1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15 #include <stdbool.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19
20 #include "config/aom_config.h"
21
22 #include "aom_dsp/aom_dsp_common.h"
23 #include "aom_ports/mem.h"
24 #include "aom_scale/aom_scale.h"
25 #include "av1/common/common.h"
26 #include "av1/common/resize.h"
27
28 #include "config/aom_dsp_rtcd.h"
29 #include "config/aom_scale_rtcd.h"
30
31 // Filters for interpolation (0.5-band) - note this also filters integer pels.
32 static const InterpKernel filteredinterp_filters500[(1 << RS_SUBPEL_BITS)] = {
33 { -3, 0, 35, 64, 35, 0, -3, 0 }, { -3, 0, 34, 64, 36, 0, -3, 0 },
34 { -3, -1, 34, 64, 36, 1, -3, 0 }, { -3, -1, 33, 64, 37, 1, -3, 0 },
35 { -3, -1, 32, 64, 38, 1, -3, 0 }, { -3, -1, 31, 64, 39, 1, -3, 0 },
36 { -3, -1, 31, 63, 39, 2, -3, 0 }, { -2, -2, 30, 63, 40, 2, -3, 0 },
37 { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -2, 29, 63, 41, 3, -4, 0 },
38 { -2, -2, 28, 63, 42, 3, -4, 0 }, { -2, -2, 27, 63, 43, 3, -4, 0 },
39 { -2, -3, 27, 63, 43, 4, -4, 0 }, { -2, -3, 26, 62, 44, 5, -4, 0 },
40 { -2, -3, 25, 62, 45, 5, -4, 0 }, { -2, -3, 25, 62, 45, 5, -4, 0 },
41 { -2, -3, 24, 62, 46, 5, -4, 0 }, { -2, -3, 23, 61, 47, 6, -4, 0 },
42 { -2, -3, 23, 61, 47, 6, -4, 0 }, { -2, -3, 22, 61, 48, 7, -4, -1 },
43 { -2, -3, 21, 60, 49, 7, -4, 0 }, { -1, -4, 20, 60, 49, 8, -4, 0 },
44 { -1, -4, 20, 60, 50, 8, -4, -1 }, { -1, -4, 19, 59, 51, 9, -4, -1 },
45 { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 18, 58, 52, 10, -4, -1 },
46 { -1, -4, 17, 58, 52, 11, -4, -1 }, { -1, -4, 16, 58, 53, 11, -4, -1 },
47 { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 15, 57, 54, 12, -4, -1 },
48 { -1, -4, 15, 56, 54, 13, -4, -1 }, { -1, -4, 14, 56, 55, 13, -4, -1 },
49 { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 13, 55, 56, 14, -4, -1 },
50 { -1, -4, 13, 54, 56, 15, -4, -1 }, { -1, -4, 12, 54, 57, 15, -4, -1 },
51 { -1, -4, 12, 53, 57, 16, -4, -1 }, { -1, -4, 11, 53, 58, 16, -4, -1 },
52 { -1, -4, 11, 52, 58, 17, -4, -1 }, { -1, -4, 10, 52, 58, 18, -4, -1 },
53 { -1, -4, 9, 51, 59, 19, -4, -1 }, { -1, -4, 9, 51, 59, 19, -4, -1 },
54 { -1, -4, 8, 50, 60, 20, -4, -1 }, { 0, -4, 8, 49, 60, 20, -4, -1 },
55 { 0, -4, 7, 49, 60, 21, -3, -2 }, { -1, -4, 7, 48, 61, 22, -3, -2 },
56 { 0, -4, 6, 47, 61, 23, -3, -2 }, { 0, -4, 6, 47, 61, 23, -3, -2 },
57 { 0, -4, 5, 46, 62, 24, -3, -2 }, { 0, -4, 5, 45, 62, 25, -3, -2 },
58 { 0, -4, 5, 45, 62, 25, -3, -2 }, { 0, -4, 5, 44, 62, 26, -3, -2 },
59 { 0, -4, 4, 43, 63, 27, -3, -2 }, { 0, -4, 3, 43, 63, 27, -2, -2 },
60 { 0, -4, 3, 42, 63, 28, -2, -2 }, { 0, -4, 3, 41, 63, 29, -2, -2 },
61 { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 2, 40, 63, 30, -2, -2 },
62 { 0, -3, 2, 39, 63, 31, -1, -3 }, { 0, -3, 1, 39, 64, 31, -1, -3 },
63 { 0, -3, 1, 38, 64, 32, -1, -3 }, { 0, -3, 1, 37, 64, 33, -1, -3 },
64 { 0, -3, 1, 36, 64, 34, -1, -3 }, { 0, -3, 0, 36, 64, 34, 0, -3 },
65 };
66
67 // Filters for interpolation (0.625-band) - note this also filters integer pels.
