MODES);
611     }
612   }
613 }
614 
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)615 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
616                                          aom_cdf_prob *cdf) {
617   aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
618                    2 * MAX_ANGLE_DELTA + 1);
619 }
620 
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)621 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
622                                               ThreadData *td, aom_writer *w) {
623   const MACROBLOCKD *xd = &td->mb.e_mbd;
624   const MB_MODE_INFO *const mbmi = xd->mi[0];
625   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
626 
627   if (!av1_is_interp_needed(xd)) {
628     int_interpfilters filters = av1_broadcast_interp_filter(
629         av1_unswitchable_filter(cm->features.interp_filter));
630     assert(mbmi->interp_filters.as_int == filters.as_int);
631     (void)filters;
632     return;
633   }
634   if (cm->features.interp_filter == SWITCHABLE) {
635     int dir;
636     for (dir = 0; dir < 2; ++dir) {
637       const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
638       InterpFilter filter =
639           av1_extract_interp_filter(mbmi->interp_filters, dir);
640       aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
641                        SWITCHABLE_FILTERS);
642       ++td->interp_filter_selected[filter];
643       if (cm->seq_params->enable_dual_filter == 0) return;
644     }
645   }
646 }
647 
648 // Transmit color values with delta encoding. Write the first value as
649 // literal, and the deltas between each value and the previous one. "min_val" is
650 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)651 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
652                                                    int bit_depth, int min_val,
653                                                    aom_writer *w) {
654   if (num <= 0) return;
655   assert(colors[0] < (1 << bit_depth));
656   aom_write_literal(w, colors[0], bit_depth);
657   if (num == 1) return;
658   int max_delta = 0;
659   int deltas[PALETTE_MAX_SIZE];
660   memset(deltas, 0, sizeof(deltas));
661   for (int i = 1; i < num; ++i) {
662     assert(colors[i] < (1 << bit_depth));
663     const int delta = colors[i] - colors[i - 1];
664     deltas[i - 1] = delta;
665     assert(delta >= min_val);
666     if (delta > max_delta) max_delta = delta;
667   }
668   const int min_bits = bit_depth - 3;
669   int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
670   assert(bits <= bit_depth);
671   int range = (1 << bit_depth) - colors[0] - min_val;
672   aom_write_literal(w, bits - min_bits, 2);
673   for (int i = 0; i < num - 1; ++i) {
674     aom_write_literal(w, deltas[i] - min_val, bits);
675     range -= deltas[i];
676     bits = AOMMIN(bits, av1_ceil_log2(range));
677   }
678 }
679 
680 // Transmit luma palette color values. First signal if each color in the color
681 // cache is used. Those colors that are not in the cache are transmitted with
682 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)683 static AOM_INLINE void write_palette_colors_y(
684     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
685     int bit_depth, aom_writer *w) {
686   const int n = pmi->palette_size[0];
687   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
688   const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
689   int out_cache_colors[PALETTE_MAX_SIZE];
690   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
691   const int n_out_cache =
692       av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
693                             cache_color_found, out_cache_colors);
694   int n_in_cache = 0;
695   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
696     const int found = cache_color_found[i];
697     aom_write_bit(w, found);
698     n_in_cache += found;
699   }
700   assert(n_in_cache + n_out_cache == n);
701   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
702 }
703 
704 // Write chroma palette color values. U channel is handled similarly to the luma
705 // channel. For v channel, either use delta encoding or transmit raw values
706 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)707 static AOM_INLINE void write_palette_colors_uv(
708     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
709     int bit_depth, aom_writer *w) {
710   const int n = pmi->palette_size[1];
711   const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
712   const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
713   // U channel colors.
714   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
715   const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
716   int out_cache_colors[PALETTE_MAX_SIZE];
717   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
718   const int n_out_cache = av1_index_color_cache(
719       color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
720   int n_in_cache = 0;
721   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
722     const int found = cache_color_found[i];
723     aom_write_bit(w, found);
724     n_in_cache += found;
725   }
726   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
727 
728   // V channel colors. Don't use color cache as the colors are not sorted.
729   const int max_val = 1 << bit_depth;
730   int zero_count = 0, min_bits_v = 0;
731   int bits_v =
732       av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
733   const int rate_using_delta =
734       2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
735   const int rate_using_raw = bit_depth * n;
736   if (rate_using_delta < rate_using_raw) {  // delta encoding
737     assert(colors_v[0] < (1 << bit_depth));
738     aom_write_bit(w, 1);
739     aom_write_literal(w, bits_v - min_bits_v, 2);
740     aom_write_literal(w, colors_v[0], bit_depth);
741     for (int i = 1; i < n; ++i) {
742       assert(colors_v[i] < (1 << bit_depth));
743       if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit.
744         aom_write_literal(w, 0, bits_v);
745         continue;
746       }
747       const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
748       const int sign_bit = colors_v[i] < colors_v[i - 1];
749       if (delta <= max_val - delta) {
750         aom_write_literal(w, delta, bits_v);
751         aom_write_bit(w, sign_bit);
752       } else {
753         aom_write_literal(w, max_val - delta, bits_v);
754         aom_write_bit(w, !sign_bit);
755       }
756     }
757   } else {  // Transmit raw values.
758     aom_write_bit(w, 0);
759     for (int i = 0; i < n; ++i) {
760       assert(colors_v[i] < (1 << bit_depth));
761       aom_write_literal(w, colors_v[i], bit_depth);
762     }
763   }
764 }
765 
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)766 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
767                                                const MACROBLOCKD *xd,
768                                                const MB_MODE_INFO *const mbmi,
769                                                aom_writer *w) {
770   const int num_planes = av1_num_planes(cm);
771   const BLOCK_SIZE bsize = mbmi->bsize;
772   assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
773   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
774   const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
775 
776   if (mbmi->mode == DC_PRED) {
777     const int n = pmi->palette_size[0];
778     const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
779     aom_write_symbol(
780         w, n > 0,
781         xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
782     if (n > 0) {
783       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
784                        xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
785                        PALETTE_SIZES);
786       write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
787     }
788   }
789 
790   const int uv_dc_pred =
791       num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
792   if (uv_dc_pred) {
793     const int n = pmi->palette_size[1];
794     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
795     aom_write_symbol(w, n > 0,
796                      xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
797     if (n > 0) {
798       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
799                        xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
800                        PALETTE_SIZES);
801       write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
802     }
803   }
804 }
805 
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)806 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
807                        TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
808   MB_MODE_INFO *mbmi = xd->mi[0];
809   const FeatureFlags *const features = &cm->features;
810   const int is_inter = is_inter_block(mbmi);
811   if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
812       ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
813        (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
814       !mbmi->skip_txfm &&
815       !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
816     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
817     const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
818     const TxSetType tx_set_type = av1_get_ext_tx_set_type(
819         tx_size, is_inter, features->reduced_tx_set_used);
820     const int eset =
821         get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
822     // eset == 0 should correspond to a set with only DCT_DCT and there
823     // is no need to send the tx_type
824     assert(eset > 0);
825     assert(av1_ext_tx_used[tx_set_type][tx_type]);
826     if (is_inter) {
827       aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
828                        ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
829                        av1_num_ext_tx_set[tx_set_type]);
830     } else {
831       PREDICTION_MODE intra_dir;
832       if (mbmi->filter_intra_mode_info.use_filter_intra)
833         intra_dir =
834             fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
835       else
836         intra_dir = mbmi->mode;
837       aom_write_symbol(
838           w, av1_ext_tx_ind[tx_set_type][tx_type],
839           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
840           av1_num_ext_tx_set[tx_set_type]);
841     }
842   }
843 }
844 
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)845 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
846                                                 BLOCK_SIZE bsize,
847                                                 PREDICTION_MODE mode,
848                                                 aom_writer *w) {
849   aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
850                    INTRA_MODES);
851 }
852 
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)853 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
854                                            UV_PREDICTION_MODE uv_mode,
855                                            PREDICTION_MODE y_mode,
856                                            CFL_ALLOWED_TYPE cfl_allowed,
857                                            aom_writer *w) {
858   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
859                    UV_INTRA_MODES - !cfl_allowed);
860 }
861 
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)862 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
863                                         uint8_t idx, int8_t joint_sign,
864                                         aom_writer *w) {
865   aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
866   // Magnitudes are only signaled for nonzero codes.
867   if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
868     aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
869     aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
870   }
871   if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
872     aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
873     aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
874   }
875 }
876 
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)877 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
878                                   aom_writer *w, int skip) {
879   if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
880 
881   // At the start of a superblock, mark that we haven't yet written CDEF
882   // strengths for any of the CDEF units contained in this superblock.
883   const int sb_mask = (cm->seq_params->mib_size - 1);
884   const int mi_row_in_sb = (xd->mi_row & sb_mask);
885   const int mi_col_in_sb = (xd->mi_col & sb_mask);
886   if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
887     xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
888         xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
889   }
890 
891   // CDEF unit size is 64x64 irrespective of the superblock size.
892   const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
893 
894   // Find index of this CDEF unit in this superblock.
895   const int index_mask = cdef_size;
896   const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
897   const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
898   const int index = (cm->seq_params->sb_size == BLOCK_128X128)
899                         ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
900                         : 0;
901 
902   // Write CDEF strength to the first non-skip coding block in this CDEF unit.
903   if (!xd->cdef_transmitted[index] && !skip) {
904     // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
905     // of the 1st block in this CDEF unit.
906     const int first_block_mask = ~(cdef_size - 1);
907     const CommonModeInfoParams *const mi_params = &cm->mi_params;
908     const int grid_idx =
909         get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
910                         xd->mi_col & first_block_mask);
911     const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
912     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
913     xd->cdef_transmitted[index] = true;
914   }
915 }
916 
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)917 static AOM_INLINE void write_inter_segment_id(
918     AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
919     const struct segmentation *const seg, struct segmentation_probs *const segp,
920     int skip, int preskip) {
921   MB_MODE_INFO *const mbmi = xd->mi[0];
922   AV1_COMMON *const cm = &cpi->common;
923   const int mi_row = xd->mi_row;
924   const int mi_col = xd->mi_col;
925 
926   if (seg->update_map) {
927     if (preskip) {
928       if (!seg->segid_preskip) return;
929     } else {
930       if (seg->segid_preskip) return;
931       if (skip) {
932         write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
933         if (seg->temporal_update) mbmi->seg_id_predicted = 0;
934         return;
935       }
936     }
937     if (seg->temporal_update) {
938       const int pred_flag = mbmi->seg_id_predicted;
939       aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
940       aom_write_symbol(w, pred_flag, pred_cdf, 2);
941       if (!pred_flag) {
942         write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
943       }
944       if (pred_flag) {
945         set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
946                                mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
947       }
948     } else {
949       write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
950     }
951   }
952 }
953 
954 // If delta q is present, writes delta_q index.
955 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)956 static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
957                                             MACROBLOCKD *const xd, int skip,
958                                             aom_writer *w) {
959   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
960 
961   if (delta_q_info->delta_q_present_flag) {
962     const MB_MODE_INFO *const mbmi = xd->mi[0];
963     const BLOCK_SIZE bsize = mbmi->bsize;
964     const int super_block_upper_left =
965         ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
966         ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
967 
968     if ((bsize != cm->seq_params->sb_size || skip == 0) &&
969         super_block_upper_left) {
970       assert(mbmi->current_qindex > 0);
971       const int reduced_delta_qindex =
972           (mbmi->current_qindex - xd->current_base_qindex) /
973           delta_q_info->delta_q_res;
974       write_delta_qindex(xd, reduced_delta_qindex, w);
975       xd->current_base_qindex = mbmi->current_qindex;
976       if (delta_q_info->delta_lf_present_flag) {
977         if (delta_q_info->delta_lf_multi) {
978           const int frame_lf_count =
979               av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
980           for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
981             int reduced_delta_lflevel =
982                 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
983                 delta_q_info->delta_lf_res;
984             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
985             xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
986           }
987         } else {
988           int reduced_delta_lflevel =
989               (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
990               delta_q_info->delta_lf_res;
991           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
992           xd->delta_lf_from_base = mbmi->delta_lf_from_base;
993         }
994       }
995     }
996   }
997 }
998 
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)999 static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
1000                                                     MACROBLOCKD *const xd,
1001                                                     int is_keyframe,
1002                                                     aom_writer *w) {
1003   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1004   const MB_MODE_INFO *const mbmi = xd->mi[0];
1005   const PREDICTION_MODE mode = mbmi->mode;
1006   const BLOCK_SIZE bsize = mbmi->bsize;
1007 
1008   // Y mode.
1009   if (is_keyframe) {
1010     const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1011     const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1012     write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1013   } else {
1014     write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1015   }
1016 
1017   // Y angle delta.
1018   const int use_angle_delta = av1_use_angle_delta(bsize);
1019   if (use_angle_delta && av1_is_directional_mode(mode)) {
1020     write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1021                       ec_ctx->angle_delta_cdf[mode - V_PRED]);
1022   }
1023 
1024   // UV mode and UV angle delta.
1025   if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1026     const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1027     write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1028     if (uv_mode == UV_CFL_PRED)
1029       write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1030     if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
1031       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1032                         ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
1033     }
1034   }
1035 
1036   // Palette.
1037   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1038     write_palette_mode_info(cm, xd, mbmi, w);
1039   }
1040 
1041   // Filter intra.
1042   write_filter_intra_mode_info(cm, xd, mbmi, w);
1043 }
1044 
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1045 static INLINE int16_t mode_context_analyzer(
1046     const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1047   if (rf[1] <= INTRA_FRAME) return mode_context;
1048 
1049   const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1050   const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1051 
1052   const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1053       newmv_ctx, COMP_NEWMV_CTXS - 1)];
1054   return comp_ctx;
1055 }
1056 
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1057 static INLINE int_mv get_ref_mv_from_stack(
1058     int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1059     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1060   const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1061   const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1062 
1063   if (ref_frame[1] > INTRA_FRAME) {
1064     assert(ref_idx == 0 || ref_idx == 1);
1065     return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1066                    : curr_ref_mv_stack[ref_mv_idx].this_mv;
1067   }
1068 
1069   assert(ref_idx == 0);
1070   return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1071              ? curr_ref_mv_stack[ref_mv_idx].this_mv
1072              : mbmi_ext_frame->global_mvs[ref_frame_type];
1073 }
1074 
get_ref_mv(const MACROBLOCK * x,int ref_idx)1075 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1076   const MACROBLOCKD *xd = &x->e_mbd;
1077   const MB_MODE_INFO *mbmi = xd->mi[0];
1078   int ref_mv_idx = mbmi->ref_mv_idx;
1079   if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1080     assert(has_second_ref(mbmi));
1081     ref_mv_idx += 1;
1082   }
1083   return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1084                                x->mbmi_ext_frame);
1085 }
1086 
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1087 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1088                                            aom_writer *w) {
1089   AV1_COMMON *const cm = &cpi->common;
1090   MACROBLOCK *const x = &td->mb;
1091   MACROBLOCKD *const xd = &x->e_mbd;
1092   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1093   const struct segmentation *const seg = &cm->seg;
1094   struct segmentation_probs *const segp = &ec_ctx->seg;
1095   const MB_MODE_INFO *const mbmi = xd->mi[0];
1096   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1097   const PREDICTION_MODE mode = mbmi->mode;
1098   const uint8_t segment_id = mbmi->segment_id;
1099   const BLOCK_SIZE bsize = mbmi->bsize;
1100   const int allow_hp = cm->features.allow_high_precision_mv;
1101   const int is_inter = is_inter_block(mbmi);
1102   const int is_compound = has_second_ref(mbmi);
1103   int ref;
1104 
1105   write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1106 
1107   write_skip_mode(cm, xd, segment_id, mbmi, w);
1108 
1109   assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1110   const int skip =
1111       mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1112 
1113   write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1114 
1115   write_cdef(cm, xd, w, skip);
1116 
1117   write_delta_q_params(cm, xd, skip, w);
1118 
1119   if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1120 
1121   if (mbmi->skip_mode) return;
1122 
1123   if (!is_inter) {
1124     write_intra_prediction_modes(cm, xd, 0, w);
1125   } else {
1126     int16_t mode_ctx;
1127 
1128     av1_collect_neighbors_ref_counts(xd);
1129 
1130     write_ref_frames(cm, xd, w);
1131 
1132     mode_ctx =
1133         mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1134 
1135     // If segment skip is not enabled code the mode.
