1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #if CONFIG_BITSTREAM_DEBUG
24 #include "aom_util/debug_util.h"
25 #endif // CONFIG_BITSTREAM_DEBUG
26
27 #include "av1/common/cdef.h"
28 #include "av1/common/cfl.h"
29 #include "av1/common/entropy.h"
30 #include "av1/common/entropymode.h"
31 #include "av1/common/entropymv.h"
32 #include "av1/common/mvref_common.h"
33 #include "av1/common/pred_common.h"
34 #include "av1/common/reconinter.h"
35 #include "av1/common/reconintra.h"
36 #include "av1/common/seg_common.h"
37 #include "av1/common/tile_common.h"
38
39 #include "av1/encoder/bitstream.h"
40 #include "av1/encoder/cost.h"
41 #include "av1/encoder/encodemv.h"
42 #include "av1/encoder/encodetxb.h"
43 #include "av1/encoder/ethread.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/segmentation.h"
47 #include "av1/encoder/tokenize.h"
48
49 #define ENC_MISMATCH_DEBUG 0
50 #define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker
51 #define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile
52
write_uniform(aom_writer * w,int n,int v)53 static INLINE void write_uniform(aom_writer *w, int n, int v) {
54 const int l = get_unsigned_bits(n);
55 const int m = (1 << l) - n;
56 if (l == 0) return;
57 if (v < m) {
58 aom_write_literal(w, v, l - 1);
59 } else {
60 aom_write_literal(w, m + ((v - m) >> 1), l - 1);
61 aom_write_literal(w, (v - m) & 1, 1);
62 }
63 }
64
65 #if !CONFIG_REALTIME_ONLY
66 static AOM_INLINE void loop_restoration_write_sb_coeffs(
67 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
68 aom_writer *const w, int plane, FRAME_COUNTS *counts);
69 #endif
70
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)71 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
72 const MB_MODE_INFO *mi,
73 const MB_MODE_INFO *above_mi,
74 const MB_MODE_INFO *left_mi,
75 PREDICTION_MODE mode,
76 aom_writer *w) {
77 assert(!is_intrabc_block(mi));
78 (void)mi;
79 aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
80 INTRA_MODES);
81 }
82
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)83 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
84 FRAME_CONTEXT *ec_ctx,
85 const int16_t mode_ctx) {
86 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
87
88 aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
89
90 if (mode != NEWMV) {
91 const int16_t zeromv_ctx =
92 (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
93 aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
94
95 if (mode != GLOBALMV) {
96 int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
97 aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
98 }
99 }
100 }
101
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)102 static AOM_INLINE void write_drl_idx(
103 FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
104 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
105 assert(mbmi->ref_mv_idx < 3);
106
107 const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
108 if (new_mv) {
109 int idx;
110 for (idx = 0; idx < 2; ++idx) {
111 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
112 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
113
114 aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
115 2);
116 if (mbmi->ref_mv_idx == idx) return;
117 }
118 }
119 return;
120 }
121
122 if (have_nearmv_in_inter_mode(mbmi->mode)) {
123 int idx;
124 // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
125 for (idx = 1; idx < 3; ++idx) {
126 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
127 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
128 aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
129 ec_ctx->drl_cdf[drl_ctx], 2);
130 if (mbmi->ref_mv_idx == (idx - 1)) return;
131 }
132 }
133 return;
134 }
135 }
136
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)137 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
138 PREDICTION_MODE mode,
139 const int16_t mode_ctx) {
140 assert(is_inter_compound_mode(mode));
141 aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
142 xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
143 INTER_COMPOUND_MODES);
144 }
145
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)146 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
147 const MB_MODE_INFO *mbmi,
148 TX_SIZE tx_size, int depth,
149 int blk_row, int blk_col,
150 aom_writer *w) {
151 FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
152 const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
153 const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
154
155 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
156
157 if (depth == MAX_VARTX_DEPTH) {
158 txfm_partition_update(xd->above_txfm_context + blk_col,
159 xd->left_txfm_context + blk_row, tx_size, tx_size);
160 return;
161 }
162
163 const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
164 xd->left_txfm_context + blk_row,
165 mbmi->bsize, tx_size);
166 const int txb_size_index =
167 av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
168 const int write_txfm_partition =
169 tx_size == mbmi->inter_tx_size[txb_size_index];
170 if (write_txfm_partition) {
171 aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
172
173 txfm_partition_update(xd->above_txfm_context + blk_col,
174 xd->left_txfm_context + blk_row, tx_size, tx_size);
175 // TODO(yuec): set correct txfm partition update for qttx
176 } else {
177 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
178 const int bsw = tx_size_wide_unit[sub_txs];
179 const int bsh = tx_size_high_unit[sub_txs];
180
181 aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
182
183 if (sub_txs == TX_4X4) {
184 txfm_partition_update(xd->above_txfm_context + blk_col,
185 xd->left_txfm_context + blk_row, sub_txs, tx_size);
186 return;
187 }
188
189 assert(bsw > 0 && bsh > 0);
190 for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
191 const int offsetr = blk_row + row;
192 for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
193 const int offsetc = blk_col + col;
194 write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
195 }
196 }
197 }
198 }
199
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)200 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
201 aom_writer *w) {
202 const MB_MODE_INFO *const mbmi = xd->mi[0];
203 const BLOCK_SIZE bsize = mbmi->bsize;
204 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
205 if (block_signals_txsize(bsize)) {
206 const TX_SIZE tx_size = mbmi->tx_size;
207 const int tx_size_ctx = get_tx_size_context(xd);
208 const int depth = tx_size_to_depth(tx_size, bsize);
209 const int max_depths = bsize_to_max_depth(bsize);
210 const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
211
212 assert(depth >= 0 && depth <= max_depths);
213 assert(!is_inter_block(mbmi));
214 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
215
216 aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
217 max_depths + 1);
218 }
219 }
220
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)221 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
222 uint8_t segment_id, const MB_MODE_INFO *mi,
223 aom_writer *w) {
224 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
225 return 1;
226 } else {
227 const int skip_txfm = mi->skip_txfm;
228 const int ctx = av1_get_skip_txfm_context(xd);
229 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
230 aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
231 return skip_txfm;
232 }
233 }
234
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)235 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
236 uint8_t segment_id, const MB_MODE_INFO *mi,
237 aom_writer *w) {
238 if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
239 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
240 return 0;
241 }
242 const int skip_mode = mi->skip_mode;
243 if (!is_comp_ref_allowed(mi->bsize)) {
244 assert(!skip_mode);
245 return 0;
246 }
247 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
248 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
249 // These features imply single-reference mode, while skip mode implies
250 // compound reference. Hence, the two are mutually exclusive.
251 // In other words, skip_mode is implicitly 0 here.
252 assert(!skip_mode);
253 return 0;
254 }
255 const int ctx = av1_get_skip_mode_context(xd);
256 aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
257 return skip_mode;
258 }
259
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,aom_writer * w,const int is_inter)260 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
261 const MACROBLOCKD *xd, uint8_t segment_id,
262 aom_writer *w, const int is_inter) {
263 if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
264 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
265 assert(is_inter);
266 return;
267 }
268 const int ctx = av1_get_intra_inter_context(xd);
269 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
270 aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
271 }
272 }
273
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)274 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
275 const MB_MODE_INFO *mbmi,
276 aom_writer *w) {
277 MOTION_MODE last_motion_mode_allowed =
278 cm->features.switchable_motion_mode
279 ? motion_mode_allowed(cm->global_motion, xd, mbmi,
280 cm->features.allow_warped_motion)
281 : SIMPLE_TRANSLATION;
282 assert(mbmi->motion_mode <= last_motion_mode_allowed);
283 switch (last_motion_mode_allowed) {
284 case SIMPLE_TRANSLATION: break;
285 case OBMC_CAUSAL:
286 aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
287 xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
288 break;
289 default:
290 aom_write_symbol(w, mbmi->motion_mode,
291 xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
292 MOTION_MODES);
293 }
294 }
295
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)296 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
297 int delta_qindex, aom_writer *w) {
298 int sign = delta_qindex < 0;
299 int abs = sign ? -delta_qindex : delta_qindex;
300 int rem_bits, thr;
301 int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
302 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
303
304 aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
305 DELTA_Q_PROBS + 1);
306
307 if (!smallval) {
308 rem_bits = get_msb(abs - 1);
309 thr = (1 << rem_bits) + 1;
310 aom_write_literal(w, rem_bits - 1, 3);
311 aom_write_literal(w, abs - thr, rem_bits);
312 }
313 if (abs > 0) {
314 aom_write_bit(w, sign);
315 }
316 }
317
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)318 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
319 const MACROBLOCKD *xd, int lf_id,
320 int delta_lflevel,
321 int delta_lf_multi, aom_writer *w) {
322 int sign = delta_lflevel < 0;
323 int abs = sign ? -delta_lflevel : delta_lflevel;
324 int rem_bits, thr;
325 int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
326 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
327 (void)cm;
328
329 if (delta_lf_multi) {
330 assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
331 : FRAME_LF_COUNT - 2));
332 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
333 ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
334 } else {
335 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
336 DELTA_LF_PROBS + 1);
337 }
338
339 if (!smallval) {
340 rem_bits = get_msb(abs - 1);
341 thr = (1 << rem_bits) + 1;
342 aom_write_literal(w, rem_bits - 1, 3);
343 aom_write_literal(w, abs - thr, rem_bits);
344 }
345 if (abs > 0) {
346 aom_write_bit(w, sign);
347 }
348 }
349
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)350 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
351 int n, int num, MapCdf map_pb_cdf) {
352 const TokenExtra *p = *tp;
353 const int palette_size_idx = n - PALETTE_MIN_SIZE;
354 write_uniform(w, n, p->token); // The first color index.
355 ++p;
356 --num;
357 for (int i = 0; i < num; ++i) {
358 assert((p->color_ctx >= 0) &&
359 (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
360 aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
361 aom_write_symbol(w, p->token, color_map_cdf, n);
362 ++p;
363 }
364 *tp = p;
365 }
366
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)367 static AOM_INLINE void pack_txb_tokens(
368 aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
369 const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
370 int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
371 int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
372 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
373 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
374
375 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
376
377 const struct macroblockd_plane *const pd = &xd->plane[plane];
378 const TX_SIZE plane_tx_size =
379 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
380 pd->subsampling_y)
381 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
382 blk_col)];
383
384 if (tx_size == plane_tx_size || plane) {
385 av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
386 #if CONFIG_RD_DEBUG
387 TOKEN_STATS tmp_token_stats;
388 init_token_stats(&tmp_token_stats);
389 token_stats->cost += tmp_token_stats.cost;
390 #endif
391 } else {
392 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
393 const int bsw = tx_size_wide_unit[sub_txs];
394 const int bsh = tx_size_high_unit[sub_txs];
395 const int step = bsh * bsw;
396 const int row_end =
397 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
398 const int col_end =
399 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
400
401 assert(bsw > 0 && bsh > 0);
402
403 for (int r = 0; r < row_end; r += bsh) {
404 const int offsetr = blk_row + r;
405 for (int c = 0; c < col_end; c += bsw) {
406 const int offsetc = blk_col + c;
407 pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
408 bit_depth, block, offsetr, offsetc, sub_txs,
409 token_stats);
410 block += step;
411 }
412 }
413 }
414 }
415
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,uint8_t segment_id)416 static INLINE void set_spatial_segment_id(
417 const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
418 BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
419 const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
420 const int bw = mi_size_wide[bsize];
421 const int bh = mi_size_high[bsize];
422 const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
423 const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
424
425 const int mi_stride = mi_params->mi_cols;
426
427 set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
428 }
429
av1_neg_interleave(int x,int ref,int max)430 int av1_neg_interleave(int x, int ref, int max) {
431 assert(x < max);
432 const int diff = x - ref;
433 if (!ref) return x;
434 if (ref >= (max - 1)) return -x + max - 1;
435 if (2 * ref < max) {
436 if (abs(diff) <= ref) {
437 if (diff > 0)
438 return (diff << 1) - 1;
439 else
440 return ((-diff) << 1);
441 }
442 return x;
443 } else {
444 if (abs(diff) < (max - ref)) {
445 if (diff > 0)
446 return (diff << 1) - 1;
447 else
448 return ((-diff) << 1);
449 }
450 return (max - x) - 1;
451 }
452 }
453
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)454 static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
455 const MB_MODE_INFO *const mbmi,
456 aom_writer *w,
457 const struct segmentation *seg,
458 struct segmentation_probs *segp,
459 int skip_txfm) {
460 if (!seg->enabled || !seg->update_map) return;
461
462 AV1_COMMON *const cm = &cpi->common;
463 int cdf_num;
464 const uint8_t pred = av1_get_spatial_seg_pred(
465 cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
466 const int mi_row = xd->mi_row;
467 const int mi_col = xd->mi_col;
468
469 if (skip_txfm) {
470 // Still need to transmit tx size for intra blocks even if skip_txfm is
471 // true. Changing segment_id may make the tx size become invalid, e.g
472 // changing from lossless to lossy.
473 assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
474
475 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
476 mi_row, mi_col, pred);
477 set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
478 mi_row, mi_col, pred);
479 /* mbmi is read only but we need to update segment_id */
480 ((MB_MODE_INFO *)mbmi)->segment_id = pred;
481 return;
482 }
483
484 const int coded_id =
485 av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
486 aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
487 aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
488 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
489 mi_row, mi_col, mbmi->segment_id);
490 }
491
492 #define WRITE_REF_BIT(bname, pname) \
493 aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
494
495 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)496 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
497 const MACROBLOCKD *xd, aom_writer *w) {
498 const MB_MODE_INFO *const mbmi = xd->mi[0];
499 const int is_compound = has_second_ref(mbmi);
500 const uint8_t segment_id = mbmi->segment_id;
501
502 // If segment level coding of this signal is disabled...