68 static const InterpKernel filteredinterp_filters625[(1 << RS_SUBPEL_BITS)] = {
69 { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 31, 80, 34, -8, -1, 1 },
70 { -1, -8, 30, 80, 35, -8, -1, 1 }, { -1, -8, 29, 80, 36, -7, -2, 1 },
71 { -1, -8, 28, 80, 37, -7, -2, 1 }, { -1, -8, 27, 80, 38, -7, -2, 1 },
72 { 0, -8, 26, 79, 39, -7, -2, 1 }, { 0, -8, 25, 79, 40, -7, -2, 1 },
73 { 0, -8, 24, 79, 41, -7, -2, 1 }, { 0, -8, 23, 78, 42, -6, -2, 1 },
74 { 0, -8, 22, 78, 43, -6, -2, 1 }, { 0, -8, 21, 78, 44, -6, -2, 1 },
75 { 0, -8, 20, 78, 45, -5, -3, 1 }, { 0, -8, 19, 77, 47, -5, -3, 1 },
76 { 0, -8, 18, 77, 48, -5, -3, 1 }, { 0, -8, 17, 77, 49, -5, -3, 1 },
77 { 0, -8, 16, 76, 50, -4, -3, 1 }, { 0, -8, 15, 76, 51, -4, -3, 1 },
78 { 0, -8, 15, 75, 52, -3, -4, 1 }, { 0, -7, 14, 74, 53, -3, -4, 1 },
79 { 0, -7, 13, 74, 54, -3, -4, 1 }, { 0, -7, 12, 73, 55, -2, -4, 1 },
80 { 0, -7, 11, 73, 56, -2, -4, 1 }, { 0, -7, 10, 72, 57, -1, -4, 1 },
81 { 1, -7, 10, 71, 58, -1, -5, 1 }, { 0, -7, 9, 71, 59, 0, -5, 1 },
82 { 1, -7, 8, 70, 60, 0, -5, 1 }, { 1, -7, 7, 69, 61, 1, -5, 1 },
83 { 1, -6, 6, 68, 62, 1, -5, 1 }, { 0, -6, 6, 68, 62, 2, -5, 1 },
84 { 1, -6, 5, 67, 63, 2, -5, 1 }, { 1, -6, 5, 66, 64, 3, -6, 1 },
85 { 1, -6, 4, 65, 65, 4, -6, 1 }, { 1, -6, 3, 64, 66, 5, -6, 1 },
86 { 1, -5, 2, 63, 67, 5, -6, 1 }, { 1, -5, 2, 62, 68, 6, -6, 0 },
87 { 1, -5, 1, 62, 68, 6, -6, 1 }, { 1, -5, 1, 61, 69, 7, -7, 1 },
88 { 1, -5, 0, 60, 70, 8, -7, 1 }, { 1, -5, 0, 59, 71, 9, -7, 0 },
89 { 1, -5, -1, 58, 71, 10, -7, 1 }, { 1, -4, -1, 57, 72, 10, -7, 0 },
90 { 1, -4, -2, 56, 73, 11, -7, 0 }, { 1, -4, -2, 55, 73, 12, -7, 0 },
91 { 1, -4, -3, 54, 74, 13, -7, 0 }, { 1, -4, -3, 53, 74, 14, -7, 0 },
92 { 1, -4, -3, 52, 75, 15, -8, 0 }, { 1, -3, -4, 51, 76, 15, -8, 0 },
93 { 1, -3, -4, 50, 76, 16, -8, 0 }, { 1, -3, -5, 49, 77, 17, -8, 0 },
94 { 1, -3, -5, 48, 77, 18, -8, 0 }, { 1, -3, -5, 47, 77, 19, -8, 0 },
95 { 1, -3, -5, 45, 78, 20, -8, 0 }, { 1, -2, -6, 44, 78, 21, -8, 0 },
96 { 1, -2, -6, 43, 78, 22, -8, 0 }, { 1, -2, -6, 42, 78, 23, -8, 0 },
97 { 1, -2, -7, 41, 79, 24, -8, 0 }, { 1, -2, -7, 40, 79, 25, -8, 0 },
98 { 1, -2, -7, 39, 79, 26, -8, 0 }, { 1, -2, -7, 38, 80, 27, -8, -1 },
99 { 1, -2, -7, 37, 80, 28, -8, -1 }, { 1, -2, -7, 36, 80, 29, -8, -1 },
100 { 1, -1, -8, 35, 80, 30, -8, -1 }, { 1, -1, -8, 34, 80, 31, -8, -1 },
101 };
102
103 // Filters for interpolation (0.75-band) - note this also filters integer pels.