1136     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1137       if (is_inter_compound_mode(mode))
1138         write_inter_compound_mode(xd, w, mode, mode_ctx);
1139       else if (is_inter_singleref_mode(mode))
1140         write_inter_mode(w, mode, ec_ctx, mode_ctx);
1141 
1142       if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1143         write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1144       else
1145         assert(mbmi->ref_mv_idx == 0);
1146     }
1147 
1148     if (mode == NEWMV || mode == NEW_NEWMV) {
1149       for (ref = 0; ref < 1 + is_compound; ++ref) {
1150         nmv_context *nmvc = &ec_ctx->nmvc;
1151         const int_mv ref_mv = get_ref_mv(x, ref);
1152         av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1153                       allow_hp);
1154       }
1155     } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1156       nmv_context *nmvc = &ec_ctx->nmvc;
1157       const int_mv ref_mv = get_ref_mv(x, 1);
1158       av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1159                     allow_hp);
1160     } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1161       nmv_context *nmvc = &ec_ctx->nmvc;
1162       const int_mv ref_mv = get_ref_mv(x, 0);
1163       av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1164                     allow_hp);
1165     }
1166 
1167     if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1168         cpi->common.seq_params->enable_interintra_compound &&
1169         is_interintra_allowed(mbmi)) {
1170       const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1171       const int bsize_group = size_group_lookup[bsize];
1172       aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1173       if (interintra) {
1174         aom_write_symbol(w, mbmi->interintra_mode,
1175                          ec_ctx->interintra_mode_cdf[bsize_group],
1176                          INTERINTRA_MODES);
1177         if (av1_is_wedge_used(bsize)) {
1178           aom_write_symbol(w, mbmi->use_wedge_interintra,
1179                            ec_ctx->wedge_interintra_cdf[bsize], 2);
1180           if (mbmi->use_wedge_interintra) {
1181             aom_write_symbol(w, mbmi->interintra_wedge_index,
1182                              ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1183           }
1184         }
1185       }
1186     }
1187 
1188     if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1189 
1190     // First write idx to indicate current compound inter prediction mode group
1191     // Group A (0): dist_wtd_comp, compound_average
1192     // Group B (1): interintra, compound_diffwtd, wedge
1193     if (has_second_ref(mbmi)) {
1194       const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1195                                        cm->seq_params->enable_masked_compound;
1196 
1197       if (masked_compound_used) {
1198         const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1199         aom_write_symbol(w, mbmi->comp_group_idx,
1200                          ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1201       } else {
1202         assert(mbmi->comp_group_idx == 0);
1203       }
1204 
1205       if (mbmi->comp_group_idx == 0) {
1206         if (mbmi->compound_idx)
1207           assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1208 
1209         if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1210           const int comp_index_ctx = get_comp_index_context(cm, xd);
1211           aom_write_symbol(w, mbmi->compound_idx,
1212                            ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1213         } else {
1214           assert(mbmi->compound_idx == 1);
1215         }
1216       } else {
1217         assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1218                is_inter_compound_mode(mbmi->mode) &&
1219                mbmi->motion_mode == SIMPLE_TRANSLATION);
1220         assert(masked_compound_used);
1221         // compound_diffwtd, wedge
1222         assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1223                mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1224 
1225         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1226           aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1227                            ec_ctx->compound_type_cdf[bsize],
1228                            MASKED_COMPOUND_TYPES);
1229 
1230         if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1231           assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1232           aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1233                            ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1234           aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1235         } else {
1236           assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1237           aom_write_literal(w, mbmi->interinter_comp.mask_type,
1238                             MAX_DIFFWTD_MASK_BITS);
1239         }
1240       }
1241     }
1242     write_mb_interp_filter(cm, td, w);
1243   }
1244 }
1245 
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1246 static AOM_INLINE void write_intrabc_info(
1247     MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1248     aom_writer *w) {
1249   const MB_MODE_INFO *const mbmi = xd->mi[0];
1250   int use_intrabc = is_intrabc_block(mbmi);
1251   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1252   aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1253   if (use_intrabc) {
1254     assert(mbmi->mode == DC_PRED);
1255     assert(mbmi->uv_mode == UV_DC_PRED);
1256     assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1257     int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1258     av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1259   }
1260 }
1261 
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1262 static AOM_INLINE void write_mb_modes_kf(
1263     AV1_COMP *cpi, MACROBLOCKD *xd,
1264     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1265   AV1_COMMON *const cm = &cpi->common;
1266   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1267   const struct segmentation *const seg = &cm->seg;
1268   struct segmentation_probs *const segp = &ec_ctx->seg;
1269   const MB_MODE_INFO *const mbmi = xd->mi[0];
1270 
1271   if (seg->segid_preskip && seg->update_map)
1272     write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1273 
1274   const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1275 
1276   if (!seg->segid_preskip && seg->update_map)
1277     write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1278 
1279   write_cdef(cm, xd, w, skip);
1280 
1281   write_delta_q_params(cm, xd, skip, w);
1282 
1283   if (av1_allow_intrabc(cm)) {
1284     write_intrabc_info(xd, mbmi_ext_frame, w);
1285     if (is_intrabc_block(mbmi)) return;
1286   }
1287 
1288   write_intra_prediction_modes(cm, xd, 1, w);
1289 }
1290 
1291 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1292 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1293   printf("\nmi->mi_row == %d\n", mi->mi_row);
1294   printf("&& mi->mi_col == %d\n", mi->mi_col);
1295   printf("&& mi->bsize == %d\n", mi->bsize);
1296   printf("&& mi->tx_size == %d\n", mi->tx_size);
1297   printf("&& mi->mode == %d\n", mi->mode);
1298 }
1299 
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1300 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1301                                    int plane) {
1302   if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1303     printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1304            plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1305     return 1;
1306   }
1307   return 0;
1308 }
1309 #endif
1310 
1311 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1312 static AOM_INLINE void enc_dump_logs(
1313     const AV1_COMMON *const cm,
1314     const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1315   const MB_MODE_INFO *const mbmi = *(
1316       cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1317   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1318       mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1319                                                  cm->mi_params.mi_alloc_bsize,
1320                                                  mbmi_ext_info->stride);
1321   if (is_inter_block(mbmi)) {
1322 #define FRAME_TO_CHECK 11
1323     if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1324         cm->show_frame == 1) {
1325       const BLOCK_SIZE bsize = mbmi->bsize;
1326 
1327       int_mv mv[2] = { 0 };
1328       const int is_comp_ref = has_second_ref(mbmi);
1329 
1330       for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1331         mv[ref].as_mv = mbmi->mv[ref].as_mv;
1332 
1333       if (!is_comp_ref) {
1334         mv[1].as_int = 0;
1335       }
1336 
1337       const int16_t mode_ctx =
1338           is_comp_ref ? 0
1339                       : mode_context_analyzer(mbmi_ext_frame->mode_context,
1340                                               mbmi->ref_frame);
1341 
1342       const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1343       int16_t zeromv_ctx = -1;
1344       int16_t refmv_ctx = -1;
1345 
1346       if (mbmi->mode != NEWMV) {
1347         zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1348         if (mbmi->mode != GLOBALMV)
1349           refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1350       }
1351 
1352       printf(
1353           "=== ENCODER ===: "
1354           "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1355           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1356           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1357           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1358           cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1359           mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1360           mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1361           mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1362           zeromv_ctx, refmv_ctx, mbmi->tx_size);
1363     }
1364   }
1365 }
1366 #endif  // ENC_MISMATCH_DEBUG
1367 
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1368 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1369                                     aom_writer *w) {
1370   AV1_COMMON *const cm = &cpi->common;
1371   MACROBLOCKD *const xd = &td->mb.e_mbd;
1372   MB_MODE_INFO *m = xd->mi[0];
1373 
1374   if (frame_is_intra_only(cm)) {
1375     write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1376   } else {
1377     // has_subpel_mv_component needs the ref frame buffers set up to look
1378     // up if they are scaled. has_subpel_mv_component is in turn needed by
1379     // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1380     set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1381 
1382 #if ENC_MISMATCH_DEBUG
1383     enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1384 #endif  // ENC_MISMATCH_DEBUG
1385 
1386     pack_inter_mode_mvs(cpi, td, w);
1387   }
1388 }
1389 
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1390 static AOM_INLINE void write_inter_txb_coeff(
1391     AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1392     aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1393     TOKEN_STATS *token_stats, const int row, const int col, int *block,
1394     const int plane) {
1395   MACROBLOCKD *const xd = &x->e_mbd;
1396   const struct macroblockd_plane *const pd = &xd->plane[plane];
1397   const BLOCK_SIZE bsize = mbmi->bsize;
1398   assert(bsize < BLOCK_SIZES_ALL);
1399   const int ss_x = pd->subsampling_x;
1400   const int ss_y = pd->subsampling_y;
1401   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1402   assert(plane_bsize < BLOCK_SIZES_ALL);
1403   const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1404   const int step =
1405       tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1406   const int bkw = tx_size_wide_unit[max_tx_size];
1407   const int bkh = tx_size_high_unit[max_tx_size];
1408   const BLOCK_SIZE max_unit_bsize =
1409       get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1410   const int num_4x4_w = mi_size_wide[plane_bsize];
1411   const int num_4x4_h = mi_size_high[plane_bsize];
1412   const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1413   const int mu_blocks_high = mi_size_high[max_unit_bsize];
1414   const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1415   const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1416   for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1417     for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1418       pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1419                       cm->seq_params->bit_depth, *block, blk_row, blk_col,
1420                       max_tx_size, token_stats);
1421       *block += step;
1422     }
1423   }
1424 }
1425 
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1426 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1427                                       aom_writer *w, const TokenExtra **tok,
1428                                       const TokenExtra *const tok_end) {
1429   AV1_COMMON *const cm = &cpi->common;
1430   MACROBLOCKD *const xd = &x->e_mbd;
1431   MB_MODE_INFO *const mbmi = xd->mi[0];
1432   const BLOCK_SIZE bsize = mbmi->bsize;
1433 
1434   assert(!mbmi->skip_txfm);
1435 
1436   const int is_inter = is_inter_block(mbmi);
1437   if (!is_inter) {
1438     av1_write_intra_coeffs_mb(cm, x, w, bsize);
1439   } else {
1440     int block[MAX_MB_PLANE] = { 0 };
1441     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1442                                          xd->plane[0].subsampling_y));
1443     const int num_4x4_w = mi_size_wide[bsize];
1444     const int num_4x4_h = mi_size_high[bsize];
1445     TOKEN_STATS token_stats;
1446     init_token_stats(&token_stats);
1447 
1448     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1449     assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1450                                                   xd->plane[0].subsampling_x,
1451                                                   xd->plane[0].subsampling_y));
1452     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1453     int mu_blocks_high = mi_size_high[max_unit_bsize];
1454     mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1455     mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1456 
1457     const int num_planes = av1_num_planes(cm);
1458     for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1459       for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1460         for (int plane = 0; plane < num_planes; ++plane) {
1461           if (plane && !xd->is_chroma_ref) break;
1462           write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1463                                 col, &block[plane], plane);
1464         }
1465       }
1466     }
1467 #if CONFIG_RD_DEBUG
1468     for (int plane = 0; plane < num_planes; ++plane) {
1469       if (mbmi->bsize >= BLOCK_8X8 &&
1470           rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1471         dump_mode_info(mbmi);
1472         assert(0);
1473       }
1474     }
1475 #endif  // CONFIG_RD_DEBUG
1476   }
1477 }
1478 
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1479 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1480                                      const TileInfo *const tile, aom_writer *w,
1481                                      const TokenExtra **tok,
1482                                      const TokenExtra *const tok_end,
1483                                      int mi_row, int mi_col) {
1484   const AV1_COMMON *cm = &cpi->common;
1485   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1486   MACROBLOCKD *xd = &td->mb.e_mbd;
1487   FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1488   const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1489   xd->mi = mi_params->mi_grid_base + grid_idx;
1490   td->mb.mbmi_ext_frame =
1491       cpi->mbmi_ext_info.frame_base +
1492       get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1493                      cpi->mbmi_ext_info.stride);
1494   xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1495   xd->tx_type_map_stride = mi_params->mi_stride;
1496 
1497   const MB_MODE_INFO *mbmi = xd->mi[0];
1498   const BLOCK_SIZE bsize = mbmi->bsize;
1499   assert(bsize <= cm->seq_params->sb_size ||
1500          (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1501 
1502   const int bh = mi_size_high[bsize];
1503   const int bw = mi_size_wide[bsize];
1504   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1505                  mi_params->mi_cols);
1506 
1507   xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1508   xd->left_txfm_context =
1509       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1510 
1511   write_mbmi_b(cpi, td, w);
1512 
1513   for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1514     const uint8_t palette_size_plane =
1515         mbmi->palette_mode_info.palette_size[plane];
1516     assert(!mbmi->skip_mode || !palette_size_plane);
1517     if (palette_size_plane > 0) {
1518       assert(mbmi->use_intrabc == 0);
1519       assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1520                                mbmi->bsize));
1521       assert(!plane || xd->is_chroma_ref);
1522       int rows, cols;
1523       av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1524                                &cols);
1525       assert(*tok < tok_end);
1526       MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1527                                 : tile_ctx->palette_y_color_index_cdf;
1528       pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1529     }
1530   }
1531 
1532   const int is_inter_tx = is_inter_block(mbmi);
1533   const int skip_txfm = mbmi->skip_txfm;
1534   const uint8_t segment_id = mbmi->segment_id;
1535   if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1536       !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1537     if (is_inter_tx) {  // This implies skip flag is 0.