503 // or the segment allows multiple reference frame options
504 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
505 assert(!is_compound);
506 assert(mbmi->ref_frame[0] ==
507 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
508 } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
509 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
510 assert(!is_compound);
511 assert(mbmi->ref_frame[0] == LAST_FRAME);
512 } else {
513 // does the feature use compound prediction or not
514 // (if not specified at the frame/segment level)
515 if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
516 if (is_comp_ref_allowed(mbmi->bsize))
517 aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
518 } else {
519 assert((!is_compound) ==
520 (cm->current_frame.reference_mode == SINGLE_REFERENCE));
521 }
522
523 if (is_compound) {
524 const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
525 ? UNIDIR_COMP_REFERENCE
526 : BIDIR_COMP_REFERENCE;
527 aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
528 2);
529
530 if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
531 const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
532 WRITE_REF_BIT(bit, uni_comp_ref_p);
533
534 if (!bit) {
535 assert(mbmi->ref_frame[0] == LAST_FRAME);
536 const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
537 mbmi->ref_frame[1] == GOLDEN_FRAME;
538 WRITE_REF_BIT(bit1, uni_comp_ref_p1);
539 if (bit1) {
540 const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
541 WRITE_REF_BIT(bit2, uni_comp_ref_p2);
542 }
543 } else {
544 assert(mbmi->ref_frame[1] == ALTREF_FRAME);
545 }
546
547 return;
548 }
549
550 assert(comp_ref_type == BIDIR_COMP_REFERENCE);
551
552 const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
553 mbmi->ref_frame[0] == LAST3_FRAME);
554 WRITE_REF_BIT(bit, comp_ref_p);
555
556 if (!bit) {
557 const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
558 WRITE_REF_BIT(bit1, comp_ref_p1);
559 } else {
560 const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
561 WRITE_REF_BIT(bit2, comp_ref_p2);
562 }
563
564 const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
565 WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
566
567 if (!bit_bwd) {
568 WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
569 }
570
571 } else {
572 const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
573 mbmi->ref_frame[0] >= BWDREF_FRAME);
574 WRITE_REF_BIT(bit0, single_ref_p1);
575
576 if (bit0) {
577 const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
578 WRITE_REF_BIT(bit1, single_ref_p2);
579
580 if (!bit1) {
581 WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
582 }
583 } else {
584 const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
585 mbmi->ref_frame[0] == GOLDEN_FRAME);
586 WRITE_REF_BIT(bit2, single_ref_p3);
587
588 if (!bit2) {
589 const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
590 WRITE_REF_BIT(bit3, single_ref_p4);
591 } else {
592 const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
593 WRITE_REF_BIT(bit4, single_ref_p5);
594 }
595 }
596 }
597 }
598 }
599
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)600 static AOM_INLINE void write_filter_intra_mode_info(
601 const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
602 aom_writer *w) {
603 if (av1_filter_intra_allowed(cm, mbmi)) {
604 aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
605 xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
606 if (mbmi->filter_intra_mode_info.use_filter_intra) {
607 const FILTER_INTRA_MODE mode =
608 mbmi->filter_intra_mode_info.filter_intra_mode;
609 aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
610 FILTER_INTRA_MODES);
611 }
612 }
613 }
614
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)615 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
616 aom_cdf_prob *cdf) {
617 aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
618 2 * MAX_ANGLE_DELTA + 1);
619 }
620
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)621 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
622 ThreadData *td, aom_writer *w) {
623 const MACROBLOCKD *xd = &td->mb.e_mbd;
624 const MB_MODE_INFO *const mbmi = xd->mi[0];
625 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
626
627 if (!av1_is_interp_needed(xd)) {
628 int_interpfilters filters = av1_broadcast_interp_filter(
629 av1_unswitchable_filter(cm->features.interp_filter));
630 assert(mbmi->interp_filters.as_int == filters.as_int);
631 (void)filters;
632 return;
633 }
634 if (cm->features.interp_filter == SWITCHABLE) {
635 int dir;
636 for (dir = 0; dir < 2; ++dir) {
637 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
638 InterpFilter filter =
639 av1_extract_interp_filter(mbmi->interp_filters, dir);
640 aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
641 SWITCHABLE_FILTERS);
642 ++td->interp_filter_selected[filter];
643 if (cm->seq_params->enable_dual_filter == 0) return;
644 }
645 }
646 }
647
648 // Transmit color values with delta encoding. Write the first value as
649 // literal, and the deltas between each value and the previous one. "min_val" is
650 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)651 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
652 int bit_depth, int min_val,
653 aom_writer *w) {
654 if (num <= 0) return;
655 assert(colors[0] < (1 << bit_depth));
656 aom_write_literal(w, colors[0], bit_depth);
657 if (num == 1) return;
658 int max_delta = 0;
659 int deltas[PALETTE_MAX_SIZE];
660 memset(deltas, 0, sizeof(deltas));
661 for (int i = 1; i < num; ++i) {
662 assert(colors[i] < (1 << bit_depth));
663 const int delta = colors[i] - colors[i - 1];
664 deltas[i - 1] = delta;
665 assert(delta >= min_val);
666 if (delta > max_delta) max_delta = delta;
667 }
668 const int min_bits = bit_depth - 3;
669 int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
670 assert(bits <= bit_depth);
671 int range = (1 << bit_depth) - colors[0] - min_val;
672 aom_write_literal(w, bits - min_bits, 2);
673 for (int i = 0; i < num - 1; ++i) {
674 aom_write_literal(w, deltas[i] - min_val, bits);
675 range -= deltas[i];
676 bits = AOMMIN(bits, av1_ceil_log2(range));
677 }
678 }
679
680 // Transmit luma palette color values. First signal if each color in the color
681 // cache is used. Those colors that are not in the cache are transmitted with
682 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)683 static AOM_INLINE void write_palette_colors_y(
684 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
685 int bit_depth, aom_writer *w) {
686 const int n = pmi->palette_size[0];
687 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
688 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
689 int out_cache_colors[PALETTE_MAX_SIZE];
690 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
691 const int n_out_cache =
692 av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
693 cache_color_found, out_cache_colors);
694 int n_in_cache = 0;
695 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
696 const int found = cache_color_found[i];
697 aom_write_bit(w, found);
698 n_in_cache += found;
699 }
700 assert(n_in_cache + n_out_cache == n);
701 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
702 }
703
704 // Write chroma palette color values. U channel is handled similarly to the luma
705 // channel. For v channel, either use delta encoding or transmit raw values
706 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)707 static AOM_INLINE void write_palette_colors_uv(
708 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
709 int bit_depth, aom_writer *w) {
710 const int n = pmi->palette_size[1];
711 const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
712 const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
713 // U channel colors.
714 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
715 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
716 int out_cache_colors[PALETTE_MAX_SIZE];
717 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
718 const int n_out_cache = av1_index_color_cache(
719 color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
720 int n_in_cache = 0;
721 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
722 const int found = cache_color_found[i];
723 aom_write_bit(w, found);
724 n_in_cache += found;
725 }
726 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
727
728 // V channel colors. Don't use color cache as the colors are not sorted.
729 const int max_val = 1 << bit_depth;
730 int zero_count = 0, min_bits_v = 0;
731 int bits_v =
732 av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
733 const int rate_using_delta =
734 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
735 const int rate_using_raw = bit_depth * n;
736 if (rate_using_delta < rate_using_raw) { // delta encoding
737 assert(colors_v[0] < (1 << bit_depth));
738 aom_write_bit(w, 1);
739 aom_write_literal(w, bits_v - min_bits_v, 2);
740 aom_write_literal(w, colors_v[0], bit_depth);
741 for (int i = 1; i < n; ++i) {
742 assert(colors_v[i] < (1 << bit_depth));
743 if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
744 aom_write_literal(w, 0, bits_v);
745 continue;
746 }
747 const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
748 const int sign_bit = colors_v[i] < colors_v[i - 1];
749 if (delta <= max_val - delta) {
750 aom_write_literal(w, delta, bits_v);
751 aom_write_bit(w, sign_bit);
752 } else {
753 aom_write_literal(w, max_val - delta, bits_v);
754 aom_write_bit(w, !sign_bit);
755 }
756 }
757 } else { // Transmit raw values.
758 aom_write_bit(w, 0);
759 for (int i = 0; i < n; ++i) {
760 assert(colors_v[i] < (1 << bit_depth));
761 aom_write_literal(w, colors_v[i], bit_depth);
762 }
763 }
764 }
765
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)766 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
767 const MACROBLOCKD *xd,
768 const MB_MODE_INFO *const mbmi,
769 aom_writer *w) {
770 const int num_planes = av1_num_planes(cm);
771 const BLOCK_SIZE bsize = mbmi->bsize;
772 assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
773 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
774 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
775
776 if (mbmi->mode == DC_PRED) {
777 const int n = pmi->palette_size[0];
778 const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
779 aom_write_symbol(
780 w, n > 0,
781 xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
782 if (n > 0) {
783 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
784 xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
785 PALETTE_SIZES);
786 write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
787 }
788 }
789
790 const int uv_dc_pred =
791 num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
792 if (uv_dc_pred) {
793 const int n = pmi->palette_size[1];
794 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
795 aom_write_symbol(w, n > 0,
796 xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
797 if (n > 0) {
798 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
799 xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
800 PALETTE_SIZES);
801 write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
802 }
803 }
804 }
805
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)806 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
807 TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
808 MB_MODE_INFO *mbmi = xd->mi[0];
809 const FeatureFlags *const features = &cm->features;
810 const int is_inter = is_inter_block(mbmi);
811 if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
812 ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
813 (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
814 !mbmi->skip_txfm &&
815 !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
816 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
817 const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
818 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
819 tx_size, is_inter, features->reduced_tx_set_used);
820 const int eset =
821 get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
822 // eset == 0 should correspond to a set with only DCT_DCT and there
823 // is no need to send the tx_type
824 assert(eset > 0);
825 assert(av1_ext_tx_used[tx_set_type][tx_type]);
826 if (is_inter) {
827 aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
828 ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
829 av1_num_ext_tx_set[tx_set_type]);
830 } else {
831 PREDICTION_MODE intra_dir;
832 if (mbmi->filter_intra_mode_info.use_filter_intra)
833 intra_dir =
834 fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
835 else
836 intra_dir = mbmi->mode;
837 aom_write_symbol(
838 w, av1_ext_tx_ind[tx_set_type][tx_type],
839 ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
840 av1_num_ext_tx_set[tx_set_type]);
841 }
842 }
843 }
844
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)845 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
846 BLOCK_SIZE bsize,
847 PREDICTION_MODE mode,
848 aom_writer *w) {
849 aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
850 INTRA_MODES);
851 }
852
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)853 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
854 UV_PREDICTION_MODE uv_mode,
855 PREDICTION_MODE y_mode,
856 CFL_ALLOWED_TYPE cfl_allowed,
857 aom_writer *w) {
858 aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
859 UV_INTRA_MODES - !cfl_allowed);
860 }
861
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)862 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
863 uint8_t idx, int8_t joint_sign,
864 aom_writer *w) {
865 aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
866 // Magnitudes are only signaled for nonzero codes.
867 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
868 aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
869 aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
870 }
871 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
872 aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
873 aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
874 }
875 }
876
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)877 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
878 aom_writer *w, int skip) {
879 if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
880
881 // At the start of a superblock, mark that we haven't yet written CDEF
882 // strengths for any of the CDEF units contained in this superblock.
883 const int sb_mask = (cm->seq_params->mib_size - 1);
884 const int mi_row_in_sb = (xd->mi_row & sb_mask);
885 const int mi_col_in_sb = (xd->mi_col & sb_mask);
886 if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
887 xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
888 xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
889 }
890
891 // CDEF unit size is 64x64 irrespective of the superblock size.
892 const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
893
894 // Find index of this CDEF unit in this superblock.
895 const int index_mask = cdef_size;
896 const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
897 const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
898 const int index = (cm->seq_params->sb_size == BLOCK_128X128)
899 ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
900 : 0;
901
902 // Write CDEF strength to the first non-skip coding block in this CDEF unit.
903 if (!xd->cdef_transmitted[index] && !skip) {
904 // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
905 // of the 1st block in this CDEF unit.
906 const int first_block_mask = ~(cdef_size - 1);
907 const CommonModeInfoParams *const mi_params = &cm->mi_params;
908 const int grid_idx =
909 get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
910 xd->mi_col & first_block_mask);
911 const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
912 aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
913 xd->cdef_transmitted[index] = true;
914 }
915 }
916
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)917 static AOM_INLINE void write_inter_segment_id(
918 AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
919 const struct segmentation *const seg, struct segmentation_probs *const segp,
920 int skip, int preskip) {
921 MB_MODE_INFO *const mbmi = xd->mi[0];
922 AV1_COMMON *const cm = &cpi->common;
923 const int mi_row = xd->mi_row;
924 const int mi_col = xd->mi_col;
925
926 if (seg->update_map) {
927 if (preskip) {
928 if (!seg->segid_preskip) return;
929 } else {
930 if (seg->segid_preskip) return;
931 if (skip) {
932 write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
933 if (seg->temporal_update) mbmi->seg_id_predicted = 0;
934 return;
935 }
936 }
937 if (seg->temporal_update) {
938 const int pred_flag = mbmi->seg_id_predicted;
939 aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
940 aom_write_symbol(w, pred_flag, pred_cdf, 2);
941 if (!pred_flag) {
942 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
943 }
944 if (pred_flag) {
945 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
946 mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
947 }
948 } else {
949 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
950 }
951 }
952 }
953
954 // If delta q is present, writes delta_q index.
955 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)956 static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
957 MACROBLOCKD *const xd, int skip,
958 aom_writer *w) {
959 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
960
961 if (delta_q_info->delta_q_present_flag) {
962 const MB_MODE_INFO *const mbmi = xd->mi[0];
963 const BLOCK_SIZE bsize = mbmi->bsize;
964 const int super_block_upper_left =
965 ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
966 ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
967
968 if ((bsize != cm->seq_params->sb_size || skip == 0) &&
969 super_block_upper_left) {
970 assert(mbmi->current_qindex > 0);
971 const int reduced_delta_qindex =
972 (mbmi->current_qindex - xd->current_base_qindex) /
973 delta_q_info->delta_q_res;
974 write_delta_qindex(xd, reduced_delta_qindex, w);
975 xd->current_base_qindex = mbmi->current_qindex;
976 if (delta_q_info->delta_lf_present_flag) {
977 if (delta_q_info->delta_lf_multi) {
978 const int frame_lf_count =
979 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
980 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
981 int reduced_delta_lflevel =
982 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
983 delta_q_info->delta_lf_res;
984 write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
985 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
986 }
987 } else {
988 int reduced_delta_lflevel =
989 (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
990 delta_q_info->delta_lf_res;
991 write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
992 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
993 }
994 }
995 }
996 }
997 }
998
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)999 static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
1000 MACROBLOCKD *const xd,
1001 int is_keyframe,
1002 aom_writer *w) {
1003 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1004 const MB_MODE_INFO *const mbmi = xd->mi[0];
1005 const PREDICTION_MODE mode = mbmi->mode;
1006 const BLOCK_SIZE bsize = mbmi->bsize;
1007
1008 // Y mode.
1009 if (is_keyframe) {
1010 const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1011 const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1012 write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1013 } else {
1014 write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1015 }
1016
1017 // Y angle delta.
1018 const int use_angle_delta = av1_use_angle_delta(bsize);
1019 if (use_angle_delta && av1_is_directional_mode(mode)) {
1020 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1021 ec_ctx->angle_delta_cdf[mode - V_PRED]);
1022 }
1023
1024 // UV mode and UV angle delta.
1025 if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1026 const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1027 write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1028 if (uv_mode == UV_CFL_PRED)
1029 write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1030 if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
1031 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1032 ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
1033 }
1034 }
1035
1036 // Palette.
1037 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1038 write_palette_mode_info(cm, xd, mbmi, w);
1039 }
1040
1041 // Filter intra.
1042 write_filter_intra_mode_info(cm, xd, mbmi, w);
1043 }
1044
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1045 static INLINE int16_t mode_context_analyzer(
1046 const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1047 if (rf[1] <= INTRA_FRAME) return mode_context;
1048
1049 const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1050 const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1051
1052 const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1053 newmv_ctx, COMP_NEWMV_CTXS - 1)];
1054 return comp_ctx;
1055 }
1056
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1057 static INLINE int_mv get_ref_mv_from_stack(
1058 int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1059 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1060 const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1061 const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1062
1063 if (ref_frame[1] > INTRA_FRAME) {
1064 assert(ref_idx == 0 || ref_idx == 1);
1065 return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1066 : curr_ref_mv_stack[ref_mv_idx].this_mv;
1067 }
1068
1069 assert(ref_idx == 0);
1070 return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1071 ? curr_ref_mv_stack[ref_mv_idx].this_mv
1072 : mbmi_ext_frame->global_mvs[ref_frame_type];
1073 }
1074
get_ref_mv(const MACROBLOCK * x,int ref_idx)1075 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1076 const MACROBLOCKD *xd = &x->e_mbd;
1077 const MB_MODE_INFO *mbmi = xd->mi[0];
1078 int ref_mv_idx = mbmi->ref_mv_idx;
1079 if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1080 assert(has_second_ref(mbmi));
1081 ref_mv_idx += 1;
1082 }
1083 return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1084 x->mbmi_ext_frame);
1085 }
1086
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1087 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1088 aom_writer *w) {
1089 AV1_COMMON *const cm = &cpi->common;
1090 MACROBLOCK *const x = &td->mb;
1091 MACROBLOCKD *const xd = &x->e_mbd;
1092 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1093 const struct segmentation *const seg = &cm->seg;
1094 struct segmentation_probs *const segp = &ec_ctx->seg;
1095 const MB_MODE_INFO *const mbmi = xd->mi[0];
1096 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1097 const PREDICTION_MODE mode = mbmi->mode;
1098 const uint8_t segment_id = mbmi->segment_id;
1099 const BLOCK_SIZE bsize = mbmi->bsize;
1100 const int allow_hp = cm->features.allow_high_precision_mv;
1101 const int is_inter = is_inter_block(mbmi);
1102 const int is_compound = has_second_ref(mbmi);
1103 int ref;
1104
1105 write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1106
1107 write_skip_mode(cm, xd, segment_id, mbmi, w);
1108
1109 assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1110 const int skip =
1111 mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1112
1113 write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1114
1115 write_cdef(cm, xd, w, skip);
1116
1117 write_delta_q_params(cm, xd, skip, w);
1118
1119 if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1120
1121 if (mbmi->skip_mode) return;
1122
1123 if (!is_inter) {
1124 write_intra_prediction_modes(cm, xd, 0, w);
1125 } else {
1126 int16_t mode_ctx;
1127
1128 av1_collect_neighbors_ref_counts(xd);
1129
1130 write_ref_frames(cm, xd, w);
1131
1132 mode_ctx =
1133 mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1134
1135 // If segment skip is not enabled code the mode.