104 static const InterpKernel filteredinterp_filters750[(1 << RS_SUBPEL_BITS)] = {
105 { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -11, 24, 96, 26, -11, 2, 0 },
106 { 2, -11, 22, 96, 28, -11, 2, 0 }, { 2, -10, 21, 96, 29, -12, 2, 0 },
107 { 2, -10, 19, 96, 31, -12, 2, 0 }, { 2, -10, 18, 95, 32, -11, 2, 0 },
108 { 2, -10, 17, 95, 34, -12, 2, 0 }, { 2, -9, 15, 95, 35, -12, 2, 0 },
109 { 2, -9, 14, 94, 37, -12, 2, 0 }, { 2, -9, 13, 94, 38, -12, 2, 0 },
110 { 2, -8, 12, 93, 40, -12, 1, 0 }, { 2, -8, 11, 93, 41, -12, 1, 0 },
111 { 2, -8, 9, 92, 43, -12, 1, 1 }, { 2, -8, 8, 92, 44, -12, 1, 1 },
112 { 2, -7, 7, 91, 46, -12, 1, 0 }, { 2, -7, 6, 90, 47, -12, 1, 1 },
113 { 2, -7, 5, 90, 49, -12, 1, 0 }, { 2, -6, 4, 89, 50, -12, 1, 0 },
114 { 2, -6, 3, 88, 52, -12, 0, 1 }, { 2, -6, 2, 87, 54, -12, 0, 1 },
115 { 2, -5, 1, 86, 55, -12, 0, 1 }, { 2, -5, 0, 85, 57, -12, 0, 1 },
116 { 2, -5, -1, 84, 58, -11, 0, 1 }, { 2, -5, -2, 83, 60, -11, 0, 1 },
117 { 2, -4, -2, 82, 61, -11, -1, 1 }, { 1, -4, -3, 81, 63, -10, -1, 1 },
118 { 2, -4, -4, 80, 64, -10, -1, 1 }, { 1, -4, -4, 79, 66, -10, -1, 1 },
119 { 1, -3, -5, 77, 67, -9, -1, 1 }, { 1, -3, -6, 76, 69, -9, -1, 1 },
120 { 1, -3, -6, 75, 70, -8, -2, 1 }, { 1, -2, -7, 74, 71, -8, -2, 1 },
121 { 1, -2, -7, 72, 72, -7, -2, 1 }, { 1, -2, -8, 71, 74, -7, -2, 1 },
122 { 1, -2, -8, 70, 75, -6, -3, 1 }, { 1, -1, -9, 69, 76, -6, -3, 1 },
123 { 1, -1, -9, 67, 77, -5, -3, 1 }, { 1, -1, -10, 66, 79, -4, -4, 1 },
124 { 1, -1, -10, 64, 80, -4, -4, 2 }, { 1, -1, -10, 63, 81, -3, -4, 1 },
125 { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -11, 60, 83, -2, -5, 2 },
126 { 1, 0, -11, 58, 84, -1, -5, 2 }, { 1, 0, -12, 57, 85, 0, -5, 2 },
127 { 1, 0, -12, 55, 86, 1, -5, 2 }, { 1, 0, -12, 54, 87, 2, -6, 2 },
128 { 1, 0, -12, 52, 88, 3, -6, 2 }, { 0, 1, -12, 50, 89, 4, -6, 2 },
129 { 0, 1, -12, 49, 90, 5, -7, 2 }, { 1, 1, -12, 47, 90, 6, -7, 2 },
130 { 0, 1, -12, 46, 91, 7, -7, 2 }, { 1, 1, -12, 44, 92, 8, -8, 2 },
131 { 1, 1, -12, 43, 92, 9, -8, 2 }, { 0, 1, -12, 41, 93, 11, -8, 2 },
132 { 0, 1, -12, 40, 93, 12, -8, 2 }, { 0, 2, -12, 38, 94, 13, -9, 2 },
133 { 0, 2, -12, 37, 94, 14, -9, 2 }, { 0, 2, -12, 35, 95, 15, -9, 2 },
134 { 0, 2, -12, 34, 95, 17, -10, 2 }, { 0, 2, -11, 32, 95, 18, -10, 2 },
135 { 0, 2, -12, 31, 96, 19, -10, 2 }, { 0, 2, -12, 29, 96, 21, -10, 2 },
136 { 0, 2, -11, 28, 96, 22, -11, 2 }, { 0, 2, -11, 26, 96, 24, -11, 2 },
137 };
138
139 // Filters for interpolation (0.875-band) - note this also filters integer pels.