1538       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1539       const int txbh = tx_size_high_unit[max_tx_size];
1540       const int txbw = tx_size_wide_unit[max_tx_size];
1541       const int width = mi_size_wide[bsize];
1542       const int height = mi_size_high[bsize];
1543       for (int idy = 0; idy < height; idy += txbh) {
1544         for (int idx = 0; idx < width; idx += txbw) {
1545           write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1546         }
1547       }
1548     } else {
1549       write_selected_tx_size(xd, w);
1550       set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1551     }
1552   } else {
1553     set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1554                   skip_txfm && is_inter_tx, xd);
1555   }
1556 
1557   if (!mbmi->skip_txfm) {
1558     int start = aom_tell_size(w);
1559 
1560     write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1561 
1562     const int end = aom_tell_size(w);
1563     td->coefficient_size += end - start;
1564   }
1565 }
1566 
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1567 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1568                                        const MACROBLOCKD *const xd, int hbs,
1569                                        int mi_row, int mi_col, PARTITION_TYPE p,
1570                                        BLOCK_SIZE bsize, aom_writer *w) {
1571   const int is_partition_point = bsize >= BLOCK_8X8;
1572 
1573   if (!is_partition_point) return;
1574 
1575   const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1576   const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1577   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1578   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1579 
1580   if (!has_rows && !has_cols) {
1581     assert(p == PARTITION_SPLIT);
1582     return;
1583   }
1584 
1585   if (has_rows && has_cols) {
1586     aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1587                      partition_cdf_length(bsize));
1588   } else if (!has_rows && has_cols) {
1589     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1590     assert(bsize > BLOCK_8X8);
1591     aom_cdf_prob cdf[2];
1592     partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1593     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1594   } else {
1595     assert(has_rows && !has_cols);
1596     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1597     assert(bsize > BLOCK_8X8);
1598     aom_cdf_prob cdf[2];
1599     partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1600     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1601   }
1602 }
1603 
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1604 static AOM_INLINE void write_modes_sb(
1605     AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
1606     aom_writer *const w, const TokenExtra **tok,
1607     const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
1608   const AV1_COMMON *const cm = &cpi->common;
1609   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1610   MACROBLOCKD *const xd = &td->mb.e_mbd;
1611   assert(bsize < BLOCK_SIZES_ALL);
1612   const int hbs = mi_size_wide[bsize] / 2;
1613   const int quarter_step = mi_size_wide[bsize] / 4;
1614   int i;
1615   const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1616   const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1617 
1618   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1619 
1620 #if !CONFIG_REALTIME_ONLY
1621   const int num_planes = av1_num_planes(cm);
1622   for (int plane = 0; plane < num_planes; ++plane) {
1623     int rcol0, rcol1, rrow0, rrow1;
1624     if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1625                                            &rcol0, &rcol1, &rrow0, &rrow1)) {
1626       const int rstride = cm->rst_info[plane].horz_units_per_tile;
1627       for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1628         for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1629           const int runit_idx = rcol + rrow * rstride;
1630           const RestorationUnitInfo *rui =
1631               &cm->rst_info[plane].unit_info[runit_idx];
1632           loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, td->counts);
1633         }
1634       }
1635     }
1636   }
1637 #endif
1638 
1639   write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1640   switch (partition) {
1641     case PARTITION_NONE:
1642       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1643       break;
1644     case PARTITION_HORZ:
1645       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1646       if (mi_row + hbs < mi_params->mi_rows)
1647         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1648       break;
1649     case PARTITION_VERT:
1650       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1651       if (mi_col + hbs < mi_params->mi_cols)
1652         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1653       break;
1654     case PARTITION_SPLIT:
1655       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1656       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1657                      subsize);
1658       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1659                      subsize);
1660       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1661                      subsize);
1662       break;
1663     case PARTITION_HORZ_A:
1664       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1665       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1666       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1667       break;
1668     case PARTITION_HORZ_B:
1669       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1670       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1671       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1672       break;
1673     case PARTITION_VERT_A:
1674       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1675       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1677       break;
1678     case PARTITION_VERT_B:
1679       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1680       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1681       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1682       break;
1683     case PARTITION_HORZ_4:
1684       for (i = 0; i < 4; ++i) {
1685         int this_mi_row = mi_row + i * quarter_step;
1686         if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1687 
1688         write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1689       }
1690       break;
1691     case PARTITION_VERT_4:
1692       for (i = 0; i < 4; ++i) {
1693         int this_mi_col = mi_col + i * quarter_step;
1694         if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1695 
1696         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1697       }
1698       break;
1699     default: assert(0);
1700   }
1701 
1702   // update partition context
1703   update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1704 }
1705 
1706 // Populate token pointers appropriately based on token_info.
get_token_pointers(const TokenInfo * token_info,const int tile_row,int tile_col,const int sb_row_in_tile,const TokenExtra ** tok,const TokenExtra ** tok_end)1707 static AOM_INLINE void get_token_pointers(const TokenInfo *token_info,
1708                                           const int tile_row, int tile_col,
1709                                           const int sb_row_in_tile,
1710                                           const TokenExtra **tok,
1711                                           const TokenExtra **tok_end) {
1712   if (!is_token_info_allocated(token_info)) {
1713     *tok = NULL;
1714     *tok_end = NULL;
1715     return;
1716   }
1717   *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
1718   *tok_end =
1719       *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
1720 }
1721 
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1722 static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1723                                    const TileInfo *const tile,
1724                                    aom_writer *const w, int tile_row,
1725                                    int tile_col) {
1726   AV1_COMMON *const cm = &cpi->common;
1727   MACROBLOCKD *const xd = &td->mb.e_mbd;
1728   const int mi_row_start = tile->mi_row_start;
1729   const int mi_row_end = tile->mi_row_end;
1730   const int mi_col_start = tile->mi_col_start;
1731   const int mi_col_end = tile->mi_col_end;
1732   const int num_planes = av1_num_planes(cm);
1733 
1734   av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1735   av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1736 
1737   if (cpi->common.delta_q_info.delta_q_present_flag) {
1738     xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1739     if (cpi->common.delta_q_info.delta_lf_present_flag) {
1740       av1_reset_loop_filter_delta(xd, num_planes);
1741     }
1742   }
1743 
1744   for (int mi_row = mi_row_start; mi_row < mi_row_end;
1745        mi_row += cm->seq_params->mib_size) {
1746     const int sb_row_in_tile =
1747         (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1748     const TokenInfo *token_info = &cpi->token_info;
1749     const TokenExtra *tok;
1750     const TokenExtra *tok_end;
1751     get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
1752                        &tok_end);
1753 
1754     av1_zero_left_context(xd);
1755 
1756     for (int mi_col = mi_col_start; mi_col < mi_col_end;
1757          mi_col += cm->seq_params->mib_size) {
1758       td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1759       write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1760                      cm->seq_params->sb_size);
1761     }
1762     assert(tok == tok_end);
1763   }
1764 }
1765 
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1766 static AOM_INLINE void encode_restoration_mode(
1767     AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1768   assert(!cm->features.all_lossless);
1769   if (!cm->seq_params->enable_restoration) return;
1770   if (cm->features.allow_intrabc) return;
1771   const int num_planes = av1_num_planes(cm);
1772   int all_none = 1, chroma_none = 1;
1773   for (int p = 0; p < num_planes; ++p) {
1774     RestorationInfo *rsi = &cm->rst_info[p];
1775     if (rsi->frame_restoration_type != RESTORE_NONE) {
1776       all_none = 0;
1777       chroma_none &= p == 0;
1778     }
1779     switch (rsi->frame_restoration_type) {
1780       case RESTORE_NONE:
1781         aom_wb_write_bit(wb, 0);
1782         aom_wb_write_bit(wb, 0);
1783         break;
1784       case RESTORE_WIENER:
1785         aom_wb_write_bit(wb, 1);
1786         aom_wb_write_bit(wb, 0);
1787         break;
1788       case RESTORE_SGRPROJ:
1789         aom_wb_write_bit(wb, 1);
1790         aom_wb_write_bit(wb, 1);
1791         break;
1792       case RESTORE_SWITCHABLE:
1793         aom_wb_write_bit(wb, 0);
1794         aom_wb_write_bit(wb, 1);
1795         break;
1796       default: assert(0);
1797     }
1798   }
1799   if (!all_none) {
1800     assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1801            cm->seq_params->sb_size == BLOCK_128X128);
1802     const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1803 
1804     RestorationInfo *rsi = &cm->rst_info[0];
1805 
1806     assert(rsi->restoration_unit_size >= sb_size);
1807     assert(RESTORATION_UNITSIZE_MAX == 256);
1808 
1809     if (sb_size == 64) {
1810       aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1811     }
1812     if (rsi->restoration_unit_size > 64) {
1813       aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1814     }
1815   }
1816 
1817   if (num_planes > 1) {
1818     int s =
1819         AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1820     if (s && !chroma_none) {
1821       aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1822                                cm->rst_info[0].restoration_unit_size);
1823       assert(cm->rst_info[1].restoration_unit_size ==
1824                  cm->rst_info[0].restoration_unit_size ||
1825              cm->rst_info[1].restoration_unit_size ==
1826                  (cm->rst_info[0].restoration_unit_size >> s));
1827       assert(cm->rst_info[2].restoration_unit_size ==
1828              cm->rst_info[1].restoration_unit_size);
1829     } else if (!s) {
1830       assert(cm->rst_info[1].restoration_unit_size ==
1831              cm->rst_info[0].restoration_unit_size);
1832       assert(cm->rst_info[2].restoration_unit_size ==
1833              cm->rst_info[1].restoration_unit_size);
1834     }
1835   }
1836 }
1837 
1838 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1839 static AOM_INLINE void write_wiener_filter(int wiener_win,
1840                                            const WienerInfo *wiener_info,
1841                                            WienerInfo *ref_wiener_info,
1842                                            aom_writer *wb) {
1843   if (wiener_win == WIENER_WIN)
1844     aom_write_primitive_refsubexpfin(
1845         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1846         WIENER_FILT_TAP0_SUBEXP_K,
1847         ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1848         wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1849   else
1850     assert(wiener_info->vfilter[0] == 0 &&
1851            wiener_info->vfilter[WIENER_WIN - 1] == 0);
1852   aom_write_primitive_refsubexpfin(
1853       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1854       WIENER_FILT_TAP1_SUBEXP_K,
1855       ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1856       wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1857   aom_write_primitive_refsubexpfin(
1858       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1859       WIENER_FILT_TAP2_SUBEXP_K,
1860       ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1861       wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1862   if (wiener_win == WIENER_WIN)
1863     aom_write_primitive_refsubexpfin(
1864         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1865         WIENER_FILT_TAP0_SUBEXP_K,
1866         ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1867         wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1868   else
1869     assert(wiener_info->hfilter[0] == 0 &&
1870            wiener_info->hfilter[WIENER_WIN - 1] == 0);
1871   aom_write_primitive_refsubexpfin(
1872       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1873       WIENER_FILT_TAP1_SUBEXP_K,
1874       ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1875       wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1876   aom_write_primitive_refsubexpfin(
1877       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1878       WIENER_FILT_TAP2_SUBEXP_K,
1879       ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1880       wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1881   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1882 }
1883 
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1884 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1885                                             SgrprojInfo *ref_sgrproj_info,
1886                                             aom_writer *wb) {
1887   aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1888   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1889 
1890   if (params->r[0] == 0) {
1891     assert(sgrproj_info->xqd[0] == 0);
1892     aom_write_primitive_refsubexpfin(
1893         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1894         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1895         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1896   } else if (params->r[1] == 0) {
1897     aom_write_primitive_refsubexpfin(
1898         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1899         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1900         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1901   } else {
1902     aom_write_primitive_refsubexpfin(
1903         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1904         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1905         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1906     aom_write_primitive_refsubexpfin(
1907         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1908         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1909         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1910   }
1911 
1912   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1913 }
1914 
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,const RestorationUnitInfo * rui,aom_writer * const w,int plane,FRAME_COUNTS * counts)1915 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1916     const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
1917     aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1918   const RestorationInfo *rsi = cm->rst_info + plane;
1919   RestorationType frame_rtype = rsi->frame_restoration_type;
1920   assert(frame_rtype != RESTORE_NONE);
1921 
1922   (void)counts;
1923   assert(!cm->features.all_lossless);
1924 
1925   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1926   WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1927   SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1928   RestorationType unit_rtype = rui->restoration_type;
1929 
1930   if (frame_rtype == RESTORE_SWITCHABLE) {
1931     aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1932                      RESTORE_SWITCHABLE_TYPES);
1933 #if CONFIG_ENTROPY_STATS
1934     ++counts->switchable_restore[unit_rtype];
1935 #endif
1936     switch (unit_rtype) {
1937       case RESTORE_WIENER:
1938         write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1939         break;
1940       case RESTORE_SGRPROJ:
1941         write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1942         break;
1943       default: assert(unit_rtype == RESTORE_NONE); break;
1944     }
1945   } else if (frame_rtype == RESTORE_WIENER) {
1946     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1947                      xd->tile_ctx->wiener_restore_cdf, 2);
1948 #if CONFIG_ENTROPY_STATS
1949     ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1950 #endif
1951     if (unit_rtype != RESTORE_NONE) {
1952       write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1953     }
1954   } else if (frame_rtype == RESTORE_SGRPROJ) {
1955     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1956                      xd->tile_ctx->sgrproj_restore_cdf, 2);
1957 #if CONFIG_ENTROPY_STATS
1958     ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1959 #endif
1960     if (unit_rtype != RESTORE_NONE) {
1961       write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1962     }
1963   }
1964 }
1965 #endif  // !CONFIG_REALTIME_ONLY
1966 
1967 // Only write out the ref delta section if any of the elements
1968 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1969 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
1970   struct loopfilter *lf = &cm->lf;
1971   if (!lf->mode_ref_delta_update) {
1972     return 0;
1973   }
1974   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1975   int8_t last_ref_deltas[REF_FRAMES];
1976   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1977   if (buf == NULL) {
1978     av1_set_default_ref_deltas(last_ref_deltas);
1979     av1_set_default_mode_deltas(last_mode_deltas);
1980   } else {
1981     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
1982     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
1983   }
1984   for (int i = 0; i < REF_FRAMES; i++) {
1985     if (lf->ref_deltas[i] != last_ref_deltas[i]) {
1986       return true;
1987     }
1988   }
1989   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
1990     if (lf->mode_deltas[i] != last_mode_deltas[i]) {
1991       return true;
1992     }
1993   }
1994   return false;
1995 }
1996 
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1997 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
1998                                          struct aom_write_bit_buffer *wb) {
1999   assert(!cm->features.coded_lossless);
2000   if (cm->features.allow_intrabc) return;
2001   const int num_planes = av1_num_planes(cm);
2002   struct loopfilter *lf = &cm->lf;
2003 
2004   // Encode the loop filter level and type
2005   aom_wb_write_literal(wb, lf->filter_level[0], 6);
2006   aom_wb_write_literal(wb, lf->filter_level[1], 6);
2007   if (num_planes > 1) {
2008     if (lf->filter_level[0] || lf->filter_level[1]) {
2009       aom_wb_write_literal(wb, lf->filter_level_u, 6);
2010       aom_wb_write_literal(wb, lf->filter_level_v, 6);
2011     }
2012   }
2013   aom_wb_write_literal(wb, lf->sharpness_level, 3);
2014 
2015   aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
2016 
2017   // Write out loop filter deltas applied at the MB level based on mode or
2018   // ref frame (if they are enabled), only if there is information to write.