1136 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1137 if (is_inter_compound_mode(mode))
1138 write_inter_compound_mode(xd, w, mode, mode_ctx);
1139 else if (is_inter_singleref_mode(mode))
1140 write_inter_mode(w, mode, ec_ctx, mode_ctx);
1141
1142 if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1143 write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1144 else
1145 assert(mbmi->ref_mv_idx == 0);
1146 }
1147
1148 if (mode == NEWMV || mode == NEW_NEWMV) {
1149 for (ref = 0; ref < 1 + is_compound; ++ref) {
1150 nmv_context *nmvc = &ec_ctx->nmvc;
1151 const int_mv ref_mv = get_ref_mv(x, ref);
1152 av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1153 allow_hp);
1154 }
1155 } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1156 nmv_context *nmvc = &ec_ctx->nmvc;
1157 const int_mv ref_mv = get_ref_mv(x, 1);
1158 av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1159 allow_hp);
1160 } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1161 nmv_context *nmvc = &ec_ctx->nmvc;
1162 const int_mv ref_mv = get_ref_mv(x, 0);
1163 av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1164 allow_hp);
1165 }
1166
1167 if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1168 cpi->common.seq_params->enable_interintra_compound &&
1169 is_interintra_allowed(mbmi)) {
1170 const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1171 const int bsize_group = size_group_lookup[bsize];
1172 aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1173 if (interintra) {
1174 aom_write_symbol(w, mbmi->interintra_mode,
1175 ec_ctx->interintra_mode_cdf[bsize_group],
1176 INTERINTRA_MODES);
1177 if (av1_is_wedge_used(bsize)) {
1178 aom_write_symbol(w, mbmi->use_wedge_interintra,
1179 ec_ctx->wedge_interintra_cdf[bsize], 2);
1180 if (mbmi->use_wedge_interintra) {
1181 aom_write_symbol(w, mbmi->interintra_wedge_index,
1182 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1183 }
1184 }
1185 }
1186 }
1187
1188 if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1189
1190 // First write idx to indicate current compound inter prediction mode group
1191 // Group A (0): dist_wtd_comp, compound_average
1192 // Group B (1): interintra, compound_diffwtd, wedge
1193 if (has_second_ref(mbmi)) {
1194 const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1195 cm->seq_params->enable_masked_compound;
1196
1197 if (masked_compound_used) {
1198 const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1199 aom_write_symbol(w, mbmi->comp_group_idx,
1200 ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1201 } else {
1202 assert(mbmi->comp_group_idx == 0);
1203 }
1204
1205 if (mbmi->comp_group_idx == 0) {
1206 if (mbmi->compound_idx)
1207 assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1208
1209 if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1210 const int comp_index_ctx = get_comp_index_context(cm, xd);
1211 aom_write_symbol(w, mbmi->compound_idx,
1212 ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1213 } else {
1214 assert(mbmi->compound_idx == 1);
1215 }
1216 } else {
1217 assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1218 is_inter_compound_mode(mbmi->mode) &&
1219 mbmi->motion_mode == SIMPLE_TRANSLATION);
1220 assert(masked_compound_used);
1221 // compound_diffwtd, wedge
1222 assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1223 mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1224
1225 if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1226 aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1227 ec_ctx->compound_type_cdf[bsize],
1228 MASKED_COMPOUND_TYPES);
1229
1230 if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1231 assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1232 aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1233 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1234 aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1235 } else {
1236 assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1237 aom_write_literal(w, mbmi->interinter_comp.mask_type,
1238 MAX_DIFFWTD_MASK_BITS);
1239 }
1240 }
1241 }
1242 write_mb_interp_filter(cm, td, w);
1243 }
1244 }
1245
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1246 static AOM_INLINE void write_intrabc_info(
1247 MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1248 aom_writer *w) {
1249 const MB_MODE_INFO *const mbmi = xd->mi[0];
1250 int use_intrabc = is_intrabc_block(mbmi);
1251 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1252 aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1253 if (use_intrabc) {
1254 assert(mbmi->mode == DC_PRED);
1255 assert(mbmi->uv_mode == UV_DC_PRED);
1256 assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1257 int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1258 av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1259 }
1260 }
1261
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1262 static AOM_INLINE void write_mb_modes_kf(
1263 AV1_COMP *cpi, MACROBLOCKD *xd,
1264 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1265 AV1_COMMON *const cm = &cpi->common;
1266 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1267 const struct segmentation *const seg = &cm->seg;
1268 struct segmentation_probs *const segp = &ec_ctx->seg;
1269 const MB_MODE_INFO *const mbmi = xd->mi[0];
1270
1271 if (seg->segid_preskip && seg->update_map)
1272 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1273
1274 const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1275
1276 if (!seg->segid_preskip && seg->update_map)
1277 write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1278
1279 write_cdef(cm, xd, w, skip);
1280
1281 write_delta_q_params(cm, xd, skip, w);
1282
1283 if (av1_allow_intrabc(cm)) {
1284 write_intrabc_info(xd, mbmi_ext_frame, w);
1285 if (is_intrabc_block(mbmi)) return;
1286 }
1287
1288 write_intra_prediction_modes(cm, xd, 1, w);
1289 }
1290
1291 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1292 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1293 printf("\nmi->mi_row == %d\n", mi->mi_row);
1294 printf("&& mi->mi_col == %d\n", mi->mi_col);
1295 printf("&& mi->bsize == %d\n", mi->bsize);
1296 printf("&& mi->tx_size == %d\n", mi->tx_size);
1297 printf("&& mi->mode == %d\n", mi->mode);
1298 }
1299
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1300 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1301 int plane) {
1302 if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1303 printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1304 plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1305 return 1;
1306 }
1307 return 0;
1308 }
1309 #endif
1310
1311 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1312 static AOM_INLINE void enc_dump_logs(
1313 const AV1_COMMON *const cm,
1314 const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1315 const MB_MODE_INFO *const mbmi = *(
1316 cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1317 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1318 mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1319 cm->mi_params.mi_alloc_bsize,
1320 mbmi_ext_info->stride);
1321 if (is_inter_block(mbmi)) {
1322 #define FRAME_TO_CHECK 11
1323 if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1324 cm->show_frame == 1) {
1325 const BLOCK_SIZE bsize = mbmi->bsize;
1326
1327 int_mv mv[2] = { 0 };
1328 const int is_comp_ref = has_second_ref(mbmi);
1329
1330 for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1331 mv[ref].as_mv = mbmi->mv[ref].as_mv;
1332
1333 if (!is_comp_ref) {
1334 mv[1].as_int = 0;
1335 }
1336
1337 const int16_t mode_ctx =
1338 is_comp_ref ? 0
1339 : mode_context_analyzer(mbmi_ext_frame->mode_context,
1340 mbmi->ref_frame);
1341
1342 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1343 int16_t zeromv_ctx = -1;
1344 int16_t refmv_ctx = -1;
1345
1346 if (mbmi->mode != NEWMV) {
1347 zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1348 if (mbmi->mode != GLOBALMV)
1349 refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1350 }
1351
1352 printf(
1353 "=== ENCODER ===: "
1354 "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1355 "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1356 "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1357 "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1358 cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1359 mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1360 mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1361 mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1362 zeromv_ctx, refmv_ctx, mbmi->tx_size);
1363 }
1364 }
1365 }
1366 #endif // ENC_MISMATCH_DEBUG
1367
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1368 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1369 aom_writer *w) {
1370 AV1_COMMON *const cm = &cpi->common;
1371 MACROBLOCKD *const xd = &td->mb.e_mbd;
1372 MB_MODE_INFO *m = xd->mi[0];
1373
1374 if (frame_is_intra_only(cm)) {
1375 write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1376 } else {
1377 // has_subpel_mv_component needs the ref frame buffers set up to look
1378 // up if they are scaled. has_subpel_mv_component is in turn needed by
1379 // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1380 set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1381
1382 #if ENC_MISMATCH_DEBUG
1383 enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1384 #endif // ENC_MISMATCH_DEBUG
1385
1386 pack_inter_mode_mvs(cpi, td, w);
1387 }
1388 }
1389
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1390 static AOM_INLINE void write_inter_txb_coeff(
1391 AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1392 aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1393 TOKEN_STATS *token_stats, const int row, const int col, int *block,
1394 const int plane) {
1395 MACROBLOCKD *const xd = &x->e_mbd;
1396 const struct macroblockd_plane *const pd = &xd->plane[plane];
1397 const BLOCK_SIZE bsize = mbmi->bsize;
1398 assert(bsize < BLOCK_SIZES_ALL);
1399 const int ss_x = pd->subsampling_x;
1400 const int ss_y = pd->subsampling_y;
1401 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1402 assert(plane_bsize < BLOCK_SIZES_ALL);
1403 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1404 const int step =
1405 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1406 const int bkw = tx_size_wide_unit[max_tx_size];
1407 const int bkh = tx_size_high_unit[max_tx_size];
1408 const BLOCK_SIZE max_unit_bsize =
1409 get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1410 const int num_4x4_w = mi_size_wide[plane_bsize];
1411 const int num_4x4_h = mi_size_high[plane_bsize];
1412 const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1413 const int mu_blocks_high = mi_size_high[max_unit_bsize];
1414 const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1415 const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1416 for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1417 for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1418 pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1419 cm->seq_params->bit_depth, *block, blk_row, blk_col,
1420 max_tx_size, token_stats);
1421 *block += step;
1422 }
1423 }
1424 }
1425
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1426 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1427 aom_writer *w, const TokenExtra **tok,
1428 const TokenExtra *const tok_end) {
1429 AV1_COMMON *const cm = &cpi->common;
1430 MACROBLOCKD *const xd = &x->e_mbd;
1431 MB_MODE_INFO *const mbmi = xd->mi[0];
1432 const BLOCK_SIZE bsize = mbmi->bsize;
1433
1434 assert(!mbmi->skip_txfm);
1435
1436 const int is_inter = is_inter_block(mbmi);
1437 if (!is_inter) {
1438 av1_write_intra_coeffs_mb(cm, x, w, bsize);
1439 } else {
1440 int block[MAX_MB_PLANE] = { 0 };
1441 assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1442 xd->plane[0].subsampling_y));
1443 const int num_4x4_w = mi_size_wide[bsize];
1444 const int num_4x4_h = mi_size_high[bsize];
1445 TOKEN_STATS token_stats;
1446 init_token_stats(&token_stats);
1447
1448 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1449 assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1450 xd->plane[0].subsampling_x,
1451 xd->plane[0].subsampling_y));
1452 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1453 int mu_blocks_high = mi_size_high[max_unit_bsize];
1454 mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1455 mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1456
1457 const int num_planes = av1_num_planes(cm);
1458 for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1459 for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1460 for (int plane = 0; plane < num_planes; ++plane) {
1461 if (plane && !xd->is_chroma_ref) break;
1462 write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1463 col, &block[plane], plane);
1464 }
1465 }
1466 }
1467 #if CONFIG_RD_DEBUG
1468 for (int plane = 0; plane < num_planes; ++plane) {
1469 if (mbmi->bsize >= BLOCK_8X8 &&
1470 rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1471 dump_mode_info(mbmi);
1472 assert(0);
1473 }
1474 }
1475 #endif // CONFIG_RD_DEBUG
1476 }
1477 }
1478
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1479 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1480 const TileInfo *const tile, aom_writer *w,
1481 const TokenExtra **tok,
1482 const TokenExtra *const tok_end,
1483 int mi_row, int mi_col) {
1484 const AV1_COMMON *cm = &cpi->common;
1485 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1486 MACROBLOCKD *xd = &td->mb.e_mbd;
1487 FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1488 const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1489 xd->mi = mi_params->mi_grid_base + grid_idx;
1490 td->mb.mbmi_ext_frame =
1491 cpi->mbmi_ext_info.frame_base +
1492 get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1493 cpi->mbmi_ext_info.stride);
1494 xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1495 xd->tx_type_map_stride = mi_params->mi_stride;
1496
1497 const MB_MODE_INFO *mbmi = xd->mi[0];
1498 const BLOCK_SIZE bsize = mbmi->bsize;
1499 assert(bsize <= cm->seq_params->sb_size ||
1500 (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1501
1502 const int bh = mi_size_high[bsize];
1503 const int bw = mi_size_wide[bsize];
1504 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1505 mi_params->mi_cols);
1506
1507 xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1508 xd->left_txfm_context =
1509 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1510
1511 write_mbmi_b(cpi, td, w);
1512
1513 for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1514 const uint8_t palette_size_plane =
1515 mbmi->palette_mode_info.palette_size[plane];
1516 assert(!mbmi->skip_mode || !palette_size_plane);
1517 if (palette_size_plane > 0) {
1518 assert(mbmi->use_intrabc == 0);
1519 assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1520 mbmi->bsize));
1521 assert(!plane || xd->is_chroma_ref);
1522 int rows, cols;
1523 av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1524 &cols);
1525 assert(*tok < tok_end);
1526 MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1527 : tile_ctx->palette_y_color_index_cdf;
1528 pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1529 }
1530 }
1531
1532 const int is_inter_tx = is_inter_block(mbmi);
1533 const int skip_txfm = mbmi->skip_txfm;
1534 const uint8_t segment_id = mbmi->segment_id;
1535 if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1536 !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1537 if (is_inter_tx) { // This implies skip flag is 0.
1538 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1539 const int txbh = tx_size_high_unit[max_tx_size];
1540 const int txbw = tx_size_wide_unit[max_tx_size];
1541 const int width = mi_size_wide[bsize];
1542 const int height = mi_size_high[bsize];
1543 for (int idy = 0; idy < height; idy += txbh) {
1544 for (int idx = 0; idx < width; idx += txbw) {
1545 write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1546 }
1547 }
1548 } else {
1549 write_selected_tx_size(xd, w);
1550 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1551 }
1552 } else {
1553 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1554 skip_txfm && is_inter_tx, xd);
1555 }
1556
1557 if (!mbmi->skip_txfm) {
1558 int start = aom_tell_size(w);
1559
1560 write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1561
1562 const int end = aom_tell_size(w);
1563 td->coefficient_size += end - start;
1564 }
1565 }
1566
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1567 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1568 const MACROBLOCKD *const xd, int hbs,
1569 int mi_row, int mi_col, PARTITION_TYPE p,
1570 BLOCK_SIZE bsize, aom_writer *w) {
1571 const int is_partition_point = bsize >= BLOCK_8X8;
1572
1573 if (!is_partition_point) return;
1574
1575 const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1576 const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1577 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1578 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1579
1580 if (!has_rows && !has_cols) {
1581 assert(p == PARTITION_SPLIT);
1582 return;
1583 }
1584
1585 if (has_rows && has_cols) {
1586 aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1587 partition_cdf_length(bsize));
1588 } else if (!has_rows && has_cols) {
1589 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1590 assert(bsize > BLOCK_8X8);
1591 aom_cdf_prob cdf[2];
1592 partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1593 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1594 } else {
1595 assert(has_rows && !has_cols);
1596 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1597 assert(bsize > BLOCK_8X8);
1598 aom_cdf_prob cdf[2];
1599 partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1600 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1601 }
1602 }
1603
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1604 static AOM_INLINE void write_modes_sb(
1605 AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
1606 aom_writer *const w, const TokenExtra **tok,
1607 const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
1608 const AV1_COMMON *const cm = &cpi->common;
1609 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1610 MACROBLOCKD *const xd = &td->mb.e_mbd;
1611 assert(bsize < BLOCK_SIZES_ALL);
1612 const int hbs = mi_size_wide[bsize] / 2;
1613 const int quarter_step = mi_size_wide[bsize] / 4;
1614 int i;
1615 const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1616 const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1617
1618 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1619
1620 #if !CONFIG_REALTIME_ONLY
1621 const int num_planes = av1_num_planes(cm);
1622 for (int plane = 0; plane < num_planes; ++plane) {
1623 int rcol0, rcol1, rrow0, rrow1;
1624 if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1625 &rcol0, &rcol1, &rrow0, &rrow1)) {
1626 const int rstride = cm->rst_info[plane].horz_units_per_tile;
1627 for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1628 for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1629 const int runit_idx = rcol + rrow * rstride;
1630 const RestorationUnitInfo *rui =
1631 &cm->rst_info[plane].unit_info[runit_idx];
1632 loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, td->counts);
1633 }
1634 }
1635 }
1636 }
1637 #endif
1638
1639 write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1640 switch (partition) {
1641 case PARTITION_NONE:
1642 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1643 break;
1644 case PARTITION_HORZ:
1645 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1646 if (mi_row + hbs < mi_params->mi_rows)
1647 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1648 break;
1649 case PARTITION_VERT:
1650 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1651 if (mi_col + hbs < mi_params->mi_cols)
1652 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1653 break;
1654 case PARTITION_SPLIT:
1655 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1656 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1657 subsize);
1658 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1659 subsize);
1660 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1661 subsize);
1662 break;
1663 case PARTITION_HORZ_A:
1664 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1665 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1666 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1667 break;
1668 case PARTITION_HORZ_B:
1669 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1670 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1671 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1672 break;
1673 case PARTITION_VERT_A:
1674 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1675 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1677 break;
1678 case PARTITION_VERT_B:
1679 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1680 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1681 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1682 break;
1683 case PARTITION_HORZ_4:
1684 for (i = 0; i < 4; ++i) {
1685 int this_mi_row = mi_row + i * quarter_step;
1686 if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1687
1688 write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1689 }
1690 break;
1691 case PARTITION_VERT_4:
1692 for (i = 0; i < 4; ++i) {
1693 int this_mi_col = mi_col + i * quarter_step;
1694 if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1695
1696 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1697 }
1698 break;
1699 default: assert(0);
1700 }
1701
1702 // update partition context
1703 update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1704 }
1705
1706 // Populate token pointers appropriately based on token_info.