140 static const InterpKernel filteredinterp_filters875[(1 << RS_SUBPEL_BITS)] = {
141 { 3, -8, 13, 112, 13, -8, 3, 0 }, { 2, -7, 12, 112, 15, -8, 3, -1 },
142 { 3, -7, 10, 112, 17, -9, 3, -1 }, { 2, -6, 8, 112, 19, -9, 3, -1 },
143 { 2, -6, 7, 112, 21, -10, 3, -1 }, { 2, -5, 6, 111, 22, -10, 3, -1 },
144 { 2, -5, 4, 111, 24, -10, 3, -1 }, { 2, -4, 3, 110, 26, -11, 3, -1 },
145 { 2, -4, 1, 110, 28, -11, 3, -1 }, { 2, -4, 0, 109, 30, -12, 4, -1 },
146 { 1, -3, -1, 108, 32, -12, 4, -1 }, { 1, -3, -2, 108, 34, -13, 4, -1 },
147 { 1, -2, -4, 107, 36, -13, 4, -1 }, { 1, -2, -5, 106, 38, -13, 4, -1 },
148 { 1, -1, -6, 105, 40, -14, 4, -1 }, { 1, -1, -7, 104, 42, -14, 4, -1 },
149 { 1, -1, -7, 103, 44, -15, 4, -1 }, { 1, 0, -8, 101, 46, -15, 4, -1 },
150 { 1, 0, -9, 100, 48, -15, 4, -1 }, { 1, 0, -10, 99, 50, -15, 4, -1 },
151 { 1, 1, -11, 97, 53, -16, 4, -1 }, { 0, 1, -11, 96, 55, -16, 4, -1 },
152 { 0, 1, -12, 95, 57, -16, 4, -1 }, { 0, 2, -13, 93, 59, -16, 4, -1 },
153 { 0, 2, -13, 91, 61, -16, 4, -1 }, { 0, 2, -14, 90, 63, -16, 4, -1 },
154 { 0, 2, -14, 88, 65, -16, 4, -1 }, { 0, 2, -15, 86, 67, -16, 4, 0 },
155 { 0, 3, -15, 84, 69, -17, 4, 0 }, { 0, 3, -16, 83, 71, -17, 4, 0 },
156 { 0, 3, -16, 81, 73, -16, 3, 0 }, { 0, 3, -16, 79, 75, -16, 3, 0 },
157 { 0, 3, -16, 77, 77, -16, 3, 0 }, { 0, 3, -16, 75, 79, -16, 3, 0 },
158 { 0, 3, -16, 73, 81, -16, 3, 0 }, { 0, 4, -17, 71, 83, -16, 3, 0 },
159 { 0, 4, -17, 69, 84, -15, 3, 0 }, { 0, 4, -16, 67, 86, -15, 2, 0 },
160 { -1, 4, -16, 65, 88, -14, 2, 0 }, { -1, 4, -16, 63, 90, -14, 2, 0 },
161 { -1, 4, -16, 61, 91, -13, 2, 0 }, { -1, 4, -16, 59, 93, -13, 2, 0 },
162 { -1, 4, -16, 57, 95, -12, 1, 0 }, { -1, 4, -16, 55, 96, -11, 1, 0 },
163 { -1, 4, -16, 53, 97, -11, 1, 1 }, { -1, 4, -15, 50, 99, -10, 0, 1 },
164 { -1, 4, -15, 48, 100, -9, 0, 1 }, { -1, 4, -15, 46, 101, -8, 0, 1 },
165 { -1, 4, -15, 44, 103, -7, -1, 1 }, { -1, 4, -14, 42, 104, -7, -1, 1 },
166 { -1, 4, -14, 40, 105, -6, -1, 1 }, { -1, 4, -13, 38, 106, -5, -2, 1 },
167 { -1, 4, -13, 36, 107, -4, -2, 1 }, { -1, 4, -13, 34, 108, -2, -3, 1 },
168 { -1, 4, -12, 32, 108, -1, -3, 1 }, { -1, 4, -12, 30, 109, 0, -4, 2 },
169 { -1, 3, -11, 28, 110, 1, -4, 2 }, { -1, 3, -11, 26, 110, 3, -4, 2 },
170 { -1, 3, -10, 24, 111, 4, -5, 2 }, { -1, 3, -10, 22, 111, 6, -5, 2 },
171 { -1, 3, -10, 21, 112, 7, -6, 2 }, { -1, 3, -9, 19, 112, 8, -6, 2 },
172 { -1, 3, -9, 17, 112, 10, -7, 3 }, { -1, 3, -8, 15, 112, 12, -7, 2 },
173 };
174
175 const int16_t av1_resize_filter_normative[(
176 1 << RS_SUBPEL_BITS)][UPSCALE_NORMATIVE_TAPS] = {
177 #if UPSCALE_NORMATIVE_TAPS == 8
178 { 0, 0, 0, 128, 0, 0, 0, 0 }, { 0, 0, -1, 128, 2, -1, 0, 0 },