2019   int meaningful = is_mode_ref_delta_meaningful(cm);
2020   aom_wb_write_bit(wb, meaningful);
2021   if (!meaningful) {
2022     return;
2023   }
2024 
2025   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2026   int8_t last_ref_deltas[REF_FRAMES];
2027   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2028   if (buf == NULL) {
2029     av1_set_default_ref_deltas(last_ref_deltas);
2030     av1_set_default_mode_deltas(last_mode_deltas);
2031   } else {
2032     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2033     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2034   }
2035   for (int i = 0; i < REF_FRAMES; i++) {
2036     const int delta = lf->ref_deltas[i];
2037     const int changed = delta != last_ref_deltas[i];
2038     aom_wb_write_bit(wb, changed);
2039     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2040   }
2041   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2042     const int delta = lf->mode_deltas[i];
2043     const int changed = delta != last_mode_deltas[i];
2044     aom_wb_write_bit(wb, changed);
2045     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2046   }
2047 }
2048 
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2049 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2050                                    struct aom_write_bit_buffer *wb) {
2051   assert(!cm->features.coded_lossless);
2052   if (!cm->seq_params->enable_cdef) return;
2053   if (cm->features.allow_intrabc) return;
2054   const int num_planes = av1_num_planes(cm);
2055   int i;
2056   aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2057   aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2058   for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2059     aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2060                          CDEF_STRENGTH_BITS);
2061     if (num_planes > 1)
2062       aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2063                            CDEF_STRENGTH_BITS);
2064   }
2065 }
2066 
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2067 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2068                                      int delta_q) {
2069   if (delta_q != 0) {
2070     aom_wb_write_bit(wb, 1);
2071     aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2072   } else {
2073     aom_wb_write_bit(wb, 0);
2074   }
2075 }
2076 
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2077 static AOM_INLINE void encode_quantization(
2078     const CommonQuantParams *const quant_params, int num_planes,
2079     bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2080   aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2081   write_delta_q(wb, quant_params->y_dc_delta_q);
2082   if (num_planes > 1) {
2083     int diff_uv_delta =
2084         (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2085         (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2086     if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2087     write_delta_q(wb, quant_params->u_dc_delta_q);
2088     write_delta_q(wb, quant_params->u_ac_delta_q);
2089     if (diff_uv_delta) {
2090       write_delta_q(wb, quant_params->v_dc_delta_q);
2091       write_delta_q(wb, quant_params->v_ac_delta_q);
2092     }
2093   }
2094   aom_wb_write_bit(wb, quant_params->using_qmatrix);
2095   if (quant_params->using_qmatrix) {
2096     aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2097     aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2098     if (!separate_uv_delta_q)
2099       assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2100     else
2101       aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2102   }
2103 }
2104 
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2105 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
2106                                            struct aom_write_bit_buffer *wb) {
2107   int i, j;
2108   struct segmentation *seg = &cm->seg;
2109 
2110   aom_wb_write_bit(wb, seg->enabled);
2111   if (!seg->enabled) return;
2112 
2113   // Write update flags
2114   if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2115     aom_wb_write_bit(wb, seg->update_map);
2116     if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2117     aom_wb_write_bit(wb, seg->update_data);
2118   }
2119 
2120   // Segmentation data
2121   if (seg->update_data) {
2122     for (i = 0; i < MAX_SEGMENTS; i++) {
2123       for (j = 0; j < SEG_LVL_MAX; j++) {
2124         const int active = segfeature_active(seg, i, j);
2125         aom_wb_write_bit(wb, active);
2126         if (active) {
2127           const int data_max = av1_seg_feature_data_max(j);
2128           const int data_min = -data_max;
2129           const int ubits = get_unsigned_bits(data_max);
2130           const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2131 
2132           if (av1_is_segfeature_signed(j)) {
2133             aom_wb_write_inv_signed_literal(wb, data, ubits);
2134           } else {
2135             aom_wb_write_literal(wb, data, ubits);
2136           }
2137         }
2138       }
2139     }
2140   }
2141 }
2142 
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2143 static AOM_INLINE void write_frame_interp_filter(
2144     InterpFilter filter, struct aom_write_bit_buffer *wb) {
2145   aom_wb_write_bit(wb, filter == SWITCHABLE);
2146   if (filter != SWITCHABLE)
2147     aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2148 }
2149 
2150 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2151 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2152                                         int v) {
2153   const int l = get_unsigned_bits(n);
2154   const int m = (1 << l) - n;
2155   if (l == 0) return;
2156   if (v < m) {
2157     aom_wb_write_literal(wb, v, l - 1);
2158   } else {
2159     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2160     aom_wb_write_literal(wb, (v - m) & 1, 1);
2161   }
2162 }
2163 
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2164 static AOM_INLINE void write_tile_info_max_tile(
2165     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2166   int width_sb =
2167       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2168   int height_sb =
2169       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2170   int size_sb, i;
2171   const CommonTileParams *const tiles = &cm->tiles;
2172 
2173   aom_wb_write_bit(wb, tiles->uniform_spacing);
2174 
2175   if (tiles->uniform_spacing) {
2176     int ones = tiles->log2_cols - tiles->min_log2_cols;
2177     while (ones--) {
2178       aom_wb_write_bit(wb, 1);
2179     }
2180     if (tiles->log2_cols < tiles->max_log2_cols) {
2181       aom_wb_write_bit(wb, 0);
2182     }
2183 
2184     // rows
2185     ones = tiles->log2_rows - tiles->min_log2_rows;
2186     while (ones--) {
2187       aom_wb_write_bit(wb, 1);
2188     }
2189     if (tiles->log2_rows < tiles->max_log2_rows) {
2190       aom_wb_write_bit(wb, 0);
2191     }
2192   } else {
2193     // Explicit tiles with configurable tile widths and heights
2194     // columns
2195     for (i = 0; i < tiles->cols; i++) {
2196       size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2197       wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2198       width_sb -= size_sb;
2199     }
2200     assert(width_sb == 0);
2201 
2202     // rows
2203     for (i = 0; i < tiles->rows; i++) {
2204       size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2205       wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2206                        size_sb - 1);
2207       height_sb -= size_sb;
2208     }
2209     assert(height_sb == 0);
2210   }
2211 }
2212 
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2213 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2214                                        struct aom_write_bit_buffer *saved_wb,
2215                                        struct aom_write_bit_buffer *wb) {
2216   write_tile_info_max_tile(cm, wb);
2217 
2218   *saved_wb = *wb;
2219   if (cm->tiles.rows * cm->tiles.cols > 1) {
2220     // tile id used for cdf update
2221     aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2222     // Number of bytes in tile size - 1
2223     aom_wb_write_literal(wb, 3, 2);
2224   }
2225 }
2226 
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2227 static AOM_INLINE void write_ext_tile_info(
2228     const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2229     struct aom_write_bit_buffer *wb) {
2230   // This information is stored as a separate byte.
2231   int mod = wb->bit_offset % CHAR_BIT;
2232   if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2233   assert(aom_wb_is_byte_aligned(wb));
2234 
2235   *saved_wb = *wb;
2236   if (cm->tiles.rows * cm->tiles.cols > 1) {
2237     // Note that the last item in the uncompressed header is the data
2238     // describing tile configuration.
2239     // Number of bytes in tile column size - 1
2240     aom_wb_write_literal(wb, 0, 2);
2241     // Number of bytes in tile size - 1
2242     aom_wb_write_literal(wb, 0, 2);
2243   }
2244 }
2245 
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2246 static INLINE int find_identical_tile(
2247     const int tile_row, const int tile_col,
2248     TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2249   const MV32 candidate_offset[1] = { { 1, 0 } };
2250   const uint8_t *const cur_tile_data =
2251       tile_buffers[tile_row][tile_col].data + 4;
2252   const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2253 
2254   int i;
2255 
2256   if (tile_row == 0) return 0;
2257 
2258   // (TODO: yunqingwang) For now, only above tile is checked and used.
2259   // More candidates such as left tile can be added later.
2260   for (i = 0; i < 1; i++) {
2261     int row_offset = candidate_offset[0].row;
2262     int col_offset = candidate_offset[0].col;
2263     int row = tile_row - row_offset;
2264     int col = tile_col - col_offset;
2265     const uint8_t *tile_data;
2266     TileBufferEnc *candidate;
2267 
2268     if (row < 0 || col < 0) continue;
2269 
2270     const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2271 
2272     // Read out tile-copy-mode bit:
2273     if ((tile_hdr >> 31) == 1) {
2274       // The candidate is a copy tile itself: the offset is stored in bits
2275       // 30 through 24 inclusive.
2276       row_offset += (tile_hdr >> 24) & 0x7f;
2277       row = tile_row - row_offset;
2278     }
2279 
2280     candidate = &tile_buffers[row][col];
2281 
2282     if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2283 
2284     tile_data = candidate->data + 4;
2285 
2286     if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2287 
2288     // Identical tile found
2289     assert(row_offset > 0);
2290     return row_offset;
2291   }
2292 
2293   // No identical tile found
2294   return 0;
2295 }
2296 
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2297 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2298                                          struct aom_write_bit_buffer *wb) {
2299   const int scaling_active = av1_resize_scaled(cm);
2300   aom_wb_write_bit(wb, scaling_active);
2301   if (scaling_active) {
2302     aom_wb_write_literal(wb, cm->render_width - 1, 16);
2303     aom_wb_write_literal(wb, cm->render_height - 1, 16);
2304   }
2305 }
2306 
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2307 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2308                                             struct aom_write_bit_buffer *wb) {
2309   const SequenceHeader *const seq_params = cm->seq_params;
2310   if (!seq_params->enable_superres) {
2311     assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2312     return;
2313   }
2314 
2315   // First bit is whether to to scale or not
2316   if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2317     aom_wb_write_bit(wb, 0);  // no scaling
2318   } else {
2319     aom_wb_write_bit(wb, 1);  // scaling, write scale factor
2320     assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2321     assert(cm->superres_scale_denominator <
2322            SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2323     aom_wb_write_literal(
2324         wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2325         SUPERRES_SCALE_BITS);
2326   }
2327 }
2328 
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2329 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2330                                         int frame_size_override,
2331                                         struct aom_write_bit_buffer *wb) {
2332   const int coded_width = cm->superres_upscaled_width - 1;
2333   const int coded_height = cm->superres_upscaled_height - 1;
2334 
2335   if (frame_size_override) {
2336     const SequenceHeader *seq_params = cm->seq_params;
2337     int num_bits_width = seq_params->num_bits_width;
2338     int num_bits_height = seq_params->num_bits_height;
2339     aom_wb_write_literal(wb, coded_width, num_bits_width);
2340     aom_wb_write_literal(wb, coded_height, num_bits_height);
2341   }
2342 
2343   write_superres_scale(cm, wb);
2344   write_render_size(cm, wb);
2345 }
2346 
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2347 static AOM_INLINE void write_frame_size_with_refs(
2348     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2349   int found = 0;
2350 
2351   MV_REFERENCE_FRAME ref_frame;
2352   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2353     const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2354 
2355     if (cfg != NULL) {
2356       found = cm->superres_upscaled_width == cfg->y_crop_width &&
2357               cm->superres_upscaled_height == cfg->y_crop_height;
2358       found &= cm->render_width == cfg->render_width &&
2359                cm->render_height == cfg->render_height;
2360     }
2361     aom_wb_write_bit(wb, found);
2362     if (found) {
2363       write_superres_scale(cm, wb);
2364       break;
2365     }
2366   }
2367 
2368   if (!found) {
2369     int frame_size_override = 1;  // Always equal to 1 in this function
2370     write_frame_size(cm, frame_size_override, wb);
2371   }
2372 }
2373 
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2374 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2375                                      struct aom_write_bit_buffer *wb) {
2376   assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2377   aom_wb_write_literal(wb, profile, PROFILE_BITS);
2378 }
2379 
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2380 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2381                                       struct aom_write_bit_buffer *wb) {
2382   // Profile 0/1: [0] for 8 bit, [1]  10-bit
2383   // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2384   aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2385   if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2386     aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2387   }
2388 }
2389 
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2390 static AOM_INLINE void write_color_config(
2391     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2392   write_bitdepth(seq_params, wb);
2393   const int is_monochrome = seq_params->monochrome;
2394   // monochrome bit
2395   if (seq_params->profile != PROFILE_1)
2396     aom_wb_write_bit(wb, is_monochrome);
2397   else
2398     assert(!is_monochrome);
2399   if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2400       seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2401       seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2402     aom_wb_write_bit(wb, 0);  // No color description present
2403   } else {
2404     aom_wb_write_bit(wb, 1);  // Color description present
2405     aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2406     aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2407     aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2408   }
2409   if (is_monochrome) {
2410     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2411     aom_wb_write_bit(wb, seq_params->color_range);
2412     return;
2413   }
2414   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2415       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2416       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2417     assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2418     assert(seq_params->profile == PROFILE_1 ||
2419            (seq_params->profile == PROFILE_2 &&
2420             seq_params->bit_depth == AOM_BITS_12));
2421   } else {
2422     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2423     aom_wb_write_bit(wb, seq_params->color_range);
2424     if (seq_params->profile == PROFILE_0) {
2425       // 420 only
2426       assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2427     } else if (seq_params->profile == PROFILE_1) {
2428       // 444 only
2429       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2430     } else if (seq_params->profile == PROFILE_2) {
2431       if (seq_params->bit_depth == AOM_BITS_12) {
2432         // 420, 444 or 422
2433         aom_wb_write_bit(wb, seq_params->subsampling_x);
2434         if (seq_params->subsampling_x == 0) {
2435           assert(seq_params->subsampling_y == 0 &&
2436                  "4:4:0 subsampling not allowed in AV1");
2437         } else {
2438           aom_wb_write_bit(wb, seq_params->subsampling_y);
2439         }
2440       } else {
2441         // 422 only
2442         assert(seq_params->subsampling_x == 1 &&
2443                seq_params->subsampling_y == 0);
2444       }
2445     }