get_token_pointers(const TokenInfo * token_info,const int tile_row,int tile_col,const int sb_row_in_tile,const TokenExtra ** tok,const TokenExtra ** tok_end)1707 static AOM_INLINE void get_token_pointers(const TokenInfo *token_info,
1708 const int tile_row, int tile_col,
1709 const int sb_row_in_tile,
1710 const TokenExtra **tok,
1711 const TokenExtra **tok_end) {
1712 if (!is_token_info_allocated(token_info)) {
1713 *tok = NULL;
1714 *tok_end = NULL;
1715 return;
1716 }
1717 *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
1718 *tok_end =
1719 *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
1720 }
1721
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1722 static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1723 const TileInfo *const tile,
1724 aom_writer *const w, int tile_row,
1725 int tile_col) {
1726 AV1_COMMON *const cm = &cpi->common;
1727 MACROBLOCKD *const xd = &td->mb.e_mbd;
1728 const int mi_row_start = tile->mi_row_start;
1729 const int mi_row_end = tile->mi_row_end;
1730 const int mi_col_start = tile->mi_col_start;
1731 const int mi_col_end = tile->mi_col_end;
1732 const int num_planes = av1_num_planes(cm);
1733
1734 av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1735 av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1736
1737 if (cpi->common.delta_q_info.delta_q_present_flag) {
1738 xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1739 if (cpi->common.delta_q_info.delta_lf_present_flag) {
1740 av1_reset_loop_filter_delta(xd, num_planes);
1741 }
1742 }
1743
1744 for (int mi_row = mi_row_start; mi_row < mi_row_end;
1745 mi_row += cm->seq_params->mib_size) {
1746 const int sb_row_in_tile =
1747 (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1748 const TokenInfo *token_info = &cpi->token_info;
1749 const TokenExtra *tok;
1750 const TokenExtra *tok_end;
1751 get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
1752 &tok_end);
1753
1754 av1_zero_left_context(xd);
1755
1756 for (int mi_col = mi_col_start; mi_col < mi_col_end;
1757 mi_col += cm->seq_params->mib_size) {
1758 td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1759 write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1760 cm->seq_params->sb_size);
1761 }
1762 assert(tok == tok_end);
1763 }
1764 }
1765
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1766 static AOM_INLINE void encode_restoration_mode(
1767 AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1768 assert(!cm->features.all_lossless);
1769 if (!cm->seq_params->enable_restoration) return;
1770 if (cm->features.allow_intrabc) return;
1771 const int num_planes = av1_num_planes(cm);
1772 int all_none = 1, chroma_none = 1;
1773 for (int p = 0; p < num_planes; ++p) {
1774 RestorationInfo *rsi = &cm->rst_info[p];
1775 if (rsi->frame_restoration_type != RESTORE_NONE) {
1776 all_none = 0;
1777 chroma_none &= p == 0;
1778 }
1779 switch (rsi->frame_restoration_type) {
1780 case RESTORE_NONE:
1781 aom_wb_write_bit(wb, 0);
1782 aom_wb_write_bit(wb, 0);
1783 break;
1784 case RESTORE_WIENER:
1785 aom_wb_write_bit(wb, 1);
1786 aom_wb_write_bit(wb, 0);
1787 break;
1788 case RESTORE_SGRPROJ:
1789 aom_wb_write_bit(wb, 1);
1790 aom_wb_write_bit(wb, 1);
1791 break;
1792 case RESTORE_SWITCHABLE:
1793 aom_wb_write_bit(wb, 0);
1794 aom_wb_write_bit(wb, 1);
1795 break;
1796 default: assert(0);
1797 }
1798 }
1799 if (!all_none) {
1800 assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1801 cm->seq_params->sb_size == BLOCK_128X128);
1802 const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1803
1804 RestorationInfo *rsi = &cm->rst_info[0];
1805
1806 assert(rsi->restoration_unit_size >= sb_size);
1807 assert(RESTORATION_UNITSIZE_MAX == 256);
1808
1809 if (sb_size == 64) {
1810 aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1811 }
1812 if (rsi->restoration_unit_size > 64) {
1813 aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1814 }
1815 }
1816
1817 if (num_planes > 1) {
1818 int s =
1819 AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1820 if (s && !chroma_none) {
1821 aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1822 cm->rst_info[0].restoration_unit_size);
1823 assert(cm->rst_info[1].restoration_unit_size ==
1824 cm->rst_info[0].restoration_unit_size ||
1825 cm->rst_info[1].restoration_unit_size ==
1826 (cm->rst_info[0].restoration_unit_size >> s));
1827 assert(cm->rst_info[2].restoration_unit_size ==
1828 cm->rst_info[1].restoration_unit_size);
1829 } else if (!s) {
1830 assert(cm->rst_info[1].restoration_unit_size ==
1831 cm->rst_info[0].restoration_unit_size);
1832 assert(cm->rst_info[2].restoration_unit_size ==
1833 cm->rst_info[1].restoration_unit_size);
1834 }
1835 }
1836 }
1837
1838 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1839 static AOM_INLINE void write_wiener_filter(int wiener_win,
1840 const WienerInfo *wiener_info,
1841 WienerInfo *ref_wiener_info,
1842 aom_writer *wb) {
1843 if (wiener_win == WIENER_WIN)
1844 aom_write_primitive_refsubexpfin(
1845 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1846 WIENER_FILT_TAP0_SUBEXP_K,
1847 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1848 wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1849 else
1850 assert(wiener_info->vfilter[0] == 0 &&
1851 wiener_info->vfilter[WIENER_WIN - 1] == 0);
1852 aom_write_primitive_refsubexpfin(
1853 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1854 WIENER_FILT_TAP1_SUBEXP_K,
1855 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1856 wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1857 aom_write_primitive_refsubexpfin(
1858 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1859 WIENER_FILT_TAP2_SUBEXP_K,
1860 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1861 wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1862 if (wiener_win == WIENER_WIN)
1863 aom_write_primitive_refsubexpfin(
1864 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1865 WIENER_FILT_TAP0_SUBEXP_K,
1866 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1867 wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1868 else
1869 assert(wiener_info->hfilter[0] == 0 &&
1870 wiener_info->hfilter[WIENER_WIN - 1] == 0);
1871 aom_write_primitive_refsubexpfin(
1872 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1873 WIENER_FILT_TAP1_SUBEXP_K,
1874 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1875 wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1876 aom_write_primitive_refsubexpfin(
1877 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1878 WIENER_FILT_TAP2_SUBEXP_K,
1879 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1880 wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1881 memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1882 }
1883
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1884 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1885 SgrprojInfo *ref_sgrproj_info,
1886 aom_writer *wb) {
1887 aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1888 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1889
1890 if (params->r[0] == 0) {
1891 assert(sgrproj_info->xqd[0] == 0);
1892 aom_write_primitive_refsubexpfin(
1893 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1894 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1895 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1896 } else if (params->r[1] == 0) {
1897 aom_write_primitive_refsubexpfin(
1898 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1899 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1900 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1901 } else {
1902 aom_write_primitive_refsubexpfin(
1903 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1904 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1905 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1906 aom_write_primitive_refsubexpfin(
1907 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1908 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1909 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1910 }
1911
1912 memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1913 }
1914
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,const RestorationUnitInfo * rui,aom_writer * const w,int plane,FRAME_COUNTS * counts)1915 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1916 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
1917 aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1918 const RestorationInfo *rsi = cm->rst_info + plane;
1919 RestorationType frame_rtype = rsi->frame_restoration_type;
1920 assert(frame_rtype != RESTORE_NONE);
1921
1922 (void)counts;
1923 assert(!cm->features.all_lossless);
1924
1925 const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1926 WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1927 SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1928 RestorationType unit_rtype = rui->restoration_type;
1929
1930 if (frame_rtype == RESTORE_SWITCHABLE) {
1931 aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1932 RESTORE_SWITCHABLE_TYPES);
1933 #if CONFIG_ENTROPY_STATS
1934 ++counts->switchable_restore[unit_rtype];
1935 #endif
1936 switch (unit_rtype) {
1937 case RESTORE_WIENER:
1938 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1939 break;
1940 case RESTORE_SGRPROJ:
1941 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1942 break;
1943 default: assert(unit_rtype == RESTORE_NONE); break;
1944 }
1945 } else if (frame_rtype == RESTORE_WIENER) {
1946 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1947 xd->tile_ctx->wiener_restore_cdf, 2);
1948 #if CONFIG_ENTROPY_STATS
1949 ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1950 #endif
1951 if (unit_rtype != RESTORE_NONE) {
1952 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1953 }
1954 } else if (frame_rtype == RESTORE_SGRPROJ) {
1955 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1956 xd->tile_ctx->sgrproj_restore_cdf, 2);
1957 #if CONFIG_ENTROPY_STATS
1958 ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1959 #endif
1960 if (unit_rtype != RESTORE_NONE) {
1961 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1962 }
1963 }
1964 }
1965 #endif // !CONFIG_REALTIME_ONLY
1966
1967 // Only write out the ref delta section if any of the elements
1968 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1969 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
1970 struct loopfilter *lf = &cm->lf;
1971 if (!lf->mode_ref_delta_update) {
1972 return 0;
1973 }
1974 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1975 int8_t last_ref_deltas[REF_FRAMES];
1976 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1977 if (buf == NULL) {
1978 av1_set_default_ref_deltas(last_ref_deltas);
1979 av1_set_default_mode_deltas(last_mode_deltas);
1980 } else {
1981 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
1982 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
1983 }
1984 for (int i = 0; i < REF_FRAMES; i++) {
1985 if (lf->ref_deltas[i] != last_ref_deltas[i]) {
1986 return true;
1987 }
1988 }
1989 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
1990 if (lf->mode_deltas[i] != last_mode_deltas[i]) {
1991 return true;
1992 }
1993 }
1994 return false;
1995 }
1996
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1997 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
1998 struct aom_write_bit_buffer *wb) {
1999 assert(!cm->features.coded_lossless);
2000 if (cm->features.allow_intrabc) return;
2001 const int num_planes = av1_num_planes(cm);
2002 struct loopfilter *lf = &cm->lf;
2003
2004 // Encode the loop filter level and type
2005 aom_wb_write_literal(wb, lf->filter_level[0], 6);
2006 aom_wb_write_literal(wb, lf->filter_level[1], 6);
2007 if (num_planes > 1) {
2008 if (lf->filter_level[0] || lf->filter_level[1]) {
2009 aom_wb_write_literal(wb, lf->filter_level_u, 6);
2010 aom_wb_write_literal(wb, lf->filter_level_v, 6);
2011 }
2012 }
2013 aom_wb_write_literal(wb, lf->sharpness_level, 3);
2014
2015 aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
2016
2017 // Write out loop filter deltas applied at the MB level based on mode or
2018 // ref frame (if they are enabled), only if there is information to write.
2019 int meaningful = is_mode_ref_delta_meaningful(cm);
2020 aom_wb_write_bit(wb, meaningful);
2021 if (!meaningful) {
2022 return;
2023 }
2024
2025 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2026 int8_t last_ref_deltas[REF_FRAMES];
2027 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2028 if (buf == NULL) {
2029 av1_set_default_ref_deltas(last_ref_deltas);
2030 av1_set_default_mode_deltas(last_mode_deltas);
2031 } else {
2032 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2033 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2034 }
2035 for (int i = 0; i < REF_FRAMES; i++) {
2036 const int delta = lf->ref_deltas[i];
2037 const int changed = delta != last_ref_deltas[i];
2038 aom_wb_write_bit(wb, changed);
2039 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2040 }
2041 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2042 const int delta = lf->mode_deltas[i];
2043 const int changed = delta != last_mode_deltas[i];
2044 aom_wb_write_bit(wb, changed);
2045 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2046 }
2047 }
2048
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2049 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2050 struct aom_write_bit_buffer *wb) {
2051 assert(!cm->features.coded_lossless);
2052 if (!cm->seq_params->enable_cdef) return;
2053 if (cm->features.allow_intrabc) return;
2054 const int num_planes = av1_num_planes(cm);
2055 int i;
2056 aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2057 aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2058 for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2059 aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2060 CDEF_STRENGTH_BITS);
2061 if (num_planes > 1)
2062 aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2063 CDEF_STRENGTH_BITS);
2064 }
2065 }
2066
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2067 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2068 int delta_q) {
2069 if (delta_q != 0) {
2070 aom_wb_write_bit(wb, 1);
2071 aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2072 } else {
2073 aom_wb_write_bit(wb, 0);
2074 }
2075 }
2076
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2077 static AOM_INLINE void encode_quantization(
2078 const CommonQuantParams *const quant_params, int num_planes,
2079 bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2080 aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2081 write_delta_q(wb, quant_params->y_dc_delta_q);
2082 if (num_planes > 1) {
2083 int diff_uv_delta =
2084 (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2085 (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2086 if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2087 write_delta_q(wb, quant_params->u_dc_delta_q);
2088 write_delta_q(wb, quant_params->u_ac_delta_q);
2089 if (diff_uv_delta) {
2090 write_delta_q(wb, quant_params->v_dc_delta_q);
2091 write_delta_q(wb, quant_params->v_ac_delta_q);
2092 }
2093 }
2094 aom_wb_write_bit(wb, quant_params->using_qmatrix);
2095 if (quant_params->using_qmatrix) {
2096 aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2097 aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2098 if (!separate_uv_delta_q)
2099 assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2100 else
2101 aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2102 }
2103 }
2104
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2105 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
2106 struct aom_write_bit_buffer *wb) {
2107 int i, j;
2108 struct segmentation *seg = &cm->seg;
2109
2110 aom_wb_write_bit(wb, seg->enabled);
2111 if (!seg->enabled) return;
2112
2113 // Write update flags
2114 if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2115 aom_wb_write_bit(wb, seg->update_map);
2116 if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2117 aom_wb_write_bit(wb, seg->update_data);
2118 }
2119
2120 // Segmentation data
2121 if (seg->update_data) {
2122 for (i = 0; i < MAX_SEGMENTS; i++) {
2123 for (j = 0; j < SEG_LVL_MAX; j++) {
2124 const int active = segfeature_active(seg, i, j);
2125 aom_wb_write_bit(wb, active);
2126 if (active) {
2127 const int data_max = av1_seg_feature_data_max(j);
2128 const int data_min = -data_max;
2129 const int ubits = get_unsigned_bits(data_max);
2130 const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2131
2132 if (av1_is_segfeature_signed(j)) {
2133 aom_wb_write_inv_signed_literal(wb, data, ubits);
2134 } else {
2135 aom_wb_write_literal(wb, data, ubits);
2136 }
2137 }
2138 }
2139 }
2140 }
2141 }
2142
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2143 static AOM_INLINE void write_frame_interp_filter(
2144 InterpFilter filter, struct aom_write_bit_buffer *wb) {
2145 aom_wb_write_bit(wb, filter == SWITCHABLE);
2146 if (filter != SWITCHABLE)
2147 aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2148 }
2149
2150 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2151 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2152 int v) {
2153 const int l = get_unsigned_bits(n);
2154 const int m = (1 << l) - n;
2155 if (l == 0) return;
2156 if (v < m) {
2157 aom_wb_write_literal(wb, v, l - 1);
2158 } else {
2159 aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2160 aom_wb_write_literal(wb, (v - m) & 1, 1);
2161 }
2162 }
2163
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2164 static AOM_INLINE void write_tile_info_max_tile(
2165 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2166 int width_sb =
2167 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2168 int height_sb =
2169 CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2170 int size_sb, i;
2171 const CommonTileParams *const tiles = &cm->tiles;
2172
2173 aom_wb_write_bit(wb, tiles->uniform_spacing);
2174
2175 if (tiles->uniform_spacing) {
2176 int ones = tiles->log2_cols - tiles->min_log2_cols;
2177 while (ones--) {
2178 aom_wb_write_bit(wb, 1);
2179 }
2180 if (tiles->log2_cols < tiles->max_log2_cols) {
2181 aom_wb_write_bit(wb, 0);
2182 }
2183
2184 // rows
2185 ones = tiles->log2_rows - tiles->min_log2_rows;
2186 while (ones--) {
2187 aom_wb_write_bit(wb, 1);
2188 }
2189 if (tiles->log2_rows < tiles->max_log2_rows) {
2190 aom_wb_write_bit(wb, 0);
2191 }
2192 } else {
2193 // Explicit tiles with configurable tile widths and heights
2194 // columns
2195 for (i = 0; i < tiles->cols; i++) {
2196 size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2197 wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2198 width_sb -= size_sb;
2199 }
2200 assert(width_sb == 0);
2201
2202 // rows
2203 for (i = 0; i < tiles->rows; i++) {
2204 size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2205 wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2206 size_sb - 1);
2207 height_sb -= size_sb;
2208 }
2209 assert(height_sb == 0);
2210 }
2211 }
2212
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2213 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2214 struct aom_write_bit_buffer *saved_wb,
2215 struct aom_write_bit_buffer *wb) {
2216 write_tile_info_max_tile(cm, wb);
2217
2218 *saved_wb = *wb;
2219 if (cm->tiles.rows * cm->tiles.cols > 1) {
2220 // tile id used for cdf update
2221 aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2222 // Number of bytes in tile size - 1
2223 aom_wb_write_literal(wb, 3, 2);
2224 }
2225 }
2226
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2227 static AOM_INLINE void write_ext_tile_info(
2228 const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2229 struct aom_write_bit_buffer *wb) {
2230 // This information is stored as a separate byte.