179 { 0, 1, -3, 127, 4, -2, 1, 0 }, { 0, 1, -4, 127, 6, -3, 1, 0 },
180 { 0, 2, -6, 126, 8, -3, 1, 0 }, { 0, 2, -7, 125, 11, -4, 1, 0 },
181 { -1, 2, -8, 125, 13, -5, 2, 0 }, { -1, 3, -9, 124, 15, -6, 2, 0 },
182 { -1, 3, -10, 123, 18, -6, 2, -1 }, { -1, 3, -11, 122, 20, -7, 3, -1 },
183 { -1, 4, -12, 121, 22, -8, 3, -1 }, { -1, 4, -13, 120, 25, -9, 3, -1 },
184 { -1, 4, -14, 118, 28, -9, 3, -1 }, { -1, 4, -15, 117, 30, -10, 4, -1 },
185 { -1, 5, -16, 116, 32, -11, 4, -1 }, { -1, 5, -16, 114, 35, -12, 4, -1 },
186 { -1, 5, -17, 112, 38, -12, 4, -1 }, { -1, 5, -18, 111, 40, -13, 5, -1 },
187 { -1, 5, -18, 109, 43, -14, 5, -1 }, { -1, 6, -19, 107, 45, -14, 5, -1 },
188 { -1, 6, -19, 105, 48, -15, 5, -1 }, { -1, 6, -19, 103, 51, -16, 5, -1 },
189 { -1, 6, -20, 101, 53, -16, 6, -1 }, { -1, 6, -20, 99, 56, -17, 6, -1 },
190 { -1, 6, -20, 97, 58, -17, 6, -1 }, { -1, 6, -20, 95, 61, -18, 6, -1 },
191 { -2, 7, -20, 93, 64, -18, 6, -2 }, { -2, 7, -20, 91, 66, -19, 6, -1 },
192 { -2, 7, -20, 88, 69, -19, 6, -1 }, { -2, 7, -20, 86, 71, -19, 6, -1 },
193 { -2, 7, -20, 84, 74, -20, 7, -2 }, { -2, 7, -20, 81, 76, -20, 7, -1 },
194 { -2, 7, -20, 79, 79, -20, 7, -2 }, { -1, 7, -20, 76, 81, -20, 7, -2 },
195 { -2, 7, -20, 74, 84, -20, 7, -2 }, { -1, 6, -19, 71, 86, -20, 7, -2 },
196 { -1, 6, -19, 69, 88, -20, 7, -2 }, { -1, 6, -19, 66, 91, -20, 7, -2 },
197 { -2, 6, -18, 64, 93, -20, 7, -2 }, { -1, 6, -18, 61, 95, -20, 6, -1 },
198 { -1, 6, -17, 58, 97, -20, 6, -1 }, { -1, 6, -17, 56, 99, -20, 6, -1 },
199 { -1, 6, -16, 53, 101, -20, 6, -1 }, { -1, 5, -16, 51, 103, -19, 6, -1 },
200 { -1, 5, -15, 48, 105, -19, 6, -1 }, { -1, 5, -14, 45, 107, -19, 6, -1 },
201 { -1, 5, -14, 43, 109, -18, 5, -1 }, { -1, 5, -13, 40, 111, -18, 5, -1 },
202 { -1, 4, -12, 38, 112, -17, 5, -1 }, { -1, 4, -12, 35, 114, -16, 5, -1 },
203 { -1, 4, -11, 32, 116, -16, 5, -1 }, { -1, 4, -10, 30, 117, -15, 4, -1 },
204 { -1, 3, -9, 28, 118, -14, 4, -1 }, { -1, 3, -9, 25, 120, -13, 4, -1 },
205 { -1, 3, -8, 22, 121, -12, 4, -1 }, { -1, 3, -7, 20, 122, -11, 3, -1 },
206 { -1, 2, -6, 18, 123, -10, 3, -1 }, { 0, 2, -6, 15, 124, -9, 3, -1 },
207 { 0, 2, -5, 13, 125, -8, 2, -1 }, { 0, 1, -4, 11, 125, -7, 2, 0 },
208 { 0, 1, -3, 8, 126, -6, 2, 0 }, { 0, 1, -3, 6, 127, -4, 1, 0 },
209 { 0, 1, -2, 4, 127, -3, 1, 0 }, { 0, 0, -1, 2, 128, -1, 0, 0 },
210 #else
211 #error "Invalid value of UPSCALE_NORMATIVE_TAPS"
212 #endif // UPSCALE_NORMATIVE_TAPS == 8
213 };
214
215 // Filters for interpolation (full-band) - no filtering for integer pixels
216 #define filteredinterp_filters1000 av1_resize_filter_normative
217
218 // Filters for factor of 2 downsampling.