2446     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2447       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2448     }
2449     if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2450       aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2451     }
2452   }
2453   aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2454 }
2455 
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2456 static AOM_INLINE void write_timing_info_header(
2457     const aom_timing_info_t *const timing_info,
2458     struct aom_write_bit_buffer *wb) {
2459   aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2460   aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2461   aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2462   if (timing_info->equal_picture_interval) {
2463     aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2464   }
2465 }
2466 
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2467 static AOM_INLINE void write_decoder_model_info(
2468     const aom_dec_model_info_t *const decoder_model_info,
2469     struct aom_write_bit_buffer *wb) {
2470   aom_wb_write_literal(
2471       wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2472   aom_wb_write_unsigned_literal(
2473       wb, decoder_model_info->num_units_in_decoding_tick, 32);
2474   aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2475                        5);
2476   aom_wb_write_literal(
2477       wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2478 }
2479 
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2480 static AOM_INLINE void write_dec_model_op_parameters(
2481     const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2482     struct aom_write_bit_buffer *wb) {
2483   aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2484                                 buffer_delay_length);
2485   aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2486                                 buffer_delay_length);
2487   aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2488 }
2489 
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2490 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2491                                          struct aom_write_bit_buffer *wb) {
2492   aom_wb_write_unsigned_literal(
2493       wb, cm->frame_presentation_time,
2494       cm->seq_params->decoder_model_info.frame_presentation_time_length);
2495 }
2496 
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2497 static AOM_INLINE void write_film_grain_params(
2498     const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2499   const AV1_COMMON *const cm = &cpi->common;
2500   const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2501   aom_wb_write_bit(wb, pars->apply_grain);
2502   if (!pars->apply_grain) return;
2503 
2504   aom_wb_write_literal(wb, pars->random_seed, 16);
2505 
2506   if (cm->current_frame.frame_type == INTER_FRAME)
2507     aom_wb_write_bit(wb, pars->update_parameters);
2508 
2509   if (!pars->update_parameters) {
2510     int ref_frame, ref_idx;
2511     for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2512       ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2513       assert(ref_idx != INVALID_IDX);
2514       const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2515       if (buf->film_grain_params_present &&
2516           aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2517         break;
2518       }
2519     }
2520     assert(ref_frame < REF_FRAMES);
2521     aom_wb_write_literal(wb, ref_idx, 3);
2522     return;
2523   }
2524 
2525   // Scaling functions parameters
2526   aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14
2527   for (int i = 0; i < pars->num_y_points; i++) {
2528     aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2529     aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2530   }
2531 
2532   if (!cm->seq_params->monochrome) {
2533     aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2534   } else {
2535     assert(!pars->chroma_scaling_from_luma);
2536   }
2537 
2538   if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2539       ((cm->seq_params->subsampling_x == 1) &&
2540        (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2541     assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2542   } else {
2543     aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10
2544     for (int i = 0; i < pars->num_cb_points; i++) {
2545       aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2546       aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2547     }
2548 
2549     aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10
2550     for (int i = 0; i < pars->num_cr_points; i++) {
2551       aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2552       aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2553     }
2554   }
2555 
2556   aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value
2557 
2558   // AR coefficients
2559   // Only sent if the corresponsing scaling function has
2560   // more than 0 points
2561 
2562   aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2563 
2564   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2565   int num_pos_chroma = num_pos_luma;
2566   if (pars->num_y_points > 0) ++num_pos_chroma;
2567 
2568   if (pars->num_y_points)
2569     for (int i = 0; i < num_pos_luma; i++)
2570       aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2571 
2572   if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2573     for (int i = 0; i < num_pos_chroma; i++)
2574       aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2575 
2576   if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2577     for (int i = 0; i < num_pos_chroma; i++)
2578       aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2579 
2580   aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value
2581 
2582   aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2583 
2584   if (pars->num_cb_points) {
2585     aom_wb_write_literal(wb, pars->cb_mult, 8);
2586     aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2587     aom_wb_write_literal(wb, pars->cb_offset, 9);
2588   }
2589 
2590   if (pars->num_cr_points) {
2591     aom_wb_write_literal(wb, pars->cr_mult, 8);
2592     aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2593     aom_wb_write_literal(wb, pars->cr_offset, 9);
2594   }
2595 
2596   aom_wb_write_bit(wb, pars->overlap_flag);
2597 
2598   aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2599 }
2600 
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2601 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2602                                      struct aom_write_bit_buffer *wb) {
2603   (void)seq_params;
2604   (void)wb;
2605   assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2606   assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2607   assert(seq_params->sb_size == BLOCK_128X128 ||
2608          seq_params->sb_size == BLOCK_64X64);
2609   aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2610 }
2611 
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2612 static AOM_INLINE void write_sequence_header(
2613     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2614   aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2615   aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2616   aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2617                        seq_params->num_bits_width);
2618   aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2619                        seq_params->num_bits_height);
2620 
2621   if (!seq_params->reduced_still_picture_hdr) {
2622     aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2623     if (seq_params->frame_id_numbers_present_flag) {
2624       // We must always have delta_frame_id_length < frame_id_length,
2625       // in order for a frame to be referenced with a unique delta.
2626       // Avoid wasting bits by using a coding that enforces this restriction.
2627       aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2628       aom_wb_write_literal(
2629           wb,
2630           seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2631           3);
2632     }
2633   }
2634 
2635   write_sb_size(seq_params, wb);
2636 
2637   aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2638   aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2639 
2640   if (!seq_params->reduced_still_picture_hdr) {
2641     aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2642     aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2643     aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2644     aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2645 
2646     aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2647 
2648     if (seq_params->order_hint_info.enable_order_hint) {
2649       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2650       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2651     }
2652     if (seq_params->force_screen_content_tools == 2) {
2653       aom_wb_write_bit(wb, 1);
2654     } else {
2655       aom_wb_write_bit(wb, 0);
2656       aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2657     }
2658     if (seq_params->force_screen_content_tools > 0) {
2659       if (seq_params->force_integer_mv == 2) {
2660         aom_wb_write_bit(wb, 1);
2661       } else {
2662         aom_wb_write_bit(wb, 0);
2663         aom_wb_write_bit(wb, seq_params->force_integer_mv);
2664       }
2665     } else {
2666       assert(seq_params->force_integer_mv == 2);
2667     }
2668     if (seq_params->order_hint_info.enable_order_hint)
2669       aom_wb_write_literal(
2670           wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2671   }
2672 
2673   aom_wb_write_bit(wb, seq_params->enable_superres);
2674   aom_wb_write_bit(wb, seq_params->enable_cdef);
2675   aom_wb_write_bit(wb, seq_params->enable_restoration);
2676 }
2677 
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2678 static AOM_INLINE void write_global_motion_params(
2679     const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2680     struct aom_write_bit_buffer *wb, int allow_hp) {
2681   const TransformationType type = params->wmtype;
2682 
2683   // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
2684   // type models. Check here that we don't accidentally pick one somehow.
2685   // See comments in gm_get_motion_vector() for details on the bug we're
2686   // working around here
2687   assert(type != TRANSLATION);
2688 
2689   aom_wb_write_bit(wb, type != IDENTITY);
2690   if (type != IDENTITY) {
2691     aom_wb_write_bit(wb, type == ROTZOOM);
2692     if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2693   }
2694 
2695   if (type >= ROTZOOM) {
2696     aom_wb_write_signed_primitive_refsubexpfin(
2697         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2698         (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2699             (1 << GM_ALPHA_PREC_BITS),
2700         (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2701     aom_wb_write_signed_primitive_refsubexpfin(
2702         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2703         (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2704         (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2705   }
2706 
2707   if (type >= AFFINE) {
2708     aom_wb_write_signed_primitive_refsubexpfin(
2709         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2710         (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2711         (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2712     aom_wb_write_signed_primitive_refsubexpfin(
2713         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2714         (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2715             (1 << GM_ALPHA_PREC_BITS),
2716         (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2717   }
2718 
2719   if (type >= TRANSLATION) {
2720     const int trans_bits = (type == TRANSLATION)
2721                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2722                                : GM_ABS_TRANS_BITS;
2723     const int trans_prec_diff = (type == TRANSLATION)
2724                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2725                                     : GM_TRANS_PREC_DIFF;
2726     aom_wb_write_signed_primitive_refsubexpfin(
2727         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2728         (ref_params->wmmat[0] >> trans_prec_diff),
2729         (params->wmmat[0] >> trans_prec_diff));
2730     aom_wb_write_signed_primitive_refsubexpfin(
2731         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2732         (ref_params->wmmat[1] >> trans_prec_diff),
2733         (params->wmmat[1] >> trans_prec_diff));
2734   }
2735 }
2736 
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2737 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2738                                            struct aom_write_bit_buffer *wb) {
2739   AV1_COMMON *const cm = &cpi->common;
2740   int frame;
2741   for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2742     const WarpedMotionParams *ref_params =
2743         cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2744                        : &default_warp_params;
2745     write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2746                                cm->features.allow_high_precision_mv);
2747     // TODO(sarahparker, debargha): The logic in the commented out code below
2748     // does not work currently and causes mismatches when resize is on.
2749     // Fix it before turning the optimization back on.
2750     /*
2751     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2752     if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2753         cpi->source->y_crop_height == ref_buf->y_crop_height) {
2754       write_global_motion_params(&cm->global_motion[frame],
2755                                  &cm->prev_frame->global_motion[frame], wb,
2756                                  cm->features.allow_high_precision_mv);
2757     } else {
2758       assert(cm->global_motion[frame].wmtype == IDENTITY &&
2759              "Invalid warp type for frames of different resolutions");
2760     }
2761     */
2762     /*
2763     printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2764            cm->current_frame.frame_number, cm->show_frame, frame,
2765            cm->global_motion[frame].wmmat[0],
2766            cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2767            cm->global_motion[frame].wmmat[3]);
2768            */
2769   }
2770 }
2771 
check_frame_refs_short_signaling(AV1_COMMON * const cm,bool enable_ref_short_signaling)2772 static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
2773                                             bool enable_ref_short_signaling) {
2774   // In rtc case when res < 360p and speed >= 9, we turn on
2775   // frame_refs_short_signaling if it won't break the decoder.
2776   if (enable_ref_short_signaling) {
2777     const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2778     const int base =
2779         1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2780 
2781     const int order_hint_group_cur =
2782         cm->current_frame.display_order_hint / base;
2783     const int order_hint_group_gld =
2784         cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
2785     const int relative_dist = cm->current_frame.order_hint -
2786                               cm->ref_frame_map[gld_map_idx]->order_hint;
2787 
2788     // If current frame and GOLDEN frame are in the same order_hint group, and
2789     // they are not far apart (i.e., > 64 frames), then return 1.
2790     if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
2791         relative_dist <= 64) {
2792       return 1;
2793     }
2794     return 0;
2795   }
2796 
2797   // Check whether all references are distinct frames.
2798   const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
2799   int num_refs = 0;
2800   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2801     const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2802     if (buf != NULL) {
2803       int seen = 0;
2804       for (int i = 0; i < num_refs; i++) {
2805         if (seen_bufs[i] == buf) {
2806           seen = 1;
2807           break;
2808         }
2809       }
2810       if (!seen) seen_bufs[num_refs++] = buf;
2811     }
2812   }
2813 
2814   // We only turn on frame_refs_short_signaling when all references are
2815   // distinct.
2816   if (num_refs < INTER_REFS_PER_FRAME) {
2817     // It indicates that there exist more than one reference frame pointing to
2818     // the same reference buffer, i.e. two or more references are duplicate.
2819     return 0;
2820   }
2821 
2822   // Check whether the encoder side ref frame choices are aligned with that to
2823   // be derived at the decoder side.
2824   int remapped_ref_idx_decoder[REF_FRAMES];
2825 
2826   const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2827   const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2828 
2829   // Set up the frame refs mapping indexes according to the
2830   // frame_refs_short_signaling policy.
2831   av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2832 
2833   // We only turn on frame_refs_short_signaling when the encoder side decision
2834   // on ref frames is identical to that at the decoder side.
2835   int frame_refs_short_signaling = 1;
2836   for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2837     // Compare the buffer index between two reference frames indexed
2838     // respectively by the encoder and the decoder side decisions.