2231 int mod = wb->bit_offset % CHAR_BIT;
2232 if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2233 assert(aom_wb_is_byte_aligned(wb));
2234
2235 *saved_wb = *wb;
2236 if (cm->tiles.rows * cm->tiles.cols > 1) {
2237 // Note that the last item in the uncompressed header is the data
2238 // describing tile configuration.
2239 // Number of bytes in tile column size - 1
2240 aom_wb_write_literal(wb, 0, 2);
2241 // Number of bytes in tile size - 1
2242 aom_wb_write_literal(wb, 0, 2);
2243 }
2244 }
2245
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2246 static INLINE int find_identical_tile(
2247 const int tile_row, const int tile_col,
2248 TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2249 const MV32 candidate_offset[1] = { { 1, 0 } };
2250 const uint8_t *const cur_tile_data =
2251 tile_buffers[tile_row][tile_col].data + 4;
2252 const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2253
2254 int i;
2255
2256 if (tile_row == 0) return 0;
2257
2258 // (TODO: yunqingwang) For now, only above tile is checked and used.
2259 // More candidates such as left tile can be added later.
2260 for (i = 0; i < 1; i++) {
2261 int row_offset = candidate_offset[0].row;
2262 int col_offset = candidate_offset[0].col;
2263 int row = tile_row - row_offset;
2264 int col = tile_col - col_offset;
2265 const uint8_t *tile_data;
2266 TileBufferEnc *candidate;
2267
2268 if (row < 0 || col < 0) continue;
2269
2270 const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2271
2272 // Read out tile-copy-mode bit:
2273 if ((tile_hdr >> 31) == 1) {
2274 // The candidate is a copy tile itself: the offset is stored in bits
2275 // 30 through 24 inclusive.
2276 row_offset += (tile_hdr >> 24) & 0x7f;
2277 row = tile_row - row_offset;
2278 }
2279
2280 candidate = &tile_buffers[row][col];
2281
2282 if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2283
2284 tile_data = candidate->data + 4;
2285
2286 if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2287
2288 // Identical tile found
2289 assert(row_offset > 0);
2290 return row_offset;
2291 }
2292
2293 // No identical tile found
2294 return 0;
2295 }
2296
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2297 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2298 struct aom_write_bit_buffer *wb) {
2299 const int scaling_active = av1_resize_scaled(cm);
2300 aom_wb_write_bit(wb, scaling_active);
2301 if (scaling_active) {
2302 aom_wb_write_literal(wb, cm->render_width - 1, 16);
2303 aom_wb_write_literal(wb, cm->render_height - 1, 16);
2304 }
2305 }
2306
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2307 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2308 struct aom_write_bit_buffer *wb) {
2309 const SequenceHeader *const seq_params = cm->seq_params;
2310 if (!seq_params->enable_superres) {
2311 assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2312 return;
2313 }
2314
2315 // First bit is whether to to scale or not
2316 if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2317 aom_wb_write_bit(wb, 0); // no scaling
2318 } else {
2319 aom_wb_write_bit(wb, 1); // scaling, write scale factor
2320 assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2321 assert(cm->superres_scale_denominator <
2322 SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2323 aom_wb_write_literal(
2324 wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2325 SUPERRES_SCALE_BITS);
2326 }
2327 }
2328
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2329 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2330 int frame_size_override,
2331 struct aom_write_bit_buffer *wb) {
2332 const int coded_width = cm->superres_upscaled_width - 1;
2333 const int coded_height = cm->superres_upscaled_height - 1;
2334
2335 if (frame_size_override) {
2336 const SequenceHeader *seq_params = cm->seq_params;
2337 int num_bits_width = seq_params->num_bits_width;
2338 int num_bits_height = seq_params->num_bits_height;
2339 aom_wb_write_literal(wb, coded_width, num_bits_width);
2340 aom_wb_write_literal(wb, coded_height, num_bits_height);
2341 }
2342
2343 write_superres_scale(cm, wb);
2344 write_render_size(cm, wb);
2345 }
2346
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2347 static AOM_INLINE void write_frame_size_with_refs(
2348 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2349 int found = 0;
2350
2351 MV_REFERENCE_FRAME ref_frame;
2352 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2353 const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2354
2355 if (cfg != NULL) {
2356 found = cm->superres_upscaled_width == cfg->y_crop_width &&
2357 cm->superres_upscaled_height == cfg->y_crop_height;
2358 found &= cm->render_width == cfg->render_width &&
2359 cm->render_height == cfg->render_height;
2360 }
2361 aom_wb_write_bit(wb, found);
2362 if (found) {
2363 write_superres_scale(cm, wb);
2364 break;
2365 }
2366 }
2367
2368 if (!found) {
2369 int frame_size_override = 1; // Always equal to 1 in this function
2370 write_frame_size(cm, frame_size_override, wb);
2371 }
2372 }
2373
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2374 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2375 struct aom_write_bit_buffer *wb) {
2376 assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2377 aom_wb_write_literal(wb, profile, PROFILE_BITS);
2378 }
2379
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2380 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2381 struct aom_write_bit_buffer *wb) {
2382 // Profile 0/1: [0] for 8 bit, [1] 10-bit
2383 // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2384 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2385 if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2386 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2387 }
2388 }
2389
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2390 static AOM_INLINE void write_color_config(
2391 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2392 write_bitdepth(seq_params, wb);
2393 const int is_monochrome = seq_params->monochrome;
2394 // monochrome bit
2395 if (seq_params->profile != PROFILE_1)
2396 aom_wb_write_bit(wb, is_monochrome);
2397 else
2398 assert(!is_monochrome);
2399 if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2400 seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2401 seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2402 aom_wb_write_bit(wb, 0); // No color description present
2403 } else {
2404 aom_wb_write_bit(wb, 1); // Color description present
2405 aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2406 aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2407 aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2408 }
2409 if (is_monochrome) {
2410 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2411 aom_wb_write_bit(wb, seq_params->color_range);
2412 return;
2413 }
2414 if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2415 seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2416 seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2417 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2418 assert(seq_params->profile == PROFILE_1 ||
2419 (seq_params->profile == PROFILE_2 &&
2420 seq_params->bit_depth == AOM_BITS_12));
2421 } else {
2422 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2423 aom_wb_write_bit(wb, seq_params->color_range);
2424 if (seq_params->profile == PROFILE_0) {
2425 // 420 only
2426 assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2427 } else if (seq_params->profile == PROFILE_1) {
2428 // 444 only
2429 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2430 } else if (seq_params->profile == PROFILE_2) {
2431 if (seq_params->bit_depth == AOM_BITS_12) {
2432 // 420, 444 or 422
2433 aom_wb_write_bit(wb, seq_params->subsampling_x);
2434 if (seq_params->subsampling_x == 0) {
2435 assert(seq_params->subsampling_y == 0 &&
2436 "4:4:0 subsampling not allowed in AV1");
2437 } else {
2438 aom_wb_write_bit(wb, seq_params->subsampling_y);
2439 }
2440 } else {
2441 // 422 only
2442 assert(seq_params->subsampling_x == 1 &&
2443 seq_params->subsampling_y == 0);
2444 }
2445 }
2446 if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2447 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2448 }
2449 if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2450 aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2451 }
2452 }
2453 aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2454 }
2455
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2456 static AOM_INLINE void write_timing_info_header(
2457 const aom_timing_info_t *const timing_info,
2458 struct aom_write_bit_buffer *wb) {
2459 aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2460 aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2461 aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2462 if (timing_info->equal_picture_interval) {
2463 aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2464 }
2465 }
2466
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2467 static AOM_INLINE void write_decoder_model_info(
2468 const aom_dec_model_info_t *const decoder_model_info,
2469 struct aom_write_bit_buffer *wb) {
2470 aom_wb_write_literal(
2471 wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2472 aom_wb_write_unsigned_literal(
2473 wb, decoder_model_info->num_units_in_decoding_tick, 32);
2474 aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2475 5);
2476 aom_wb_write_literal(
2477 wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2478 }
2479
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2480 static AOM_INLINE void write_dec_model_op_parameters(
2481 const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2482 struct aom_write_bit_buffer *wb) {
2483 aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2484 buffer_delay_length);
2485 aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2486 buffer_delay_length);
2487 aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2488 }
2489
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2490 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2491 struct aom_write_bit_buffer *wb) {
2492 aom_wb_write_unsigned_literal(
2493 wb, cm->frame_presentation_time,
2494 cm->seq_params->decoder_model_info.frame_presentation_time_length);
2495 }
2496
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2497 static AOM_INLINE void write_film_grain_params(
2498 const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2499 const AV1_COMMON *const cm = &cpi->common;
2500 const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2501 aom_wb_write_bit(wb, pars->apply_grain);
2502 if (!pars->apply_grain) return;
2503
2504 aom_wb_write_literal(wb, pars->random_seed, 16);
2505
2506 if (cm->current_frame.frame_type == INTER_FRAME)
2507 aom_wb_write_bit(wb, pars->update_parameters);
2508
2509 if (!pars->update_parameters) {
2510 int ref_frame, ref_idx;
2511 for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2512 ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2513 assert(ref_idx != INVALID_IDX);
2514 const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2515 if (buf->film_grain_params_present &&
2516 aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2517 break;
2518 }
2519 }
2520 assert(ref_frame < REF_FRAMES);
2521 aom_wb_write_literal(wb, ref_idx, 3);
2522 return;
2523 }
2524
2525 // Scaling functions parameters
2526 aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
2527 for (int i = 0; i < pars->num_y_points; i++) {
2528 aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2529 aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2530 }
2531
2532 if (!cm->seq_params->monochrome) {
2533 aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2534 } else {
2535 assert(!pars->chroma_scaling_from_luma);
2536 }
2537
2538 if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2539 ((cm->seq_params->subsampling_x == 1) &&
2540 (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2541 assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2542 } else {
2543 aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
2544 for (int i = 0; i < pars->num_cb_points; i++) {
2545 aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2546 aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2547 }
2548
2549 aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
2550 for (int i = 0; i < pars->num_cr_points; i++) {
2551 aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2552 aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2553 }
2554 }
2555
2556 aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
2557
2558 // AR coefficients
2559 // Only sent if the corresponsing scaling function has
2560 // more than 0 points
2561
2562 aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2563
2564 int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2565 int num_pos_chroma = num_pos_luma;
2566 if (pars->num_y_points > 0) ++num_pos_chroma;
2567
2568 if (pars->num_y_points)
2569 for (int i = 0; i < num_pos_luma; i++)
2570 aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2571
2572 if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2573 for (int i = 0; i < num_pos_chroma; i++)
2574 aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2575
2576 if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2577 for (int i = 0; i < num_pos_chroma; i++)
2578 aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2579
2580 aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
2581
2582 aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2583
2584 if (pars->num_cb_points) {
2585 aom_wb_write_literal(wb, pars->cb_mult, 8);
2586 aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2587 aom_wb_write_literal(wb, pars->cb_offset, 9);
2588 }
2589
2590 if (pars->num_cr_points) {
2591 aom_wb_write_literal(wb, pars->cr_mult, 8);
2592 aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2593 aom_wb_write_literal(wb, pars->cr_offset, 9);
2594 }
2595
2596 aom_wb_write_bit(wb, pars->overlap_flag);
2597
2598 aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2599 }
2600
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2601 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2602 struct aom_write_bit_buffer *wb) {
2603 (void)seq_params;
2604 (void)wb;
2605 assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2606 assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2607 assert(seq_params->sb_size == BLOCK_128X128 ||
2608 seq_params->sb_size == BLOCK_64X64);
2609 aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2610 }
2611
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2612 static AOM_INLINE void write_sequence_header(
2613 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2614 aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2615 aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2616 aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2617 seq_params->num_bits_width);
2618 aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2619 seq_params->num_bits_height);
2620
2621 if (!seq_params->reduced_still_picture_hdr) {
2622 aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2623 if (seq_params->frame_id_numbers_present_flag) {
2624 // We must always have delta_frame_id_length < frame_id_length,
2625 // in order for a frame to be referenced with a unique delta.
2626 // Avoid wasting bits by using a coding that enforces this restriction.
2627 aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2628 aom_wb_write_literal(
2629 wb,
2630 seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2631 3);
2632 }
2633 }
2634
2635 write_sb_size(seq_params, wb);
2636
2637 aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2638 aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2639
2640 if (!seq_params->reduced_still_picture_hdr) {
2641 aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2642 aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2643 aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2644 aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2645
2646 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2647
2648 if (seq_params->order_hint_info.enable_order_hint) {
2649 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2650 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2651 }
2652 if (seq_params->force_screen_content_tools == 2) {
2653 aom_wb_write_bit(wb, 1);
2654 } else {
2655 aom_wb_write_bit(wb, 0);
2656 aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2657 }
2658 if (seq_params->force_screen_content_tools > 0) {
2659 if (seq_params->force_integer_mv == 2) {
2660 aom_wb_write_bit(wb, 1);
2661 } else {
2662 aom_wb_write_bit(wb, 0);
2663 aom_wb_write_bit(wb, seq_params->force_integer_mv);
2664 }
2665 } else {
2666 assert(seq_params->force_integer_mv == 2);
2667 }
2668 if (seq_params->order_hint_info.enable_order_hint)
2669 aom_wb_write_literal(
2670 wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2671 }
2672
2673 aom_wb_write_bit(wb, seq_params->enable_superres);
2674 aom_wb_write_bit(wb, seq_params->enable_cdef);
2675 aom_wb_write_bit(wb, seq_params->enable_restoration);
2676 }
2677
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2678 static AOM_INLINE void write_global_motion_params(
2679 const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2680 struct aom_write_bit_buffer *wb, int allow_hp) {
2681 const TransformationType type = params->wmtype;
2682
2683 // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
2684 // type models. Check here that we don't accidentally pick one somehow.
2685 // See comments in gm_get_motion_vector() for details on the bug we're
2686 // working around here
2687 assert(type != TRANSLATION);
2688
2689 aom_wb_write_bit(wb, type != IDENTITY);
2690 if (type != IDENTITY) {
2691 aom_wb_write_bit(wb, type == ROTZOOM);
2692 if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2693 }
2694
2695 if (type >= ROTZOOM) {
2696 aom_wb_write_signed_primitive_refsubexpfin(
2697 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2698 (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2699 (1 << GM_ALPHA_PREC_BITS),
2700 (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2701 aom_wb_write_signed_primitive_refsubexpfin(
2702 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2703 (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2704 (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2705 }
2706
2707 if (type >= AFFINE) {
2708 aom_wb_write_signed_primitive_refsubexpfin(
2709 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2710 (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2711 (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2712 aom_wb_write_signed_primitive_refsubexpfin(
2713 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2714 (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2715 (1 << GM_ALPHA_PREC_BITS),
2716 (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2717 }
2718
2719 if (type >= TRANSLATION) {
2720 const int trans_bits = (type == TRANSLATION)
2721 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2722 : GM_ABS_TRANS_BITS;
2723 const int trans_prec_diff = (type == TRANSLATION)
2724 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2725 : GM_TRANS_PREC_DIFF;
2726 aom_wb_write_signed_primitive_refsubexpfin(
2727 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2728 (ref_params->wmmat[0] >> trans_prec_diff),
2729 (params->wmmat[0] >> trans_prec_diff));
2730 aom_wb_write_signed_primitive_refsubexpfin(
2731 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2732 (ref_params->wmmat[1] >> trans_prec_diff),
2733 (params->wmmat[1] >> trans_prec_diff));
2734 }
2735 }
2736
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2737 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2738 struct aom_write_bit_buffer *wb) {
2739 AV1_COMMON *const cm = &cpi->common;
2740 int frame;
2741 for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2742 const WarpedMotionParams *ref_params =
2743 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2744 : &default_warp_params;
2745 write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2746 cm->features.allow_high_precision_mv);
2747 // TODO(sarahparker, debargha): The logic in the commented out code below
2748 // does not work currently and causes mismatches when resize is on.