219 static const int16_t av1_down2_symeven_half_filter[] = { 56, 12, -3, -1 };
220 static const int16_t av1_down2_symodd_half_filter[] = { 64, 35, 0, -3 };
221
choose_interp_filter(int in_length,int out_length)222 static const InterpKernel *choose_interp_filter(int in_length, int out_length) {
223 int out_length16 = out_length * 16;
224 if (out_length16 >= in_length * 16)
225 return filteredinterp_filters1000;
226 else if (out_length16 >= in_length * 13)
227 return filteredinterp_filters875;
228 else if (out_length16 >= in_length * 11)
229 return filteredinterp_filters750;
230 else if (out_length16 >= in_length * 9)
231 return filteredinterp_filters625;
232 else
233 return filteredinterp_filters500;
234 }
235
interpolate_core(const uint8_t * const input,int in_length,uint8_t * output,int out_length,const int16_t * interp_filters,int interp_taps)236 static void interpolate_core(const uint8_t *const input, int in_length,
237 uint8_t *output, int out_length,
238 const int16_t *interp_filters, int interp_taps) {
239 const int32_t delta =
240 (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) /
241 out_length;
242 const int32_t offset =
243 in_length > out_length
244 ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
245 out_length / 2) /
246 out_length
247 : -(((int32_t)(out_length - in_length)
248 << (RS_SCALE_SUBPEL_BITS - 1)) +
249 out_length / 2) /
250 out_length;
251 uint8_t *optr = output;
252 int x, x1, x2, sum, k, int_pel, sub_pel;
253 int32_t y;
254
255 x = 0;
256 y = offset + RS_SCALE_EXTRA_OFF;
257 while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) {
258 x++;
259 y += delta;
260 }
261 x1 = x;
262 x = out_length - 1;
263 y = delta * x + offset + RS_SCALE_EXTRA_OFF;
264 while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >=
265 in_length) {
266 x--;
267 y -= delta;
268 }
269 x2 = x;
270 if (x1 > x2) {
271 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length;
272 ++x, y += delta) {
273 int_pel = y >> RS_SCALE_SUBPEL_BITS;
274 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
275 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
276 sum = 0;
277 for (k = 0; k < interp_taps; ++k) {
278 const int pk = int_pel - interp_taps / 2 + 1 + k;
279 sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)];
280 }
281 *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
282 }
283 } else {
284 // Initial part.
285 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) {
286 int_pel = y >> RS_SCALE_SUBPEL_BITS;
287 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
288 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
289 sum = 0;
290 for (k = 0; k < interp_taps; ++k)
291 sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)];
292 *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
293 }
294 // Middle part.
295 for (; x <= x2; ++x, y += delta) {
296 int_pel = y >> RS_SCALE_SUBPEL_BITS;
297 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
298 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
299 sum = 0;
300 for (k = 0; k < interp_taps; ++k)
301 sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k];
302 *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
303 }
304 // End part.
305 for (; x < out_length; ++x, y += delta) {
306 int_pel = y >> RS_SCALE_SUBPEL_BITS;
307 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
308 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
309 sum = 0;
310 for (k = 0; k < interp_taps; ++k)
311 sum += filter[k] *
312 input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)];
313 *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
314 }
315 }
316 }
317
interpolate_core_double_prec(const double * const input,int in_length,double * output,int out_length,const int16_t * interp_filters,int interp_taps)318 static void interpolate_core_double_prec(const double *const input,
319 int in_length, double *output,
320 int out_length,
321 const int16_t *interp_filters,
322 int interp_taps) {
323 const int32_t delta =
324 (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) /
325 out_length;
326 const int32_t offset =
327 in_length > out_length
328 ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
329 out_length / 2) /
330 out_length
331 : -(((int32_t)(out_length - in_length)
332 << (RS_SCALE_SUBPEL_BITS - 1)) +
333 out_length / 2) /
334 out_length;
335 double *optr = output;
336 int x, x1, x2, k, int_pel, sub_pel;
337 double sum;
338 int32_t y;
339
340 x = 0;
341 y = offset + RS_SCALE_EXTRA_OFF;
342 while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) {
343 x++;
344 y += delta;
345 }
346 x1 = x;
347 x = out_length - 1;
348 y = delta * x + offset + RS_SCALE_EXTRA_OFF;
349 while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >=
350 in_length) {
351 x--;
352 y -= delta;
353 }
354 x2 = x;
355 if (x1 > x2) {
356 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length;
357 ++x, y += delta) {
358 int_pel = y >> RS_SCALE_SUBPEL_BITS;
359 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
360 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
361 sum = 0;
362 for (k = 0; k < interp_taps; ++k) {
363 const int pk = int_pel - interp_taps / 2 + 1 + k;
364 sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)];
365 }
366 *optr++ = sum / (1 << FILTER_BITS);
367 }
368 } else {
369 // Initial part.