2839     RefCntBuffer *ref_frame_buf_new = NULL;
2840     if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2841       ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2842     }
2843     if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2844       frame_refs_short_signaling = 0;
2845       break;
2846     }
2847   }
2848 
2849 #if 0   // For debug
2850   printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2851   printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2852   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2853     printf("enc_ref(map_idx=%d)=%d, vs. "
2854         "dec_ref(map_idx=%d)=%d\n",
2855         get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2856         cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2857         ref_frame);
2858   }
2859 #endif  // 0
2860 
2861   return frame_refs_short_signaling;
2862 }
2863 
2864 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2865 static AOM_INLINE void write_uncompressed_header_obu(
2866     AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2867     struct aom_write_bit_buffer *wb) {
2868   AV1_COMMON *const cm = &cpi->common;
2869   const SequenceHeader *const seq_params = cm->seq_params;
2870   const CommonQuantParams *quant_params = &cm->quant_params;
2871   CurrentFrame *const current_frame = &cm->current_frame;
2872   FeatureFlags *const features = &cm->features;
2873 
2874   if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
2875       !seq_params->order_hint_info.enable_order_hint ||
2876       seq_params->order_hint_info.enable_ref_frame_mvs) {
2877     current_frame->frame_refs_short_signaling = 0;
2878   } else {
2879     current_frame->frame_refs_short_signaling = 1;
2880   }
2881 
2882   if (seq_params->still_picture) {
2883     assert(cm->show_existing_frame == 0);
2884     assert(cm->show_frame == 1);
2885     assert(current_frame->frame_type == KEY_FRAME);
2886   }
2887   if (!seq_params->reduced_still_picture_hdr) {
2888     if (encode_show_existing_frame(cm)) {
2889       aom_wb_write_bit(wb, 1);  // show_existing_frame
2890       aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2891 
2892       if (seq_params->decoder_model_info_present_flag &&
2893           seq_params->timing_info.equal_picture_interval == 0) {
2894         write_tu_pts_info(cm, wb);
2895       }
2896       if (seq_params->frame_id_numbers_present_flag) {
2897         int frame_id_len = seq_params->frame_id_length;
2898         int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2899         aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2900       }
2901       return;
2902     } else {
2903       aom_wb_write_bit(wb, 0);  // show_existing_frame
2904     }
2905 
2906     aom_wb_write_literal(wb, current_frame->frame_type, 2);
2907 
2908     aom_wb_write_bit(wb, cm->show_frame);
2909     if (cm->show_frame) {
2910       if (seq_params->decoder_model_info_present_flag &&
2911           seq_params->timing_info.equal_picture_interval == 0)
2912         write_tu_pts_info(cm, wb);
2913     } else {
2914       aom_wb_write_bit(wb, cm->showable_frame);
2915     }
2916     if (frame_is_sframe(cm)) {
2917       assert(features->error_resilient_mode);
2918     } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2919       aom_wb_write_bit(wb, features->error_resilient_mode);
2920     }
2921   }
2922   aom_wb_write_bit(wb, features->disable_cdf_update);
2923 
2924   if (seq_params->force_screen_content_tools == 2) {
2925     aom_wb_write_bit(wb, features->allow_screen_content_tools);
2926   } else {
2927     assert(features->allow_screen_content_tools ==
2928            seq_params->force_screen_content_tools);
2929   }
2930 
2931   if (features->allow_screen_content_tools) {
2932     if (seq_params->force_integer_mv == 2) {
2933       aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2934     } else {
2935       assert(features->cur_frame_force_integer_mv ==
2936              seq_params->force_integer_mv);
2937     }
2938   } else {
2939     assert(features->cur_frame_force_integer_mv == 0);
2940   }
2941 
2942   int frame_size_override_flag = 0;
2943 
2944   if (seq_params->reduced_still_picture_hdr) {
2945     assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2946            cm->superres_upscaled_height == seq_params->max_frame_height);
2947   } else {
2948     if (seq_params->frame_id_numbers_present_flag) {
2949       int frame_id_len = seq_params->frame_id_length;
2950       aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2951     }
2952 
2953     if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2954         cm->superres_upscaled_height > seq_params->max_frame_height) {
2955       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2956                          "Frame dimensions are larger than the maximum values");
2957     }
2958 
2959     frame_size_override_flag =
2960         frame_is_sframe(cm)
2961             ? 1
2962             : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2963                cm->superres_upscaled_height != seq_params->max_frame_height);
2964     if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2965 
2966     if (seq_params->order_hint_info.enable_order_hint)
2967       aom_wb_write_literal(
2968           wb, current_frame->order_hint,
2969           seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2970 
2971     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
2972       aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
2973     }
2974   }
2975 
2976   if (seq_params->decoder_model_info_present_flag) {
2977     aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
2978     if (cpi->ppi->buffer_removal_time_present) {
2979       for (int op_num = 0;
2980            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
2981         if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
2982           if (seq_params->operating_point_idc[op_num] == 0 ||
2983               ((seq_params->operating_point_idc[op_num] >>
2984                 cm->temporal_layer_id) &
2985                    0x1 &&
2986                (seq_params->operating_point_idc[op_num] >>
2987                 (cm->spatial_layer_id + 8)) &
2988                    0x1)) {
2989             aom_wb_write_unsigned_literal(
2990                 wb, cm->buffer_removal_times[op_num],
2991                 seq_params->decoder_model_info.buffer_removal_time_length);
2992             cm->buffer_removal_times[op_num]++;
2993             if (cm->buffer_removal_times[op_num] == 0) {
2994               aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2995                                  "buffer_removal_time overflowed");
2996             }
2997           }
2998         }
2999       }
3000     }
3001   }
3002 
3003   // Shown keyframes and switch-frames automatically refreshes all reference
3004   // frames.  For all other frame types, we need to write refresh_frame_flags.
3005   if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
3006       current_frame->frame_type == INTER_FRAME ||
3007       current_frame->frame_type == INTRA_ONLY_FRAME)
3008     aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
3009 
3010   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
3011     // Write all ref frame order hints if error_resilient_mode == 1
3012     if (features->error_resilient_mode &&
3013         seq_params->order_hint_info.enable_order_hint) {
3014       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
3015         aom_wb_write_literal(
3016             wb, cm->ref_frame_map[ref_idx]->order_hint,
3017             seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3018       }
3019     }
3020   }
3021 
3022   if (current_frame->frame_type == KEY_FRAME) {
3023     write_frame_size(cm, frame_size_override_flag, wb);
3024     assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3025     if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3026       aom_wb_write_bit(wb, features->allow_intrabc);
3027   } else {
3028     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
3029       write_frame_size(cm, frame_size_override_flag, wb);
3030       assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3031       if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3032         aom_wb_write_bit(wb, features->allow_intrabc);
3033     } else if (current_frame->frame_type == INTER_FRAME ||
3034                frame_is_sframe(cm)) {
3035       MV_REFERENCE_FRAME ref_frame;
3036 
3037       // NOTE: Error resilient mode turns off frame_refs_short_signaling
3038       //       automatically.
3039 #define FRAME_REFS_SHORT_SIGNALING 0
3040 #if FRAME_REFS_SHORT_SIGNALING
3041       current_frame->frame_refs_short_signaling =
3042           seq_params->order_hint_info.enable_order_hint;
3043 #endif  // FRAME_REFS_SHORT_SIGNALING
3044 
3045       if (current_frame->frame_refs_short_signaling) {
3046         //    In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
3047         //    we turn on frame_refs_short_signaling when the current frame and
3048         //    golden frame are in the same order_hint group, and their relative
3049         //    distance is <= 64 (in order to be decodable).
3050 
3051         //    For other cases, an example solution for encoder-side
3052         //    implementation on frame_refs_short_signaling is also provided in
3053         //    this function, where frame_refs_short_signaling is only turned on
3054         //    when the encoder side decision on ref frames is identical to that
3055         //    at the decoder side.
3056 
3057         current_frame->frame_refs_short_signaling =
3058             check_frame_refs_short_signaling(
3059                 cm, cpi->sf.rt_sf.enable_ref_short_signaling);
3060       }
3061 
3062       if (seq_params->order_hint_info.enable_order_hint)
3063         aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3064 
3065       if (current_frame->frame_refs_short_signaling) {
3066         const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3067         aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3068 
3069         const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3070         aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3071       }
3072 
3073       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3074         assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3075         if (!current_frame->frame_refs_short_signaling)
3076           aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3077                                REF_FRAMES_LOG2);
3078         if (seq_params->frame_id_numbers_present_flag) {
3079           int i = get_ref_frame_map_idx(cm, ref_frame);
3080           int frame_id_len = seq_params->frame_id_length;
3081           int diff_len = seq_params->delta_frame_id_length;
3082           int delta_frame_id_minus_1 =
3083               ((cm->current_frame_id - cm->ref_frame_id[i] +
3084                 (1 << frame_id_len)) %
3085                (1 << frame_id_len)) -
3086               1;
3087           if (delta_frame_id_minus_1 < 0 ||
3088               delta_frame_id_minus_1 >= (1 << diff_len)) {
3089             aom_internal_error(cm->error, AOM_CODEC_ERROR,
3090                                "Invalid delta_frame_id_minus_1");
3091           }
3092           aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3093         }
3094       }
3095 
3096       if (!features->error_resilient_mode && frame_size_override_flag) {
3097         write_frame_size_with_refs(cm, wb);
3098       } else {
3099         write_frame_size(cm, frame_size_override_flag, wb);
3100       }
3101 
3102       if (!features->cur_frame_force_integer_mv)
3103         aom_wb_write_bit(wb, features->allow_high_precision_mv);
3104       write_frame_interp_filter(features->interp_filter, wb);
3105       aom_wb_write_bit(wb, features->switchable_motion_mode);
3106       if (frame_might_allow_ref_frame_mvs(cm)) {
3107         aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3108       } else {
3109         assert(features->allow_ref_frame_mvs == 0);
3110       }
3111     }
3112   }
3113 
3114   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3115                               !(features->disable_cdf_update);
3116   if (cm->tiles.large_scale)
3117     assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3118 
3119   if (might_bwd_adapt) {
3120     aom_wb_write_bit(
3121         wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3122   }
3123 
3124   write_tile_info(cm, saved_wb, wb);
3125   encode_quantization(quant_params, av1_num_planes(cm),
3126                       cm->seq_params->separate_uv_delta_q, wb);
3127   encode_segmentation(cm, wb);
3128 
3129   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3130   if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3131   if (quant_params->base_qindex > 0) {
3132     aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3133     if (delta_q_info->delta_q_present_flag) {
3134       aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3135       xd->current_base_qindex = quant_params->base_qindex;
3136       if (features->allow_intrabc)
3137         assert(delta_q_info->delta_lf_present_flag == 0);
3138       else
3139         aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3140       if (delta_q_info->delta_lf_present_flag) {
3141         aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3142         aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3143         av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3144       }
3145     }
3146   }
3147 
3148   if (features->all_lossless) {
3149     assert(!av1_superres_scaled(cm));
3150   } else {
3151     if (!features->coded_lossless) {
3152       encode_loopfilter(cm, wb);
3153       encode_cdef(cm, wb);
3154     }
3155     encode_restoration_mode(cm, wb);
3156   }
3157 
3158   // Write TX mode
3159   if (features->coded_lossless)
3160     assert(features->tx_mode == ONLY_4X4);
3161   else
3162     aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3163 
3164   if (!frame_is_intra_only(cm)) {
3165     const int use_hybrid_pred =
3166         current_frame->reference_mode == REFERENCE_MODE_SELECT;
3167 
3168     aom_wb_write_bit(wb, use_hybrid_pred);
3169   }
3170 
3171   if (current_frame->skip_mode_info.skip_mode_allowed)
3172     aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3173 
3174   if (frame_might_allow_warped_motion(cm))
3175     aom_wb_write_bit(wb, features->allow_warped_motion);
3176   else
3177     assert(!features->allow_warped_motion);
3178 
3179   aom_wb_write_bit(wb, features->reduced_tx_set_used);
3180 
3181   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3182 
3183   if (seq_params->film_grain_params_present &&
3184       (cm->show_frame || cm->showable_frame))
3185     write_film_grain_params(cpi, wb);
3186 
3187   if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3188 }
3189 
choose_size_bytes(uint32_t size,int spare_msbs)3190 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3191   // Choose the number of bytes required to represent size, without
3192   // using the 'spare_msbs' number of most significant bits.
3193 
3194   // Make sure we will fit in 4 bytes to start with..
3195   if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3196 
3197   // Normalise to 32 bits
3198   size <<= spare_msbs;
3199 
3200   if (size >> 24 != 0)
3201     return 4;
3202   else if (size >> 16 != 0)
3203     return 3;
3204   else if (size >> 8 != 0)
3205     return 2;
3206   else
3207     return 1;
3208 }
3209 
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3210 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3211                                        const int val) {
3212   switch (sz) {
3213     case 1: dst[0] = (uint8_t)(val & 0xff); break;
3214     case 2: mem_put_le16(dst, val); break;
3215     case 3: mem_put_le24(dst, val); break;
3216     case 4: mem_put_le32(dst, val); break;
3217     default: assert(0 && "Invalid size"); break;
3218   }
3219 }
3220 
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3221 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3222                        const uint32_t data_size, const uint32_t max_tile_size,
3223                        const uint32_t max_tile_col_size,
3224                        int *const tile_size_bytes,
3225                        int *const tile_col_size_bytes) {
3226   // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3227   int tsb;
3228   int tcsb;
3229 
3230   if (tiles->large_scale) {
3231     // The top bit in the tile size field indicates tile copy mode, so we
3232     // have 1 less bit to code the tile size
3233     tsb = choose_size_bytes(max_tile_size, 1);
3234     tcsb = choose_size_bytes(max_tile_col_size, 0);
3235   } else {
3236     tsb = choose_size_bytes(max_tile_size, 0);
3237     tcsb = 4;  // This is ignored
3238     (void)max_tile_col_size;
3239   }
3240 
3241   assert(tsb > 0);
3242   assert(tcsb > 0);
3243 
3244   *tile_size_bytes = tsb;
3245   *tile_col_size_bytes = tcsb;
3246   if (tsb == 4 && tcsb == 4) return data_size;
3247 
3248   uint32_t wpos = 0;
3249   uint32_t rpos = 0;
3250 
3251   if (tiles->large_scale) {
3252     int tile_row;
3253     int tile_col;
3254 
3255     for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3256       // All but the last column has a column header
3257       if (tile_col < tiles->cols - 1) {
3258         uint32_t tile_col_size = mem_get_le32(dst + rpos);
3259         rpos += 4;
3260 
3261         // Adjust the tile column size by the number of bytes removed
3262         // from the tile size fields.
3263         tile_col_size -= (4 - tsb) * tiles->rows;
3264 
3265         mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3266         wpos += tcsb;
3267       }
3268 
3269       for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3270         // All, including the last row has a header
3271         uint32_t tile_header = mem_get_le32(dst + rpos);
3272         rpos += 4;
3273 
3274         // If this is a copy tile, we need to shift the MSB to the
3275         // top bit of the new width, and there is no data to copy.
3276         if (tile_header >> 31 != 0) {
3277           if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3278           mem_put_varsize(dst + wpos, tsb, tile_header);
3279           wpos += tsb;
3280         } else {
3281           mem_put_varsize(dst + wpos, tsb, tile_header);
3282           wpos += tsb;
3283 
3284           tile_header += AV1_MIN_TILE_SIZE_BYTES;
3285           memmove(dst + wpos, dst + rpos, tile_header);
3286           rpos += tile_header;
3287           wpos += tile_header;
3288         }
3289       }
3290     }
3291 
3292     assert(rpos > wpos);
3293     assert(rpos == data_size);
3294 
3295     return wpos;
3296   }
3297   const int n_tiles = tiles->cols * tiles->rows;
3298   int n;
3299 
3300   for (n = 0; n < n_tiles; n++) {
3301     int tile_size;
3302 
3303     if (n == n_tiles - 1) {
3304       tile_size = data_size - rpos;
3305     } else {
3306       tile_size = mem_get_le32(dst + rpos);
3307       rpos += 4;
3308       mem_put_varsize(dst + wpos, tsb, tile_size);
3309       tile_size += AV1_MIN_TILE_SIZE_BYTES;
3310       wpos += tsb;
3311     }
3312 
3313     memmove(dst + wpos, dst + rpos, tile_size);
3314 
3315     rpos += tile_size;
3316     wpos += tile_size;
3317   }
3318 
3319   assert(rpos > wpos);
3320   assert(rpos == data_size);
3321 
3322   return wpos;
3323 }
3324 
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3325 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3326                               int *frame_header_count, OBU_TYPE obu_type,
3327                               int obu_extension, uint8_t *const dst) {
3328   if (level_params->keep_level_stats &&
3329       (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3330     ++(*frame_header_count);
3331 
3332   struct aom_write_bit_buffer wb = { dst, 0 };
3333   uint32_t size = 0;
3334 
3335   aom_wb_write_literal(&wb, 0, 1);  // forbidden bit.