2749 // Fix it before turning the optimization back on.
2750 /*
2751 YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2752 if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2753 cpi->source->y_crop_height == ref_buf->y_crop_height) {
2754 write_global_motion_params(&cm->global_motion[frame],
2755 &cm->prev_frame->global_motion[frame], wb,
2756 cm->features.allow_high_precision_mv);
2757 } else {
2758 assert(cm->global_motion[frame].wmtype == IDENTITY &&
2759 "Invalid warp type for frames of different resolutions");
2760 }
2761 */
2762 /*
2763 printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2764 cm->current_frame.frame_number, cm->show_frame, frame,
2765 cm->global_motion[frame].wmmat[0],
2766 cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2767 cm->global_motion[frame].wmmat[3]);
2768 */
2769 }
2770 }
2771
check_frame_refs_short_signaling(AV1_COMMON * const cm,bool enable_ref_short_signaling)2772 static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
2773 bool enable_ref_short_signaling) {
2774 // In rtc case when res < 360p and speed >= 9, we turn on
2775 // frame_refs_short_signaling if it won't break the decoder.
2776 if (enable_ref_short_signaling) {
2777 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2778 const int base =
2779 1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2780
2781 const int order_hint_group_cur =
2782 cm->current_frame.display_order_hint / base;
2783 const int order_hint_group_gld =
2784 cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
2785 const int relative_dist = cm->current_frame.order_hint -
2786 cm->ref_frame_map[gld_map_idx]->order_hint;
2787
2788 // If current frame and GOLDEN frame are in the same order_hint group, and
2789 // they are not far apart (i.e., > 64 frames), then return 1.
2790 if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
2791 relative_dist <= 64) {
2792 return 1;
2793 }
2794 return 0;
2795 }
2796
2797 // Check whether all references are distinct frames.
2798 const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
2799 int num_refs = 0;
2800 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2801 const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2802 if (buf != NULL) {
2803 int seen = 0;
2804 for (int i = 0; i < num_refs; i++) {
2805 if (seen_bufs[i] == buf) {
2806 seen = 1;
2807 break;
2808 }
2809 }
2810 if (!seen) seen_bufs[num_refs++] = buf;
2811 }
2812 }
2813
2814 // We only turn on frame_refs_short_signaling when all references are
2815 // distinct.
2816 if (num_refs < INTER_REFS_PER_FRAME) {
2817 // It indicates that there exist more than one reference frame pointing to
2818 // the same reference buffer, i.e. two or more references are duplicate.
2819 return 0;
2820 }
2821
2822 // Check whether the encoder side ref frame choices are aligned with that to
2823 // be derived at the decoder side.
2824 int remapped_ref_idx_decoder[REF_FRAMES];
2825
2826 const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2827 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2828
2829 // Set up the frame refs mapping indexes according to the
2830 // frame_refs_short_signaling policy.
2831 av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2832
2833 // We only turn on frame_refs_short_signaling when the encoder side decision
2834 // on ref frames is identical to that at the decoder side.
2835 int frame_refs_short_signaling = 1;
2836 for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2837 // Compare the buffer index between two reference frames indexed
2838 // respectively by the encoder and the decoder side decisions.
2839 RefCntBuffer *ref_frame_buf_new = NULL;
2840 if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2841 ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2842 }
2843 if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2844 frame_refs_short_signaling = 0;
2845 break;
2846 }
2847 }
2848
2849 #if 0 // For debug
2850 printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2851 printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2852 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2853 printf("enc_ref(map_idx=%d)=%d, vs. "
2854 "dec_ref(map_idx=%d)=%d\n",
2855 get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2856 cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2857 ref_frame);
2858 }
2859 #endif // 0
2860
2861 return frame_refs_short_signaling;
2862 }
2863
2864 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2865 static AOM_INLINE void write_uncompressed_header_obu(
2866 AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2867 struct aom_write_bit_buffer *wb) {
2868 AV1_COMMON *const cm = &cpi->common;
2869 const SequenceHeader *const seq_params = cm->seq_params;
2870 const CommonQuantParams *quant_params = &cm->quant_params;
2871 CurrentFrame *const current_frame = &cm->current_frame;
2872 FeatureFlags *const features = &cm->features;
2873
2874 if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
2875 !seq_params->order_hint_info.enable_order_hint ||
2876 seq_params->order_hint_info.enable_ref_frame_mvs) {
2877 current_frame->frame_refs_short_signaling = 0;
2878 } else {
2879 current_frame->frame_refs_short_signaling = 1;
2880 }
2881
2882 if (seq_params->still_picture) {
2883 assert(cm->show_existing_frame == 0);
2884 assert(cm->show_frame == 1);
2885 assert(current_frame->frame_type == KEY_FRAME);
2886 }
2887 if (!seq_params->reduced_still_picture_hdr) {
2888 if (encode_show_existing_frame(cm)) {
2889 aom_wb_write_bit(wb, 1); // show_existing_frame
2890 aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2891
2892 if (seq_params->decoder_model_info_present_flag &&
2893 seq_params->timing_info.equal_picture_interval == 0) {
2894 write_tu_pts_info(cm, wb);
2895 }
2896 if (seq_params->frame_id_numbers_present_flag) {
2897 int frame_id_len = seq_params->frame_id_length;
2898 int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2899 aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2900 }
2901 return;
2902 } else {
2903 aom_wb_write_bit(wb, 0); // show_existing_frame
2904 }
2905
2906 aom_wb_write_literal(wb, current_frame->frame_type, 2);
2907
2908 aom_wb_write_bit(wb, cm->show_frame);
2909 if (cm->show_frame) {
2910 if (seq_params->decoder_model_info_present_flag &&
2911 seq_params->timing_info.equal_picture_interval == 0)
2912 write_tu_pts_info(cm, wb);
2913 } else {
2914 aom_wb_write_bit(wb, cm->showable_frame);
2915 }
2916 if (frame_is_sframe(cm)) {
2917 assert(features->error_resilient_mode);
2918 } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2919 aom_wb_write_bit(wb, features->error_resilient_mode);
2920 }
2921 }
2922 aom_wb_write_bit(wb, features->disable_cdf_update);
2923
2924 if (seq_params->force_screen_content_tools == 2) {
2925 aom_wb_write_bit(wb, features->allow_screen_content_tools);
2926 } else {
2927 assert(features->allow_screen_content_tools ==
2928 seq_params->force_screen_content_tools);
2929 }
2930
2931 if (features->allow_screen_content_tools) {
2932 if (seq_params->force_integer_mv == 2) {
2933 aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2934 } else {
2935 assert(features->cur_frame_force_integer_mv ==
2936 seq_params->force_integer_mv);
2937 }
2938 } else {
2939 assert(features->cur_frame_force_integer_mv == 0);
2940 }
2941
2942 int frame_size_override_flag = 0;
2943
2944 if (seq_params->reduced_still_picture_hdr) {
2945 assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2946 cm->superres_upscaled_height == seq_params->max_frame_height);
2947 } else {
2948 if (seq_params->frame_id_numbers_present_flag) {
2949 int frame_id_len = seq_params->frame_id_length;
2950 aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2951 }
2952
2953 if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2954 cm->superres_upscaled_height > seq_params->max_frame_height) {
2955 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2956 "Frame dimensions are larger than the maximum values");
2957 }
2958
2959 frame_size_override_flag =
2960 frame_is_sframe(cm)
2961 ? 1
2962 : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2963 cm->superres_upscaled_height != seq_params->max_frame_height);
2964 if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2965
2966 if (seq_params->order_hint_info.enable_order_hint)
2967 aom_wb_write_literal(
2968 wb, current_frame->order_hint,
2969 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2970
2971 if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
2972 aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
2973 }
2974 }
2975
2976 if (seq_params->decoder_model_info_present_flag) {
2977 aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
2978 if (cpi->ppi->buffer_removal_time_present) {
2979 for (int op_num = 0;
2980 op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
2981 if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
2982 if (seq_params->operating_point_idc[op_num] == 0 ||
2983 ((seq_params->operating_point_idc[op_num] >>
2984 cm->temporal_layer_id) &
2985 0x1 &&
2986 (seq_params->operating_point_idc[op_num] >>
2987 (cm->spatial_layer_id + 8)) &
2988 0x1)) {
2989 aom_wb_write_unsigned_literal(
2990 wb, cm->buffer_removal_times[op_num],
2991 seq_params->decoder_model_info.buffer_removal_time_length);
2992 cm->buffer_removal_times[op_num]++;
2993 if (cm->buffer_removal_times[op_num] == 0) {
2994 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2995 "buffer_removal_time overflowed");
2996 }
2997 }
2998 }
2999 }
3000 }
3001 }
3002
3003 // Shown keyframes and switch-frames automatically refreshes all reference
3004 // frames. For all other frame types, we need to write refresh_frame_flags.
3005 if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
3006 current_frame->frame_type == INTER_FRAME ||
3007 current_frame->frame_type == INTRA_ONLY_FRAME)
3008 aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
3009
3010 if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
3011 // Write all ref frame order hints if error_resilient_mode == 1
3012 if (features->error_resilient_mode &&
3013 seq_params->order_hint_info.enable_order_hint) {
3014 for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
3015 aom_wb_write_literal(
3016 wb, cm->ref_frame_map[ref_idx]->order_hint,
3017 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3018 }
3019 }
3020 }
3021
3022 if (current_frame->frame_type == KEY_FRAME) {
3023 write_frame_size(cm, frame_size_override_flag, wb);
3024 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3025 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3026 aom_wb_write_bit(wb, features->allow_intrabc);
3027 } else {
3028 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
3029 write_frame_size(cm, frame_size_override_flag, wb);
3030 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3031 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3032 aom_wb_write_bit(wb, features->allow_intrabc);
3033 } else if (current_frame->frame_type == INTER_FRAME ||
3034 frame_is_sframe(cm)) {
3035 MV_REFERENCE_FRAME ref_frame;
3036
3037 // NOTE: Error resilient mode turns off frame_refs_short_signaling
3038 // automatically.
3039 #define FRAME_REFS_SHORT_SIGNALING 0
3040 #if FRAME_REFS_SHORT_SIGNALING
3041 current_frame->frame_refs_short_signaling =
3042 seq_params->order_hint_info.enable_order_hint;
3043 #endif // FRAME_REFS_SHORT_SIGNALING
3044
3045 if (current_frame->frame_refs_short_signaling) {
3046 // In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
3047 // we turn on frame_refs_short_signaling when the current frame and
3048 // golden frame are in the same order_hint group, and their relative
3049 // distance is <= 64 (in order to be decodable).
3050
3051 // For other cases, an example solution for encoder-side
3052 // implementation on frame_refs_short_signaling is also provided in
3053 // this function, where frame_refs_short_signaling is only turned on
3054 // when the encoder side decision on ref frames is identical to that
3055 // at the decoder side.
3056
3057 current_frame->frame_refs_short_signaling =
3058 check_frame_refs_short_signaling(
3059 cm, cpi->sf.rt_sf.enable_ref_short_signaling);
3060 }
3061
3062 if (seq_params->order_hint_info.enable_order_hint)
3063 aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3064
3065 if (current_frame->frame_refs_short_signaling) {
3066 const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3067 aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3068
3069 const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3070 aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3071 }
3072
3073 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3074 assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3075 if (!current_frame->frame_refs_short_signaling)
3076 aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3077 REF_FRAMES_LOG2);
3078 if (seq_params->frame_id_numbers_present_flag) {
3079 int i = get_ref_frame_map_idx(cm, ref_frame);
3080 int frame_id_len = seq_params->frame_id_length;
3081 int diff_len = seq_params->delta_frame_id_length;
3082 int delta_frame_id_minus_1 =
3083 ((cm->current_frame_id - cm->ref_frame_id[i] +
3084 (1 << frame_id_len)) %
3085 (1 << frame_id_len)) -
3086 1;
3087 if (delta_frame_id_minus_1 < 0 ||
3088 delta_frame_id_minus_1 >= (1 << diff_len)) {
3089 aom_internal_error(cm->error, AOM_CODEC_ERROR,
3090 "Invalid delta_frame_id_minus_1");
3091 }
3092 aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3093 }
3094 }
3095
3096 if (!features->error_resilient_mode && frame_size_override_flag) {
3097 write_frame_size_with_refs(cm, wb);
3098 } else {
3099 write_frame_size(cm, frame_size_override_flag, wb);
3100 }
3101
3102 if (!features->cur_frame_force_integer_mv)
3103 aom_wb_write_bit(wb, features->allow_high_precision_mv);
3104 write_frame_interp_filter(features->interp_filter, wb);
3105 aom_wb_write_bit(wb, features->switchable_motion_mode);
3106 if (frame_might_allow_ref_frame_mvs(cm)) {
3107 aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3108 } else {
3109 assert(features->allow_ref_frame_mvs == 0);
3110 }
3111 }
3112 }
3113
3114 const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3115 !(features->disable_cdf_update);
3116 if (cm->tiles.large_scale)
3117 assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3118
3119 if (might_bwd_adapt) {
3120 aom_wb_write_bit(
3121 wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3122 }
3123
3124 write_tile_info(cm, saved_wb, wb);
3125 encode_quantization(quant_params, av1_num_planes(cm),
3126 cm->seq_params->separate_uv_delta_q, wb);
3127 encode_segmentation(cm, wb);
3128
3129 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3130 if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3131 if (quant_params->base_qindex > 0) {
3132 aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3133 if (delta_q_info->delta_q_present_flag) {
3134 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3135 xd->current_base_qindex = quant_params->base_qindex;
3136 if (features->allow_intrabc)
3137 assert(delta_q_info->delta_lf_present_flag == 0);
3138 else
3139 aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3140 if (delta_q_info->delta_lf_present_flag) {
3141 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3142 aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3143 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3144 }
3145 }
3146 }
3147
3148 if (features->all_lossless) {
3149 assert(!av1_superres_scaled(cm));
3150 } else {
3151 if (!features->coded_lossless) {
3152 encode_loopfilter(cm, wb);
3153 encode_cdef(cm, wb);
3154 }
3155 encode_restoration_mode(cm, wb);
3156 }
3157
3158 // Write TX mode
3159 if (features->coded_lossless)
3160 assert(features->tx_mode == ONLY_4X4);
3161 else
3162 aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3163
3164 if (!frame_is_intra_only(cm)) {
3165 const int use_hybrid_pred =
3166 current_frame->reference_mode == REFERENCE_MODE_SELECT;
3167
3168 aom_wb_write_bit(wb, use_hybrid_pred);
3169 }
3170
3171 if (current_frame->skip_mode_info.skip_mode_allowed)
3172 aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3173
3174 if (frame_might_allow_warped_motion(cm))
3175 aom_wb_write_bit(wb, features->allow_warped_motion);
3176 else
3177 assert(!features->allow_warped_motion);
3178
3179 aom_wb_write_bit(wb, features->reduced_tx_set_used);
3180
3181 if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3182
3183 if (seq_params->film_grain_params_present &&
3184 (cm->show_frame || cm->showable_frame))
3185 write_film_grain_params(cpi, wb);
3186
3187 if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3188 }
3189
choose_size_bytes(uint32_t size,int spare_msbs)3190 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3191 // Choose the number of bytes required to represent size, without
3192 // using the 'spare_msbs' number of most significant bits.
3193
3194 // Make sure we will fit in 4 bytes to start with..