370 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) {
371 int_pel = y >> RS_SCALE_SUBPEL_BITS;
372 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
373 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
374 sum = 0;
375 for (k = 0; k < interp_taps; ++k)
376 sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)];
377 *optr++ = sum / (1 << FILTER_BITS);
378 }
379 // Middle part.
380 for (; x <= x2; ++x, y += delta) {
381 int_pel = y >> RS_SCALE_SUBPEL_BITS;
382 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
383 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
384 sum = 0;
385 for (k = 0; k < interp_taps; ++k)
386 sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k];
387 *optr++ = sum / (1 << FILTER_BITS);
388 }
389 // End part.
390 for (; x < out_length; ++x, y += delta) {
391 int_pel = y >> RS_SCALE_SUBPEL_BITS;
392 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
393 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
394 sum = 0;
395 for (k = 0; k < interp_taps; ++k)
396 sum += filter[k] *
397 input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)];
398 *optr++ = sum / (1 << FILTER_BITS);
399 }
400 }
401 }
402
interpolate(const uint8_t * const input,int in_length,uint8_t * output,int out_length)403 static void interpolate(const uint8_t *const input, int in_length,
404 uint8_t *output, int out_length) {
405 const InterpKernel *interp_filters =
406 choose_interp_filter(in_length, out_length);
407
408 interpolate_core(input, in_length, output, out_length, &interp_filters[0][0],
409 SUBPEL_TAPS);
410 }
411
interpolate_double_prec(const double * const input,int in_length,double * output,int out_length)412 static void interpolate_double_prec(const double *const input, int in_length,
413 double *output, int out_length) {
414 const InterpKernel *interp_filters =
415 choose_interp_filter(in_length, out_length);
416
417 interpolate_core_double_prec(input, in_length, output, out_length,
418 &interp_filters[0][0], SUBPEL_TAPS);
419 }
420
av1_get_upscale_convolve_step(int in_length,int out_length)421 int32_t av1_get_upscale_convolve_step(int in_length, int out_length) {
422 return ((in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length;
423 }
424
get_upscale_convolve_x0(int in_length,int out_length,int32_t x_step_qn)425 static int32_t get_upscale_convolve_x0(int in_length, int out_length,
426 int32_t x_step_qn) {
427 const int err = out_length * x_step_qn - (in_length << RS_SCALE_SUBPEL_BITS);
428 const int32_t x0 =
429 (-((out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
430 out_length / 2) /
431 out_length +
432 RS_SCALE_EXTRA_OFF - err / 2;
433 return (int32_t)((uint32_t)x0 & RS_SCALE_SUBPEL_MASK);
434 }
435
down2_symeven(const uint8_t * const input,int length,uint8_t * output)436 static void down2_symeven(const uint8_t *const input, int length,
437 uint8_t *output) {
438 // Actual filter len = 2 * filter_len_half.
439 const int16_t *filter = av1_down2_symeven_half_filter;
440 const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2;
441 int i, j;
442 uint8_t *optr = output;
443 int l1 = filter_len_half;
444 int l2 = (length - filter_len_half);
445 l1 += (l1 & 1);
446 l2 += (l2 & 1);
447 if (l1 > l2) {
448 // Short input length.
449 for (i = 0; i < length; i += 2) {
450 int sum = (1 << (FILTER_BITS - 1));
451 for (j = 0; j < filter_len_half; ++j) {
452 sum +=
453 (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + 1 + j, length - 1)]) *
454 filter[j];
455 }
456 sum >>= FILTER_BITS;
457 *optr++ = clip_pixel(sum);
458 }
459 } else {
460 // Initial part.
461 for (i = 0; i < l1; i += 2) {
462 int sum = (1 << (FILTER_BITS - 1));
463 for (j = 0; j < filter_len_half; ++j) {
464 sum += (input[AOMMAX(i - j, 0)] + input[i + 1 + j]) * filter[j];
465 }
466 sum >>= FILTER_BITS;
467 *optr++ = clip_pixel(sum);
468 }
469 // Middle part.