3336   aom_wb_write_literal(&wb, (int)obu_type, 4);
3337   aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3338   aom_wb_write_literal(&wb, 1, 1);  // obu_has_payload_length_field
3339   aom_wb_write_literal(&wb, 0, 1);  // reserved
3340 
3341   if (obu_extension) {
3342     aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3343   }
3344 
3345   size = aom_wb_bytes_written(&wb);
3346   return size;
3347 }
3348 
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3349 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3350                             uint8_t *dest) {
3351   const size_t offset = obu_header_size;
3352   size_t coded_obu_size = 0;
3353   const uint32_t obu_size = (uint32_t)obu_payload_size;
3354   assert(obu_size == obu_payload_size);
3355 
3356   if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3357                       &coded_obu_size) != 0) {
3358     return AOM_CODEC_ERROR;
3359   }
3360 
3361   return AOM_CODEC_OK;
3362 }
3363 
av1_obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3364 size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3365                        uint8_t *data) {
3366   const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3367   const size_t move_dst_offset = length_field_size + obu_header_size;
3368   const size_t move_src_offset = obu_header_size;
3369   const size_t move_size = obu_payload_size;
3370   memmove(data + move_dst_offset, data + move_src_offset, move_size);
3371   return length_field_size;
3372 }
3373 
add_trailing_bits(struct aom_write_bit_buffer * wb)3374 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3375   if (aom_wb_is_byte_aligned(wb)) {
3376     aom_wb_write_literal(wb, 0x80, 8);
3377   } else {
3378     // assumes that the other bits are already 0s
3379     aom_wb_write_bit(wb, 1);
3380   }
3381 }
3382 
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3383 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3384                                              struct aom_write_bit_buffer *wb) {
3385   assert(is_valid_seq_level_idx(seq_level_idx));
3386   aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3387 }
3388 
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3389 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3390                                        uint8_t *const dst) {
3391   struct aom_write_bit_buffer wb = { dst, 0 };
3392   uint32_t size = 0;
3393 
3394   write_profile(seq_params->profile, &wb);
3395 
3396   // Still picture or not
3397   aom_wb_write_bit(&wb, seq_params->still_picture);
3398   assert(IMPLIES(!seq_params->still_picture,
3399                  !seq_params->reduced_still_picture_hdr));
3400   // whether to use reduced still picture header
3401   aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3402 
3403   if (seq_params->reduced_still_picture_hdr) {
3404     assert(seq_params->timing_info_present == 0);
3405     assert(seq_params->decoder_model_info_present_flag == 0);
3406     assert(seq_params->display_model_info_present_flag == 0);
3407     write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3408   } else {
3409     aom_wb_write_bit(
3410         &wb, seq_params->timing_info_present);  // timing info present flag
3411 
3412     if (seq_params->timing_info_present) {
3413       // timing_info
3414       write_timing_info_header(&seq_params->timing_info, &wb);
3415       aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3416       if (seq_params->decoder_model_info_present_flag) {
3417         write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3418       }
3419     }
3420     aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3421     aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3422                          OP_POINTS_CNT_MINUS_1_BITS);
3423     int i;
3424     for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3425       aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3426                            OP_POINTS_IDC_BITS);
3427       write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3428       if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3429         aom_wb_write_bit(&wb, seq_params->tier[i]);
3430       if (seq_params->decoder_model_info_present_flag) {
3431         aom_wb_write_bit(
3432             &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3433         if (seq_params->op_params[i].decoder_model_param_present_flag) {
3434           write_dec_model_op_parameters(
3435               &seq_params->op_params[i],
3436               seq_params->decoder_model_info
3437                   .encoder_decoder_buffer_delay_length,
3438               &wb);
3439         }
3440       }
3441       if (seq_params->display_model_info_present_flag) {
3442         aom_wb_write_bit(
3443             &wb, seq_params->op_params[i].display_model_param_present_flag);
3444         if (seq_params->op_params[i].display_model_param_present_flag) {
3445           assert(seq_params->op_params[i].initial_display_delay >= 1);
3446           assert(seq_params->op_params[i].initial_display_delay <= 10);
3447           aom_wb_write_literal(
3448               &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3449         }
3450       }
3451     }
3452   }
3453   write_sequence_header(seq_params, &wb);
3454 
3455   write_color_config(seq_params, &wb);
3456 
3457   aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3458 
3459   add_trailing_bits(&wb);
3460 
3461   size = aom_wb_bytes_written(&wb);
3462   return size;
3463 }
3464 
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3465 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3466                                        struct aom_write_bit_buffer *saved_wb,
3467                                        uint8_t *const dst,
3468                                        int append_trailing_bits) {
3469   struct aom_write_bit_buffer wb = { dst, 0 };
3470   write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3471   if (append_trailing_bits) add_trailing_bits(&wb);
3472   return aom_wb_bytes_written(&wb);
3473 }
3474 
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3475 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3476                                         int end_tile, int tiles_log2,
3477                                         int tile_start_and_end_present_flag) {
3478   struct aom_write_bit_buffer wb = { dst, 0 };
3479   uint32_t size = 0;
3480 
3481   if (!tiles_log2) return size;
3482 
3483   aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3484 
3485   if (tile_start_and_end_present_flag) {
3486     aom_wb_write_literal(&wb, start_tile, tiles_log2);
3487     aom_wb_write_literal(&wb, end_tile, tiles_log2);
3488   }
3489 
3490   size = aom_wb_bytes_written(&wb);
3491   return size;
3492 }
3493 
3494 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3495                                                 const char *filename);
3496 
3497 typedef struct {
3498   uint32_t tg_hdr_size;
3499   uint32_t frame_header_size;
3500 } LargeTileFrameOBU;
3501 
3502 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * lst_obu)3503 static uint32_t init_large_scale_tile_obu_header(
3504     AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3505     LargeTileFrameOBU *lst_obu) {
3506   AV1LevelParams *const level_params = &cpi->ppi->level_params;
3507   CurrentFrame *const current_frame = &cpi->common.current_frame;
3508   // For large_scale_tile case, we always have only one tile group, so it can
3509   // be written as an OBU_FRAME.
3510   const OBU_TYPE obu_type = OBU_FRAME;
3511   lst_obu->tg_hdr_size = av1_write_obu_header(
3512       level_params, &cpi->frame_header_count, obu_type, 0, *data);
3513   *data += lst_obu->tg_hdr_size;
3514 
3515   const uint32_t frame_header_size =
3516       write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3517   *data += frame_header_size;
3518   lst_obu->frame_header_size = frame_header_size;
3519   // (yunqing) This test ensures the correctness of large scale tile coding.
3520   if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3521     char fn[20] = "./fh";
3522     fn[4] = current_frame->frame_number / 100 + '0';
3523     fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3524     fn[6] = (current_frame->frame_number % 10) + '0';
3525     fn[7] = '\0';
3526     av1_print_uncompressed_frame_header(*data - frame_header_size,
3527                                         frame_header_size, fn);
3528   }
3529   return frame_header_size;
3530 }
3531 
3532 // Write total buffer size and related information into the OBU header for large
3533 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3534 static void write_large_scale_tile_obu_size(
3535     const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3536     struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3537     int have_tiles, uint32_t *total_size, int max_tile_size,
3538     int max_tile_col_size) {
3539   int tile_size_bytes = 0;
3540   int tile_col_size_bytes = 0;
3541   if (have_tiles) {
3542     *total_size = remux_tiles(
3543         tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3544         max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3545     *total_size += lst_obu->frame_header_size;
3546   }
3547 
3548   // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3549   // current tile group size before tile data(include tile column header).
3550   // Tile group size doesn't include the bytes storing tg size.
3551   *total_size += lst_obu->tg_hdr_size;
3552   const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3553   const size_t length_field_size =
3554       av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
3555   if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
3556       AOM_CODEC_OK)
3557     assert(0);
3558 
3559   *total_size += (uint32_t)length_field_size;
3560   saved_wb->bit_buffer += length_field_size;
3561 
3562   // Now fill in the gaps in the uncompressed header.
3563   if (have_tiles) {
3564     assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3565     aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3566 
3567     assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3568     aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3569   }
3570 }
3571 
3572 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3573 static void write_large_scale_tile_obu(
3574     AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3575     int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3576     unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3577   AV1_COMMON *const cm = &cpi->common;
3578   const CommonTileParams *const tiles = &cm->tiles;
3579 
3580   TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3581   const int tile_cols = tiles->cols;
3582   const int tile_rows = tiles->rows;
3583   unsigned int tile_size = 0;
3584 
3585   av1_reset_pack_bs_thread_data(&cpi->td);
3586   for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3587     TileInfo tile_info;
3588     const int is_last_col = (tile_col == tile_cols - 1);
3589     const uint32_t col_offset = *total_size;
3590 
3591     av1_tile_set_col(&tile_info, cm, tile_col);
3592 
3593     // The last column does not have a column header
3594     if (!is_last_col) *total_size += 4;
3595 
3596     for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3597       TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3598       const int data_offset = have_tiles ? 4 : 0;
3599       const int tile_idx = tile_row * tile_cols + tile_col;
3600       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3601       av1_tile_set_row(&tile_info, cm, tile_row);
3602       aom_writer mode_bc;
3603 
3604       buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3605 
3606       // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3607       // even for the last one, unless no tiling is used at all.
3608       *total_size += data_offset;
3609       cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3610       mode_bc.allow_update_cdf = !tiles->large_scale;
3611       mode_bc.allow_update_cdf =
3612           mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3613       aom_start_encode(&mode_bc, buf->data + data_offset);
3614       write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3615       aom_stop_encode(&mode_bc);
3616       tile_size = mode_bc.pos;
3617       buf->size = tile_size;
3618 
3619       // Record the maximum tile size we see, so we can compact headers later.
3620       if (tile_size > *max_tile_size) {
3621         *max_tile_size = tile_size;
3622         *largest_tile_id = tile_cols * tile_row + tile_col;
3623       }
3624 
3625       if (have_tiles) {
3626         // tile header: size of this tile, or copy offset
3627         uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3628         const int tile_copy_mode =
3629             ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3630                                                                            : 0;
3631 
3632         // If tile_copy_mode = 1, check if this tile is a copy tile.
3633         // Very low chances to have copy tiles on the key frames, so don't
3634         // search on key frames to reduce unnecessary search.
3635         if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3636           const int identical_tile_offset =
3637               find_identical_tile(tile_row, tile_col, tile_buffers);
3638 
3639           // Indicate a copy-tile by setting the most significant bit.
3640           // The row-offset to copy from is stored in the highest byte.
3641           // remux_tiles will move these around later
3642           if (identical_tile_offset > 0) {
3643             tile_size = 0;
3644             tile_header = identical_tile_offset | 0x80;
3645             tile_header <<= 24;
3646           }
3647         }
3648 
3649         mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
3650       }
3651 
3652       *total_size += tile_size;
3653     }
3654     if (!is_last_col) {
3655       uint32_t col_size = *total_size - col_offset - 4;
3656       mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3657 
3658       // Record the maximum tile column size we see.
3659       *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3660     }
3661   }
3662   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3663 }
3664 
3665 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int * const largest_tile_id)3666 static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
3667     AV1_COMP *const cpi, uint8_t *const dst,
3668     struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
3669   AV1_COMMON *const cm = &cpi->common;
3670   const CommonTileParams *const tiles = &cm->tiles;
3671   uint32_t total_size = 0;
3672   unsigned int max_tile_size = 0;
3673   unsigned int max_tile_col_size = 0;
3674   const int have_tiles = tiles->cols * tiles->rows > 1;
3675   uint8_t *data = dst;
3676 
3677   LargeTileFrameOBU lst_obu;
3678 
3679   total_size +=
3680       init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
3681 
3682   write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3683                              have_tiles, &max_tile_size, &max_tile_col_size);
3684 
3685   write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3686                                   have_tiles, &total_size, max_tile_size,
3687                                   max_tile_col_size);
3688 
3689   return total_size;
3690 }
3691 
3692 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3693 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3694                                    PackBSParams *const pack_bs_params,
3695                                    const int tile_idx) {
3696   AV1_COMMON *const cm = &cpi->common;
3697   const CommonTileParams *const tiles = &cm->tiles;
3698   int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3699   const int tg_size =
3700       (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3701 
3702   // Write Tile group, frame and OBU header
3703   // A new tile group begins at this tile.  Write the obu header and
3704   // tile group header
3705   const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3706   *curr_tg_hdr_size = av1_write_obu_header(
3707       &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3708       pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3709   pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3710 
3711   if (cpi->num_tg == 1)
3712     *curr_tg_hdr_size += write_frame_header_obu(
3713         cpi, xd, pack_bs_params->saved_wb,
3714         pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3715   *curr_tg_hdr_size += write_tile_group_header(
3716       pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3717       AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3718       (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3719   *pack_bs_params->total_size += *curr_tg_hdr_size;
3720 }
3721 
3722 // Pack tile data in the bitstream with tile_group, frame
3723 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3724 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3725                         PackBSParams *const pack_bs_params) {
3726   aom_writer mode_bc;
3727   AV1_COMMON *const cm = &cpi->common;
3728   int tile_row = pack_bs_params->tile_row;
3729   int tile_col = pack_bs_params->tile_col;
3730   uint32_t *const total_size = pack_bs_params->total_size;
3731   TileInfo tile_info;
3732   av1_tile_set_col(&tile_info, cm, tile_col);
3733   av1_tile_set_row(&tile_info, cm, tile_row);
3734   mode_bc.allow_update_cdf = 1;
3735   mode_bc.allow_update_cdf =
3736       mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3737 
3738   unsigned int tile_size;
3739 
3740   const int num_planes = av1_num_planes(cm);
3741   av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3742 
3743   pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3744 
3745   // The last tile of the tile group does not have a header.
3746   if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3747 
3748   // Pack tile data
3749   aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3750   write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3751   aom_stop_encode(&mode_bc);
3752   tile_size = mode_bc.pos;
3753   assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3754 
3755   pack_bs_params->buf.size = tile_size;
3756 
3757   // Write tile size
3758   if (!pack_bs_params->is_last_tile_in_tg) {
3759     // size of this tile
3760     mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3761   }
3762 }
3763 
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3764 void av1_write_last_tile_info(
3765     AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3766     struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3767     uint8_t *curr_tg_start, uint32_t *const total_size,
3768     uint8_t **tile_data_start, int *const largest_tile_id,
3769     int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3770   // write current tile group size
3771   const uint32_t obu_payload_size =
3772       (uint32_t)(*curr_tg_data_size) - obu_header_size;
3773   const size_t length_field_size =
3774       av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
3775   if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
3776                               curr_tg_start) != AOM_CODEC_OK) {
3777     assert(0);
3778   }
3779   *curr_tg_data_size += (int)length_field_size;
3780   *total_size += (uint32_t)length_field_size;
3781   *tile_data_start += length_field_size;
3782   if (cpi->num_tg == 1) {
3783     // if this tg is combined with the frame header then update saved
3784     // frame header base offset according to length field size
3785     saved_wb->bit_buffer += length_field_size;
3786   }
3787 
3788   if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3789     // Make room for a duplicate Frame Header OBU.
3790     memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3791             *curr_tg_data_size);
3792 
3793     // Insert a copy of the Frame Header OBU.