3195 if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3196
3197 // Normalise to 32 bits
3198 size <<= spare_msbs;
3199
3200 if (size >> 24 != 0)
3201 return 4;
3202 else if (size >> 16 != 0)
3203 return 3;
3204 else if (size >> 8 != 0)
3205 return 2;
3206 else
3207 return 1;
3208 }
3209
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3210 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3211 const int val) {
3212 switch (sz) {
3213 case 1: dst[0] = (uint8_t)(val & 0xff); break;
3214 case 2: mem_put_le16(dst, val); break;
3215 case 3: mem_put_le24(dst, val); break;
3216 case 4: mem_put_le32(dst, val); break;
3217 default: assert(0 && "Invalid size"); break;
3218 }
3219 }
3220
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3221 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3222 const uint32_t data_size, const uint32_t max_tile_size,
3223 const uint32_t max_tile_col_size,
3224 int *const tile_size_bytes,
3225 int *const tile_col_size_bytes) {
3226 // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3227 int tsb;
3228 int tcsb;
3229
3230 if (tiles->large_scale) {
3231 // The top bit in the tile size field indicates tile copy mode, so we
3232 // have 1 less bit to code the tile size
3233 tsb = choose_size_bytes(max_tile_size, 1);
3234 tcsb = choose_size_bytes(max_tile_col_size, 0);
3235 } else {
3236 tsb = choose_size_bytes(max_tile_size, 0);
3237 tcsb = 4; // This is ignored
3238 (void)max_tile_col_size;
3239 }
3240
3241 assert(tsb > 0);
3242 assert(tcsb > 0);
3243
3244 *tile_size_bytes = tsb;
3245 *tile_col_size_bytes = tcsb;
3246 if (tsb == 4 && tcsb == 4) return data_size;
3247
3248 uint32_t wpos = 0;
3249 uint32_t rpos = 0;
3250
3251 if (tiles->large_scale) {
3252 int tile_row;
3253 int tile_col;
3254
3255 for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3256 // All but the last column has a column header
3257 if (tile_col < tiles->cols - 1) {
3258 uint32_t tile_col_size = mem_get_le32(dst + rpos);
3259 rpos += 4;
3260
3261 // Adjust the tile column size by the number of bytes removed
3262 // from the tile size fields.
3263 tile_col_size -= (4 - tsb) * tiles->rows;
3264
3265 mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3266 wpos += tcsb;
3267 }
3268
3269 for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3270 // All, including the last row has a header
3271 uint32_t tile_header = mem_get_le32(dst + rpos);
3272 rpos += 4;
3273
3274 // If this is a copy tile, we need to shift the MSB to the
3275 // top bit of the new width, and there is no data to copy.
3276 if (tile_header >> 31 != 0) {
3277 if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3278 mem_put_varsize(dst + wpos, tsb, tile_header);
3279 wpos += tsb;
3280 } else {
3281 mem_put_varsize(dst + wpos, tsb, tile_header);
3282 wpos += tsb;
3283
3284 tile_header += AV1_MIN_TILE_SIZE_BYTES;
3285 memmove(dst + wpos, dst + rpos, tile_header);
3286 rpos += tile_header;
3287 wpos += tile_header;
3288 }
3289 }
3290 }
3291
3292 assert(rpos > wpos);
3293 assert(rpos == data_size);
3294
3295 return wpos;
3296 }
3297 const int n_tiles = tiles->cols * tiles->rows;
3298 int n;
3299
3300 for (n = 0; n < n_tiles; n++) {
3301 int tile_size;
3302
3303 if (n == n_tiles - 1) {
3304 tile_size = data_size - rpos;
3305 } else {
3306 tile_size = mem_get_le32(dst + rpos);
3307 rpos += 4;
3308 mem_put_varsize(dst + wpos, tsb, tile_size);
3309 tile_size += AV1_MIN_TILE_SIZE_BYTES;
3310 wpos += tsb;
3311 }
3312
3313 memmove(dst + wpos, dst + rpos, tile_size);
3314
3315 rpos += tile_size;
3316 wpos += tile_size;
3317 }
3318
3319 assert(rpos > wpos);
3320 assert(rpos == data_size);
3321
3322 return wpos;
3323 }
3324
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3325 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3326 int *frame_header_count, OBU_TYPE obu_type,
3327 int obu_extension, uint8_t *const dst) {
3328 if (level_params->keep_level_stats &&
3329 (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3330 ++(*frame_header_count);
3331
3332 struct aom_write_bit_buffer wb = { dst, 0 };
3333 uint32_t size = 0;
3334
3335 aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
3336 aom_wb_write_literal(&wb, (int)obu_type, 4);
3337 aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3338 aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field
3339 aom_wb_write_literal(&wb, 0, 1); // reserved
3340
3341 if (obu_extension) {
3342 aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3343 }
3344
3345 size = aom_wb_bytes_written(&wb);
3346 return size;
3347 }
3348
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3349 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3350 uint8_t *dest) {
3351 const size_t offset = obu_header_size;
3352 size_t coded_obu_size = 0;
3353 const uint32_t obu_size = (uint32_t)obu_payload_size;
3354 assert(obu_size == obu_payload_size);
3355
3356 if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3357 &coded_obu_size) != 0) {
3358 return AOM_CODEC_ERROR;
3359 }
3360
3361 return AOM_CODEC_OK;
3362 }
3363
av1_obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3364 size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3365 uint8_t *data) {
3366 const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3367 const size_t move_dst_offset = length_field_size + obu_header_size;
3368 const size_t move_src_offset = obu_header_size;
3369 const size_t move_size = obu_payload_size;
3370 memmove(data + move_dst_offset, data + move_src_offset, move_size);
3371 return length_field_size;
3372 }
3373
add_trailing_bits(struct aom_write_bit_buffer * wb)3374 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3375 if (aom_wb_is_byte_aligned(wb)) {
3376 aom_wb_write_literal(wb, 0x80, 8);
3377 } else {
3378 // assumes that the other bits are already 0s
3379 aom_wb_write_bit(wb, 1);
3380 }
3381 }
3382
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3383 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3384 struct aom_write_bit_buffer *wb) {
3385 assert(is_valid_seq_level_idx(seq_level_idx));
3386 aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3387 }
3388
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3389 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3390 uint8_t *const dst) {
3391 struct aom_write_bit_buffer wb = { dst, 0 };
3392 uint32_t size = 0;
3393
3394 write_profile(seq_params->profile, &wb);
3395
3396 // Still picture or not
3397 aom_wb_write_bit(&wb, seq_params->still_picture);
3398 assert(IMPLIES(!seq_params->still_picture,
3399 !seq_params->reduced_still_picture_hdr));
3400 // whether to use reduced still picture header
3401 aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3402
3403 if (seq_params->reduced_still_picture_hdr) {
3404 assert(seq_params->timing_info_present == 0);
3405 assert(seq_params->decoder_model_info_present_flag == 0);
3406 assert(seq_params->display_model_info_present_flag == 0);
3407 write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3408 } else {
3409 aom_wb_write_bit(
3410 &wb, seq_params->timing_info_present); // timing info present flag
3411
3412 if (seq_params->timing_info_present) {
3413 // timing_info
3414 write_timing_info_header(&seq_params->timing_info, &wb);
3415 aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3416 if (seq_params->decoder_model_info_present_flag) {
3417 write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3418 }
3419 }
3420 aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3421 aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3422 OP_POINTS_CNT_MINUS_1_BITS);
3423 int i;
3424 for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3425 aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3426 OP_POINTS_IDC_BITS);
3427 write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3428 if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3429 aom_wb_write_bit(&wb, seq_params->tier[i]);
3430 if (seq_params->decoder_model_info_present_flag) {
3431 aom_wb_write_bit(
3432 &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3433 if (seq_params->op_params[i].decoder_model_param_present_flag) {
3434 write_dec_model_op_parameters(
3435 &seq_params->op_params[i],
3436 seq_params->decoder_model_info
3437 .encoder_decoder_buffer_delay_length,
3438 &wb);
3439 }
3440 }
3441 if (seq_params->display_model_info_present_flag) {
3442 aom_wb_write_bit(
3443 &wb, seq_params->op_params[i].display_model_param_present_flag);
3444 if (seq_params->op_params[i].display_model_param_present_flag) {
3445 assert(seq_params->op_params[i].initial_display_delay >= 1);
3446 assert(seq_params->op_params[i].initial_display_delay <= 10);
3447 aom_wb_write_literal(
3448 &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3449 }
3450 }
3451 }
3452 }
3453 write_sequence_header(seq_params, &wb);
3454
3455 write_color_config(seq_params, &wb);
3456
3457 aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3458
3459 add_trailing_bits(&wb);
3460
3461 size = aom_wb_bytes_written(&wb);
3462 return size;
3463 }
3464
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3465 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3466 struct aom_write_bit_buffer *saved_wb,
3467 uint8_t *const dst,
3468 int append_trailing_bits) {
3469 struct aom_write_bit_buffer wb = { dst, 0 };
3470 write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3471 if (append_trailing_bits) add_trailing_bits(&wb);
3472 return aom_wb_bytes_written(&wb);
3473 }
3474
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3475 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3476 int end_tile, int tiles_log2,
3477 int tile_start_and_end_present_flag) {
3478 struct aom_write_bit_buffer wb = { dst, 0 };
3479 uint32_t size = 0;
3480
3481 if (!tiles_log2) return size;
3482
3483 aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3484
3485 if (tile_start_and_end_present_flag) {
3486 aom_wb_write_literal(&wb, start_tile, tiles_log2);
3487 aom_wb_write_literal(&wb, end_tile, tiles_log2);
3488 }
3489
3490 size = aom_wb_bytes_written(&wb);
3491 return size;
3492 }
3493
3494 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3495 const char *filename);
3496
3497 typedef struct {
3498 uint32_t tg_hdr_size;
3499 uint32_t frame_header_size;
3500 } LargeTileFrameOBU;
3501
3502 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * lst_obu)3503 static uint32_t init_large_scale_tile_obu_header(
3504 AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3505 LargeTileFrameOBU *lst_obu) {
3506 AV1LevelParams *const level_params = &cpi->ppi->level_params;
3507 CurrentFrame *const current_frame = &cpi->common.current_frame;
3508 // For large_scale_tile case, we always have only one tile group, so it can
3509 // be written as an OBU_FRAME.
3510 const OBU_TYPE obu_type = OBU_FRAME;
3511 lst_obu->tg_hdr_size = av1_write_obu_header(
3512 level_params, &cpi->frame_header_count, obu_type, 0, *data);
3513 *data += lst_obu->tg_hdr_size;
3514
3515 const uint32_t frame_header_size =
3516 write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3517 *data += frame_header_size;
3518 lst_obu->frame_header_size = frame_header_size;
3519 // (yunqing) This test ensures the correctness of large scale tile coding.
3520 if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3521 char fn[20] = "./fh";
3522 fn[4] = current_frame->frame_number / 100 + '0';
3523 fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3524 fn[6] = (current_frame->frame_number % 10) + '0';
3525 fn[7] = '\0';
3526 av1_print_uncompressed_frame_header(*data - frame_header_size,
3527 frame_header_size, fn);
3528 }
3529 return frame_header_size;
3530 }
3531
3532 // Write total buffer size and related information into the OBU header for large
3533 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3534 static void write_large_scale_tile_obu_size(
3535 const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3536 struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3537 int have_tiles, uint32_t *total_size, int max_tile_size,
3538 int max_tile_col_size) {
3539 int tile_size_bytes = 0;
3540 int tile_col_size_bytes = 0;
3541 if (have_tiles) {
3542 *total_size = remux_tiles(
3543 tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3544 max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3545 *total_size += lst_obu->frame_header_size;
3546 }
3547
3548 // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3549 // current tile group size before tile data(include tile column header).
3550 // Tile group size doesn't include the bytes storing tg size.
3551 *total_size += lst_obu->tg_hdr_size;
3552 const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3553 const size_t length_field_size =
3554 av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
3555 if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
3556 AOM_CODEC_OK)
3557 assert(0);
3558
3559 *total_size += (uint32_t)length_field_size;
3560 saved_wb->bit_buffer += length_field_size;
3561
3562 // Now fill in the gaps in the uncompressed header.
3563 if (have_tiles) {
3564 assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3565 aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3566
3567 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3568 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3569 }
3570 }
3571
3572 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3573 static void write_large_scale_tile_obu(
3574 AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3575 int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3576 unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3577 AV1_COMMON *const cm = &cpi->common;
3578 const CommonTileParams *const tiles = &cm->tiles;
3579
3580 TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3581 const int tile_cols = tiles->cols;
3582 const int tile_rows = tiles->rows;
3583 unsigned int tile_size = 0;
3584
3585 av1_reset_pack_bs_thread_data(&cpi->td);
3586 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3587 TileInfo tile_info;
3588 const int is_last_col = (tile_col == tile_cols - 1);
3589 const uint32_t col_offset = *total_size;
3590
3591 av1_tile_set_col(&tile_info, cm, tile_col);
3592
3593 // The last column does not have a column header
3594 if (!is_last_col) *total_size += 4;
3595
3596 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3597 TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3598 const int data_offset = have_tiles ? 4 : 0;
3599 const int tile_idx = tile_row * tile_cols + tile_col;
3600 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3601 av1_tile_set_row(&tile_info, cm, tile_row);
3602 aom_writer mode_bc;
3603
3604 buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3605
3606 // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3607 // even for the last one, unless no tiling is used at all.
3608 *total_size += data_offset;
3609 cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3610 mode_bc.allow_update_cdf = !tiles->large_scale;
3611 mode_bc.allow_update_cdf =
3612 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3613 aom_start_encode(&mode_bc, buf->data + data_offset);
3614 write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3615 aom_stop_encode(&mode_bc);
3616 tile_size = mode_bc.pos;
3617 buf->size = tile_size;
3618
3619 // Record the maximum tile size we see, so we can compact headers later.
3620 if (tile_size > *max_tile_size) {
3621 *max_tile_size = tile_size;
3622 *largest_tile_id = tile_cols * tile_row + tile_col;
3623 }
3624
3625 if (have_tiles) {
3626 // tile header: size of this tile, or copy offset
3627 uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3628 const int tile_copy_mode =
3629 ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3630 : 0;
3631
3632 // If tile_copy_mode = 1, check if this tile is a copy tile.
3633 // Very low chances to have copy tiles on the key frames, so don't
3634 // search on key frames to reduce unnecessary search.
3635 if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3636 const int identical_tile_offset =
3637 find_identical_tile(tile_row, tile_col, tile_buffers);
3638
3639 // Indicate a copy-tile by setting the most significant bit.
3640 // The row-offset to copy from is stored in the highest byte.
3641 // remux_tiles will move these around later
3642 if (identical_tile_offset > 0) {
3643 tile_size = 0;
3644 tile_header = identical_tile_offset | 0x80;
3645 tile_header <<= 24;
3646 }
3647 }
3648
3649 mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
3650 }
3651
3652 *total_size += tile_size;
3653 }
3654 if (!is_last_col) {
3655 uint32_t col_size = *total_size - col_offset - 4;
3656 mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3657
3658 // Record the maximum tile column size we see.
3659 *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3660 }
3661 }
3662 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3663 }
3664
3665 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int * const largest_tile_id)3666 static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
3667 AV1_COMP *const cpi, uint8_t *const dst,
3668 struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
3669 AV1_COMMON *const cm = &cpi->common;
3670 const CommonTileParams *const tiles = &cm->tiles;
3671 uint32_t total_size = 0;
3672 unsigned int max_tile_size = 0;
3673 unsigned int max_tile_col_size = 0;
3674 const int have_tiles = tiles->cols * tiles->rows > 1;
3675 uint8_t *data = dst;
3676
3677 LargeTileFrameOBU lst_obu;
3678
3679 total_size +=
3680 init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
3681
3682 write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3683 have_tiles, &max_tile_size, &max_tile_col_size);
3684
3685 write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3686 have_tiles, &total_size, max_tile_size,
3687 max_tile_col_size);
3688
3689 return total_size;
3690 }
3691
3692 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3693 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3694 PackBSParams *const pack_bs_params,
3695 const int tile_idx) {
3696 AV1_COMMON *const cm = &cpi->common;
3697 const CommonTileParams *const tiles = &cm->tiles;
3698 int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3699 const int tg_size =
3700 (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3701
3702 // Write Tile group, frame and OBU header
3703 // A new tile group begins at this tile. Write the obu header and
3704 // tile group header
3705 const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3706 *curr_tg_hdr_size = av1_write_obu_header(
3707 &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3708 pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3709 pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3710
3711 if (cpi->num_tg == 1)
3712 *curr_tg_hdr_size += write_frame_header_obu(
3713 cpi, xd, pack_bs_params->saved_wb,
3714 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3715 *curr_tg_hdr_size += write_tile_group_header(
3716 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3717 AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3718 (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3719 *pack_bs_params->total_size += *curr_tg_hdr_size;
3720 }
3721
3722 // Pack tile data in the bitstream with tile_group, frame
3723 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3724 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3725 PackBSParams *const pack_bs_params) {
3726 aom_writer mode_bc;
3727 AV1_COMMON *const cm = &cpi->common;
3728 int tile_row = pack_bs_params->tile_row;
3729 int tile_col = pack_bs_params->tile_col;
3730 uint32_t *const total_size = pack_bs_params->total_size;
3731 TileInfo tile_info;
3732 av1_tile_set_col(&tile_info, cm, tile_col);
3733 av1_tile_set_row(&tile_info, cm, tile_row);
3734 mode_bc.allow_update_cdf = 1;
3735 mode_bc.allow_update_cdf =
3736 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3737
3738 unsigned int tile_size;
3739
3740 const int num_planes = av1_num_planes(cm);
3741 av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3742
3743 pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3744
3745 // The last tile of the tile group does not have a header.
3746 if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3747
3748 // Pack tile data
3749 aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3750 write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3751 aom_stop_encode(&mode_bc);
3752 tile_size = mode_bc.pos;
3753 assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3754
3755 pack_bs_params->buf.size = tile_size;
3756
3757 // Write tile size
3758 if (!pack_bs_params->is_last_tile_in_tg) {
3759 // size of this tile
3760 mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3761 }
3762 }
3763
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3764 void av1_write_last_tile_info(
3765 AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3766 struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3767 uint8_t *curr_tg_start, uint32_t *const total_size,
3768 uint8_t **tile_data_start, int *const largest_tile_id,
3769 int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3770 // write current tile group size
3771 const uint32_t obu_payload_size =
3772 (uint32_t)(*curr_tg_data_size) - obu_header_size;
3773 const size_t length_field_size =
3774 av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
3775 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
3776 curr_tg_start) != AOM_CODEC_OK) {
3777 assert(0);
3778 }
3779 *curr_tg_data_size += (int)length_field_size;
3780 *total_size += (uint32_t)length_field_size;
3781 *tile_data_start += length_field_size;
3782 if (cpi->num_tg == 1) {
3783 // if this tg is combined with the frame header then update saved
3784 // frame header base offset according to length field size
3785 saved_wb->bit_buffer += length_field_size;
3786 }
3787
3788 if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3789 // Make room for a duplicate Frame Header OBU.
3790 memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3791 *curr_tg_data_size);
3792
3793 // Insert a copy of the Frame Header OBU.
3794 memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3795
3796 // Force context update tile to be the first tile in error
3797 // resilient mode as the duplicate frame headers will have
3798 // context_update_tile_id set to 0
3799 *largest_tile_id = 0;
3800
3801 // Rewrite the OBU header to change the OBU type to Redundant Frame
3802 // Header.
3803 av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
3804 OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
3805 &curr_tg_start[fh_info->obu_header_byte_offset]);
3806
3807 *curr_tg_data_size += (int)(fh_info->total_length);
3808 *total_size += (uint32_t)(fh_info->total_length);
3809 }
3810 *is_first_tg = 0;
3811 }
3812
av1_reset_pack_bs_thread_data(ThreadData * const td)3813 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3814 td->coefficient_size = 0;
3815 td->max_mv_magnitude = 0;
3816 av1_zero(td->interp_filter_selected);
3817 }
3818
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3819 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3820 ThreadData const *td) {
3821 int do_max_mv_magnitude_update = 1;
3822 cpi->rc.coefficient_size += td->coefficient_size;
3823
3824 // Disable max_mv_magnitude update for parallel frames based on update flag.
3825 if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3826
3827 if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3828 cpi->mv_search_params.max_mv_magnitude =
3829 AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3830
3831 for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3832 cpi->common.cur_frame->interp_filter_selected[filter] +=
3833 td->interp_filter_selected[filter];
3834 }
3835
3836 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3837 static void write_tile_obu(
3838 AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3839 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3840 const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3841 unsigned int *max_tile_size, uint32_t *const obu_header_size,
3842 uint8_t **tile_data_start) {
3843 AV1_COMMON *const cm = &cpi->common;
3844 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3845 const CommonTileParams *const tiles = &cm->tiles;
3846 const int tile_cols = tiles->cols;
3847 const int tile_rows = tiles->rows;
3848 // Fixed size tile groups for the moment
3849 const int num_tg_hdrs = cpi->num_tg;
3850 const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3851 int tile_count = 0;
3852 size_t curr_tg_data_size = 0;
3853 uint8_t *tile_data_curr = dst;
3854 int new_tg = 1;
3855 int is_first_tg = 1;
3856
3857 av1_reset_pack_bs_thread_data(&cpi->td);
3858 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3859 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3860 const int tile_idx = tile_row * tile_cols + tile_col;
3861 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3862
3863 int is_last_tile_in_tg = 0;
3864 if (new_tg) {
3865 tile_data_curr = dst + *total_size;
3866 tile_count = 0;
3867 }
3868 tile_count++;
3869
3870 if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3871 is_last_tile_in_tg = 1;
3872
3873 xd->tile_ctx = &this_tile->tctx;
3874
3875 // PackBSParams stores all parameters required to pack tile and header
3876 // info.
3877 PackBSParams pack_bs_params;
3878 pack_bs_params.dst = dst;
3879 pack_bs_params.curr_tg_hdr_size = 0;
3880 pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
3881 pack_bs_params.new_tg = new_tg;
3882 pack_bs_params.obu_extn_header = obu_extn_header;
3883 pack_bs_params.obu_header_size = 0;
3884 pack_bs_params.saved_wb = saved_wb;
3885 pack_bs_params.tile_col = tile_col;
3886 pack_bs_params.tile_row = tile_row;
3887 pack_bs_params.tile_data_curr = tile_data_curr;
3888 pack_bs_params.total_size = total_size;
3889
3890 if (new_tg)
3891 av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
3892
3893 av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
3894
3895 if (new_tg) {
3896 curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
3897 *tile_data_start += pack_bs_params.curr_tg_hdr_size;
3898 *obu_header_size = pack_bs_params.obu_header_size;
3899 new_tg = 0;
3900 }
3901 if (is_last_tile_in_tg) new_tg = 1;
3902
3903 curr_tg_data_size +=
3904 (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
3905
3906 if (pack_bs_params.buf.size > *max_tile_size) {
3907 *largest_tile_id = tile_idx;
3908 *max_tile_size = (unsigned int)pack_bs_params.buf.size;
3909 }
3910
3911 if (is_last_tile_in_tg)
3912 av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
3913 tile_data_curr, total_size, tile_data_start,
3914 largest_tile_id, &is_first_tg,
3915 *obu_header_size, obu_extn_header);
3916 *total_size += (uint32_t)pack_bs_params.buf.size;
3917 }
3918 }
3919 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3920 }
3921
3922 // Write total buffer size and related information into the OBU header for
3923 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)3924 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
3925 struct aom_write_bit_buffer *saved_wb,
3926 int largest_tile_id, uint32_t *const total_size,
3927 unsigned int max_tile_size,
3928 uint32_t obu_header_size,
3929 uint8_t *tile_data_start) {
3930 const CommonTileParams *const tiles = &cpi->common.tiles;
3931
3932 // Fill in context_update_tile_id indicating the tile to use for the
3933 // cdf update. The encoder currently sets it to the largest tile
3934 // (but is up to the encoder)
3935 aom_wb_overwrite_literal(saved_wb, largest_tile_id,
3936 (tiles->log2_cols + tiles->log2_rows));
3937 // If more than one tile group. tile_size_bytes takes the default value 4
3938 // and does not need to be set. For a single tile group it is set in the
3939 // section below.
3940 if (cpi->num_tg != 1) return;
3941 int tile_size_bytes = 4, unused;
3942 const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3943 const uint32_t tile_data_size = *total_size - tile_data_offset;
3944
3945 *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
3946 max_tile_size, 0, &tile_size_bytes, &unused);
3947 *total_size += tile_data_offset;
3948 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3949
3950 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3951
3952 // Update the OBU length if remux_tiles() reduced the size.
3953 uint64_t payload_size;
3954 size_t length_field_size;
3955 int res =
3956 aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
3957 &payload_size, &length_field_size);
3958 assert(res == 0);
3959 (void)res;
3960
3961 const uint64_t new_payload_size =
3962 *total_size - obu_header_size - length_field_size;
3963 if (new_payload_size != payload_size) {
3964 size_t new_length_field_size;
3965 res = aom_uleb_encode(new_payload_size, length_field_size,
3966 dst + obu_header_size, &new_length_field_size);
3967 assert(res == 0);
3968 if (new_length_field_size < length_field_size) {
3969 const size_t src_offset = obu_header_size + length_field_size;
3970 const size_t dst_offset = obu_header_size + new_length_field_size;
3971 memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
3972 *total_size -= (int)(length_field_size - new_length_field_size);
3973 }
3974 }
3975 }
3976
3977 // As per the experiments, single-thread bitstream packing is better for
3978 // frames with a smaller bitstream size. This behavior is due to setup time
3979 // overhead of multithread function would be more than that of time required
3980 // to pack the smaller bitstream of such frames. This function computes the
3981 // number of required number of workers based on setup time overhead and job
3982 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers,bool pack_bs_mt_enabled)3983 int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
3984 int avail_workers, bool pack_bs_mt_enabled) {
3985 if (!pack_bs_mt_enabled) return 1;
3986
3987 uint64_t frame_abs_sum_level = 0;
3988
3989 for (int idx = 0; idx < num_tiles; idx++)
3990 frame_abs_sum_level += tile_data[idx].abs_sum_level;
3991
3992 int ideal_num_workers = 1;
3993 const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
3994 float max_sum = 0.0;
3995
3996 for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
3997 const float fas_per_worker_const =
3998 ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
3999 const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
4000 const float this_sum = fas_per_worker_const - setup_time_const -
4001 job_disp_time_const / num_workers;
4002
4003 if (this_sum > max_sum) {
4004 max_sum = this_sum;
4005 ideal_num_workers = num_workers;
4006 }
4007 }
4008 return ideal_num_workers;
4009 }
4010
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4011 static INLINE uint32_t pack_tiles_in_tg_obus(
4012 AV1_COMP *const cpi, uint8_t *const dst,
4013 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
4014 const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
4015 const CommonTileParams *const tiles = &cpi->common.tiles;
4016 uint32_t total_size = 0;
4017 unsigned int max_tile_size = 0;
4018 uint32_t obu_header_size = 0;
4019 uint8_t *tile_data_start = dst;
4020 const int tile_cols = tiles->cols;
4021 const int tile_rows = tiles->rows;
4022 const int num_tiles = tile_rows * tile_cols;
4023
4024 const int num_workers = calc_pack_bs_mt_workers(
4025 cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
4026 cpi->mt_info.pack_bs_mt_enabled);
4027
4028 if (num_workers > 1) {
4029 av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
4030 fh_info, largest_tile_id, &max_tile_size,
4031 &obu_header_size, &tile_data_start, num_workers);
4032 } else {
4033 write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
4034 fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
4035 &tile_data_start);
4036 }
4037
4038 if (num_tiles > 1)
4039 write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
4040 max_tile_size, obu_header_size, tile_data_start);
4041 return total_size;
4042 }
4043
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4044 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
4045 struct aom_write_bit_buffer *saved_wb,
4046 uint8_t obu_extension_header,
4047 const FrameHeaderInfo *fh_info,
4048 int *const largest_tile_id) {
4049 AV1_COMMON *const cm = &cpi->common;
4050 const CommonTileParams *const tiles = &cm->tiles;
4051 *largest_tile_id = 0;
4052
4053 // Select the coding strategy (temporal or spatial)
4054 if (cm->seg.enabled && cm->seg.update_map) {
4055 if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
4056 cm->seg.temporal_update = 0;
4057 } else {
4058 cm->seg.temporal_update = 1;
4059 if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
4060 cpi->td.rd_counts.seg_tmp_pred_cost[1])
4061 cm->seg.temporal_update = 0;
4062 }
4063 }
4064
4065 if (tiles->large_scale)
4066 return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
4067 largest_tile_id);
4068
4069 return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4070 fh_info, largest_tile_id);
4071 }
4072
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)4073 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4074 uint8_t *const dst) {
4075 size_t coded_metadata_size = 0;
4076 const uint64_t metadata_type = (uint64_t)metadata->type;
4077 if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
4078 &coded_metadata_size) != 0) {
4079 return 0;
4080 }
4081 memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4082 // Add trailing bits.
4083 dst[coded_metadata_size + metadata->sz] = 0x80;
4084 return (uint32_t)(coded_metadata_size + metadata->sz + 1);
4085 }
4086
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)4087 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
4088 if (!cpi->source) return 0;
4089 AV1_COMMON *const cm = &cpi->common;
4090 aom_metadata_array_t *arr = cpi->source->metadata;
4091 if (!arr) return 0;
4092 size_t obu_header_size = 0;
4093 size_t obu_payload_size = 0;
4094 size_t total_bytes_written = 0;
4095 size_t length_field_size = 0;
4096 for (size_t i = 0; i < arr->sz; i++) {
4097 aom_metadata_t *current_metadata = arr->metadata_array[i];
4098 if (current_metadata && current_metadata->payload) {
4099 if ((cm->current_frame.frame_type == KEY_FRAME &&
4100 current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4101 (cm->current_frame.frame_type != KEY_FRAME &&
4102 current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4103 current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4104 obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
4105 &cpi->frame_header_count,
4106 OBU_METADATA, 0, dst);
4107 obu_payload_size =
4108 av1_write_metadata_obu(current_metadata, dst + obu_header_size);
4109 length_field_size =
4110 av1_obu_memmove(obu_header_size, obu_payload_size, dst);
4111 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
4112 AOM_CODEC_OK) {
4113 const size_t obu_size = obu_header_size + obu_payload_size;
4114 dst += obu_size + length_field_size;
4115 total_bytes_written += obu_size + length_field_size;
4116 } else {
4117 aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4118 "Error writing metadata OBU size");
4119 }
4120 }
4121 }
4122 }
4123 return total_bytes_written;
4124 }
4125
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)4126 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
4127 int *const largest_tile_id) {
4128 uint8_t *data = dst;
4129 uint32_t data_size;
4130 AV1_COMMON *const cm = &cpi->common;
4131 AV1LevelParams *const level_params = &cpi->ppi->level_params;
4132 uint32_t obu_header_size = 0;
4133 uint32_t obu_payload_size = 0;
4134 FrameHeaderInfo fh_info = { NULL, 0, 0 };
4135 const uint8_t obu_extension_header =
4136 cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4137
4138 // If no non-zero delta_q has been used, reset delta_q_present_flag
4139 if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4140 cm->delta_q_info.delta_q_present_flag = 0;
4141 }
4142
4143 #if CONFIG_BITSTREAM_DEBUG
4144 bitstream_queue_reset_write();
4145 #endif
4146
4147 cpi->frame_header_count = 0;
4148
4149 // The TD is now written outside the frame encode loop
4150
4151 // write sequence header obu at each key frame or intra_only frame,
4152 // preceded by 4-byte size
4153 if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
4154 cm->current_frame.frame_type == KEY_FRAME) {
4155 obu_header_size = av1_write_obu_header(
4156 level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
4157 obu_payload_size =
4158 av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
4159 const size_t length_field_size =
4160 av1_obu_memmove(obu_header_size, obu_payload_size, data);
4161 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4162 AOM_CODEC_OK) {
4163 return AOM_CODEC_ERROR;
4164 }
4165
4166 data += obu_header_size + obu_payload_size + length_field_size;
4167 }
4168
4169 // write metadata obus before the frame obu that has the show_frame flag set
4170 if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
4171
4172 const int write_frame_header =
4173 (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4174 struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4175 size_t length_field = 0;
4176 if (write_frame_header) {
4177 // Write Frame Header OBU.
4178 fh_info.frame_header = data;
4179 obu_header_size =
4180 av1_write_obu_header(level_params, &cpi->frame_header_count,
4181 OBU_FRAME_HEADER, obu_extension_header, data);
4182 obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4183 data + obu_header_size, 1);
4184
4185 length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
4186 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4187 AOM_CODEC_OK) {
4188 return AOM_CODEC_ERROR;
4189 }
4190
4191 fh_info.obu_header_byte_offset = 0;
4192 fh_info.total_length = obu_header_size + obu_payload_size + length_field;
4193 data += fh_info.total_length;
4194 }
4195
4196 if (encode_show_existing_frame(cm)) {
4197 data_size = 0;
4198 } else {
4199 // Since length_field is determined adaptively after frame header
4200 // encoding, saved_wb must be adjusted accordingly.
4201 if (saved_wb.bit_buffer != NULL) {
4202 saved_wb.bit_buffer += length_field;
4203 }
4204
4205 // Each tile group obu will be preceded by 4-byte size of the tile group
4206 // obu
4207 data_size = write_tiles_in_tg_obus(
4208 cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
4209 }
4210 data += data_size;
4211 *size = data - dst;
4212 return AOM_CODEC_OK;
4213 }
4214