3794     memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3795 
3796     // Force context update tile to be the first tile in error
3797     // resilient mode as the duplicate frame headers will have
3798     // context_update_tile_id set to 0
3799     *largest_tile_id = 0;
3800 
3801     // Rewrite the OBU header to change the OBU type to Redundant Frame
3802     // Header.
3803     av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
3804                          OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
3805                          &curr_tg_start[fh_info->obu_header_byte_offset]);
3806 
3807     *curr_tg_data_size += (int)(fh_info->total_length);
3808     *total_size += (uint32_t)(fh_info->total_length);
3809   }
3810   *is_first_tg = 0;
3811 }
3812 
av1_reset_pack_bs_thread_data(ThreadData * const td)3813 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3814   td->coefficient_size = 0;
3815   td->max_mv_magnitude = 0;
3816   av1_zero(td->interp_filter_selected);
3817 }
3818 
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3819 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3820                                         ThreadData const *td) {
3821   int do_max_mv_magnitude_update = 1;
3822   cpi->rc.coefficient_size += td->coefficient_size;
3823 
3824   // Disable max_mv_magnitude update for parallel frames based on update flag.
3825   if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3826 
3827   if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3828     cpi->mv_search_params.max_mv_magnitude =
3829         AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3830 
3831   for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3832     cpi->common.cur_frame->interp_filter_selected[filter] +=
3833         td->interp_filter_selected[filter];
3834 }
3835 
3836 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3837 static void write_tile_obu(
3838     AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3839     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3840     const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3841     unsigned int *max_tile_size, uint32_t *const obu_header_size,
3842     uint8_t **tile_data_start) {
3843   AV1_COMMON *const cm = &cpi->common;
3844   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3845   const CommonTileParams *const tiles = &cm->tiles;
3846   const int tile_cols = tiles->cols;
3847   const int tile_rows = tiles->rows;
3848   // Fixed size tile groups for the moment
3849   const int num_tg_hdrs = cpi->num_tg;
3850   const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3851   int tile_count = 0;
3852   size_t curr_tg_data_size = 0;
3853   uint8_t *tile_data_curr = dst;
3854   int new_tg = 1;
3855   int is_first_tg = 1;
3856 
3857   av1_reset_pack_bs_thread_data(&cpi->td);
3858   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3859     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3860       const int tile_idx = tile_row * tile_cols + tile_col;
3861       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3862 
3863       int is_last_tile_in_tg = 0;
3864       if (new_tg) {
3865         tile_data_curr = dst + *total_size;
3866         tile_count = 0;
3867       }
3868       tile_count++;
3869 
3870       if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3871         is_last_tile_in_tg = 1;
3872 
3873       xd->tile_ctx = &this_tile->tctx;
3874 
3875       // PackBSParams stores all parameters required to pack tile and header
3876       // info.
3877       PackBSParams pack_bs_params;
3878       pack_bs_params.dst = dst;
3879       pack_bs_params.curr_tg_hdr_size = 0;
3880       pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
3881       pack_bs_params.new_tg = new_tg;
3882       pack_bs_params.obu_extn_header = obu_extn_header;
3883       pack_bs_params.obu_header_size = 0;
3884       pack_bs_params.saved_wb = saved_wb;
3885       pack_bs_params.tile_col = tile_col;
3886       pack_bs_params.tile_row = tile_row;
3887       pack_bs_params.tile_data_curr = tile_data_curr;
3888       pack_bs_params.total_size = total_size;
3889 
3890       if (new_tg)
3891         av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
3892 
3893       av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
3894 
3895       if (new_tg) {
3896         curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
3897         *tile_data_start += pack_bs_params.curr_tg_hdr_size;
3898         *obu_header_size = pack_bs_params.obu_header_size;
3899         new_tg = 0;
3900       }
3901       if (is_last_tile_in_tg) new_tg = 1;
3902 
3903       curr_tg_data_size +=
3904           (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
3905 
3906       if (pack_bs_params.buf.size > *max_tile_size) {
3907         *largest_tile_id = tile_idx;
3908         *max_tile_size = (unsigned int)pack_bs_params.buf.size;
3909       }
3910 
3911       if (is_last_tile_in_tg)
3912         av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
3913                                  tile_data_curr, total_size, tile_data_start,
3914                                  largest_tile_id, &is_first_tg,
3915                                  *obu_header_size, obu_extn_header);
3916       *total_size += (uint32_t)pack_bs_params.buf.size;
3917     }
3918   }
3919   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3920 }
3921 
3922 // Write total buffer size and related information into the OBU header for
3923 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)3924 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
3925                                 struct aom_write_bit_buffer *saved_wb,
3926                                 int largest_tile_id, uint32_t *const total_size,
3927                                 unsigned int max_tile_size,
3928                                 uint32_t obu_header_size,
3929                                 uint8_t *tile_data_start) {
3930   const CommonTileParams *const tiles = &cpi->common.tiles;
3931 
3932   // Fill in context_update_tile_id indicating the tile to use for the
3933   // cdf update. The encoder currently sets it to the largest tile
3934   // (but is up to the encoder)
3935   aom_wb_overwrite_literal(saved_wb, largest_tile_id,
3936                            (tiles->log2_cols + tiles->log2_rows));
3937   // If more than one tile group. tile_size_bytes takes the default value 4
3938   // and does not need to be set. For a single tile group it is set in the
3939   // section below.
3940   if (cpi->num_tg != 1) return;
3941   int tile_size_bytes = 4, unused;
3942   const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3943   const uint32_t tile_data_size = *total_size - tile_data_offset;
3944 
3945   *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
3946                             max_tile_size, 0, &tile_size_bytes, &unused);
3947   *total_size += tile_data_offset;
3948   assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3949 
3950   aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3951 
3952   // Update the OBU length if remux_tiles() reduced the size.
3953   uint64_t payload_size;
3954   size_t length_field_size;
3955   int res =
3956       aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
3957                       &payload_size, &length_field_size);
3958   assert(res == 0);
3959   (void)res;
3960 
3961   const uint64_t new_payload_size =
3962       *total_size - obu_header_size - length_field_size;
3963   if (new_payload_size != payload_size) {
3964     size_t new_length_field_size;
3965     res = aom_uleb_encode(new_payload_size, length_field_size,
3966                           dst + obu_header_size, &new_length_field_size);
3967     assert(res == 0);
3968     if (new_length_field_size < length_field_size) {
3969       const size_t src_offset = obu_header_size + length_field_size;
3970       const size_t dst_offset = obu_header_size + new_length_field_size;
3971       memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
3972       *total_size -= (int)(length_field_size - new_length_field_size);
3973     }
3974   }
3975 }
3976 
3977 // As per the experiments, single-thread bitstream packing is better for
3978 // frames with a smaller bitstream size. This behavior is due to setup time
3979 // overhead of multithread function would be more than that of time required
3980 // to pack the smaller bitstream of such frames. This function computes the
3981 // number of required number of workers based on setup time overhead and job
3982 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers,bool pack_bs_mt_enabled)3983 int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
3984                             int avail_workers, bool pack_bs_mt_enabled) {
3985   if (!pack_bs_mt_enabled) return 1;
3986 
3987   uint64_t frame_abs_sum_level = 0;
3988 
3989   for (int idx = 0; idx < num_tiles; idx++)
3990     frame_abs_sum_level += tile_data[idx].abs_sum_level;
3991 
3992   int ideal_num_workers = 1;
3993   const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
3994   float max_sum = 0.0;
3995 
3996   for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
3997     const float fas_per_worker_const =
3998         ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
3999     const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
4000     const float this_sum = fas_per_worker_const - setup_time_const -
4001                            job_disp_time_const / num_workers;
4002 
4003     if (this_sum > max_sum) {
4004       max_sum = this_sum;
4005       ideal_num_workers = num_workers;
4006     }
4007   }
4008   return ideal_num_workers;
4009 }
4010 
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4011 static INLINE uint32_t pack_tiles_in_tg_obus(
4012     AV1_COMP *const cpi, uint8_t *const dst,
4013     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
4014     const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
4015   const CommonTileParams *const tiles = &cpi->common.tiles;
4016   uint32_t total_size = 0;
4017   unsigned int max_tile_size = 0;
4018   uint32_t obu_header_size = 0;
4019   uint8_t *tile_data_start = dst;
4020   const int tile_cols = tiles->cols;
4021   const int tile_rows = tiles->rows;
4022   const int num_tiles = tile_rows * tile_cols;
4023 
4024   const int num_workers = calc_pack_bs_mt_workers(
4025       cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
4026       cpi->mt_info.pack_bs_mt_enabled);
4027 
4028   if (num_workers > 1) {
4029     av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
4030                           fh_info, largest_tile_id, &max_tile_size,
4031                           &obu_header_size, &tile_data_start, num_workers);
4032   } else {
4033     write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
4034                    fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
4035                    &tile_data_start);
4036   }
4037 
4038   if (num_tiles > 1)
4039     write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
4040                         max_tile_size, obu_header_size, tile_data_start);
4041   return total_size;
4042 }
4043 
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4044 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
4045                                        struct aom_write_bit_buffer *saved_wb,
4046                                        uint8_t obu_extension_header,
4047                                        const FrameHeaderInfo *fh_info,
4048                                        int *const largest_tile_id) {
4049   AV1_COMMON *const cm = &cpi->common;
4050   const CommonTileParams *const tiles = &cm->tiles;
4051   *largest_tile_id = 0;
4052 
4053   // Select the coding strategy (temporal or spatial)
4054   if (cm->seg.enabled && cm->seg.update_map) {
4055     if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
4056       cm->seg.temporal_update = 0;
4057     } else {
4058       cm->seg.temporal_update = 1;
4059       if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
4060           cpi->td.rd_counts.seg_tmp_pred_cost[1])
4061         cm->seg.temporal_update = 0;
4062     }
4063   }
4064 
4065   if (tiles->large_scale)
4066     return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
4067                                              largest_tile_id);
4068 
4069   return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4070                                fh_info, largest_tile_id);
4071 }
4072 
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)4073 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4074                                      uint8_t *const dst) {
4075   size_t coded_metadata_size = 0;
4076   const uint64_t metadata_type = (uint64_t)metadata->type;
4077   if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
4078                       &coded_metadata_size) != 0) {
4079     return 0;
4080   }
4081   memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4082   // Add trailing bits.
4083   dst[coded_metadata_size + metadata->sz] = 0x80;
4084   return (uint32_t)(coded_metadata_size + metadata->sz + 1);
4085 }
4086 
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)4087 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
4088   if (!cpi->source) return 0;
4089   AV1_COMMON *const cm = &cpi->common;
4090   aom_metadata_array_t *arr = cpi->source->metadata;
4091   if (!arr) return 0;
4092   size_t obu_header_size = 0;
4093   size_t obu_payload_size = 0;
4094   size_t total_bytes_written = 0;
4095   size_t length_field_size = 0;
4096   for (size_t i = 0; i < arr->sz; i++) {
4097     aom_metadata_t *current_metadata = arr->metadata_array[i];
4098     if (current_metadata && current_metadata->payload) {
4099       if ((cm->current_frame.frame_type == KEY_FRAME &&
4100            current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4101           (cm->current_frame.frame_type != KEY_FRAME &&
4102            current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4103           current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4104         obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
4105                                                &cpi->frame_header_count,
4106                                                OBU_METADATA, 0, dst);
4107         obu_payload_size =
4108             av1_write_metadata_obu(current_metadata, dst + obu_header_size);
4109         length_field_size =
4110             av1_obu_memmove(obu_header_size, obu_payload_size, dst);
4111         if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
4112             AOM_CODEC_OK) {
4113           const size_t obu_size = obu_header_size + obu_payload_size;
4114           dst += obu_size + length_field_size;
4115           total_bytes_written += obu_size + length_field_size;
4116         } else {
4117           aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4118                              "Error writing metadata OBU size");
4119         }
4120       }
4121     }
4122   }
4123   return total_bytes_written;
4124 }
4125 
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)4126 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
4127                        int *const largest_tile_id) {
4128   uint8_t *data = dst;
4129   uint32_t data_size;
4130   AV1_COMMON *const cm = &cpi->common;
4131   AV1LevelParams *const level_params = &cpi->ppi->level_params;
4132   uint32_t obu_header_size = 0;
4133   uint32_t obu_payload_size = 0;
4134   FrameHeaderInfo fh_info = { NULL, 0, 0 };
4135   const uint8_t obu_extension_header =
4136       cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4137 
4138   // If no non-zero delta_q has been used, reset delta_q_present_flag
4139   if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4140     cm->delta_q_info.delta_q_present_flag = 0;
4141   }
4142 
4143 #if CONFIG_BITSTREAM_DEBUG
4144   bitstream_queue_reset_write();
4145 #endif
4146 
4147   cpi->frame_header_count = 0;
4148 
4149   // The TD is now written outside the frame encode loop
4150 
4151   // write sequence header obu at each key frame or intra_only frame,
4152   // preceded by 4-byte size
4153   if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
4154       cm->current_frame.frame_type == KEY_FRAME) {
4155     obu_header_size = av1_write_obu_header(
4156         level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
4157     obu_payload_size =
4158         av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
4159     const size_t length_field_size =
4160         av1_obu_memmove(obu_header_size, obu_payload_size, data);
4161     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4162         AOM_CODEC_OK) {
4163       return AOM_CODEC_ERROR;
4164     }
4165 
4166     data += obu_header_size + obu_payload_size + length_field_size;
4167   }
4168 
4169   // write metadata obus before the frame obu that has the show_frame flag set
4170   if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
4171 
4172   const int write_frame_header =
4173       (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4174   struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4175   size_t length_field = 0;
4176   if (write_frame_header) {
4177     // Write Frame Header OBU.
4178     fh_info.frame_header = data;
4179     obu_header_size =
4180         av1_write_obu_header(level_params, &cpi->frame_header_count,
4181                              OBU_FRAME_HEADER, obu_extension_header, data);
4182     obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4183                                               data + obu_header_size, 1);
4184 
4185     length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
4186     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4187         AOM_CODEC_OK) {
4188       return AOM_CODEC_ERROR;
4189     }
4190 
4191     fh_info.obu_header_byte_offset = 0;
4192     fh_info.total_length = obu_header_size + obu_payload_size + length_field;
4193     data += fh_info.total_length;
4194   }
4195 
4196   if (encode_show_existing_frame(cm)) {
4197     data_size = 0;
4198   } else {
4199     // Since length_field is determined adaptively after frame header
4200     // encoding, saved_wb must be adjusted accordingly.
4201     if (saved_wb.bit_buffer != NULL) {
4202       saved_wb.bit_buffer += length_field;
4203     }
4204 
4205     //  Each tile group obu will be preceded by 4-byte size of the tile group
4206     //  obu
4207     data_size = write_tiles_in_tg_obus(
4208         cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
4209   }
4210   data += data_size;
4211   *size = data - dst;
4212   return AOM_CODEC_OK;
4213 }
4214