470 for (; i < l2; i += 2) {
471 int sum = (1 << (FILTER_BITS - 1));
472 for (j = 0; j < filter_len_half; ++j) {
473 sum += (input[i - j] + input[i + 1 + j]) * filter[j];
474 }
475 sum >>= FILTER_BITS;
476 *optr++ = clip_pixel(sum);
477 }
478 // End part.
479 for (; i < length; i += 2) {
480 int sum = (1 << (FILTER_BITS - 1));
481 for (j = 0; j < filter_len_half; ++j) {
482 sum +=
483 (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j];
484 }
485 sum >>= FILTER_BITS;
486 *optr++ = clip_pixel(sum);
487 }
488 }
489 }
490
down2_symodd(const uint8_t * const input,int length,uint8_t * output)491 static void down2_symodd(const uint8_t *const input, int length,
492 uint8_t *output) {
493 // Actual filter len = 2 * filter_len_half - 1.
494 const int16_t *filter = av1_down2_symodd_half_filter;
495 const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2;
496 int i, j;
497 uint8_t *optr = output;
498 int l1 = filter_len_half - 1;
499 int l2 = (length - filter_len_half + 1);
500 l1 += (l1 & 1);
501 l2 += (l2 & 1);
502 if (l1 > l2) {
503 // Short input length.
504 for (i = 0; i < length; i += 2) {
505 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
506 for (j = 1; j < filter_len_half; ++j) {
507 sum += (input[(i - j < 0 ? 0 : i - j)] +
508 input[(i + j >= length ? length - 1 : i + j)]) *
509 filter[j];
510 }
511 sum >>= FILTER_BITS;
512 *optr++ = clip_pixel(sum);
513 }
514 } else {
515 // Initial part.
516 for (i = 0; i < l1; i += 2) {
517 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
518 for (j = 1; j < filter_len_half; ++j) {
519 sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
520 }
521 sum >>= FILTER_BITS;
522 *optr++ = clip_pixel(sum);
523 }
524 // Middle part.
525 for (; i < l2; i += 2) {
526 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
527 for (j = 1; j < filter_len_half; ++j) {
528 sum += (input[i - j] + input[i + j]) * filter[j];
529 }
530 sum >>= FILTER_BITS;
531 *optr++ = clip_pixel(sum);
532 }
533 // End part.
534 for (; i < length; i += 2) {
535 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
536 for (j = 1; j < filter_len_half; ++j) {
537 sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
538 filter[j];
539 }
540 sum >>= FILTER_BITS;
541 *optr++ = clip_pixel(sum);
542 }
543 }
544 }
545
get_down2_length(int length,int steps)546 static int get_down2_length(int length, int steps) {
547 for (int s = 0; s < steps; ++s) length = (length + 1) >> 1;
548 return length;
549 }
550
get_down2_steps(int in_length,int out_length)551 static int get_down2_steps(int in_length, int out_length) {
552 int steps = 0;
553 int proj_in_length;
554 while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) {
555 ++steps;
556 in_length = proj_in_length;
557 if (in_length == 1) {
558 // Special case: we break because any further calls to get_down2_length()
559 // with be with length == 1, which return 1, resulting in an infinite
560 // loop.
561 break;
562 }
563 }
564 return steps;
565 }
566
resize_multistep(const uint8_t * const input,int length,uint8_t * output,int olength,uint8_t * otmp)567 static void resize_multistep(const uint8_t *const input, int length,
568 uint8_t *output, int olength, uint8_t *otmp) {
569 if (length == olength) {
570 memcpy(output, input, sizeof(output[0]) * length);
571 return;
572 }
573 const int steps = get_down2_steps(length, olength);
574
575 if (steps > 0) {
576 uint8_t *out = NULL;
577 int filteredlength = length;
578
579 assert(otmp != NULL);
580 uint8_t *otmp2 = otmp + get_down2_length(length, 1);
581 for (int s = 0; s < steps; ++s) {
582 const int proj_filteredlength = get_down2_length(filteredlength, 1);
583 const uint8_t *const in = (s == 0 ? input : out);
584 if (s == steps - 1 && proj_filteredlength == olength)
585 out = output;
586 else
587 out = (s & 1 ? otmp2 : otmp);
588 if (filteredlength & 1)
589 down2_symodd(in, filteredlength, out);
590 else
591 down2_symeven(in, filteredlength, out);
592 filteredlength = proj_filteredlength;
593 }
594 if (filteredlength != olength) {
595 interpolate(out, filteredlength, output, olength);
596 }
597 } else {
598 interpolate(input, length, output, olength);
599 }
600 }
601
upscale_multistep_double_prec(const double * const input,int length,double * output,int olength)602 static void upscale_multistep_double_prec(const double *const input, int length,
603 double *output, int olength) {
604 assert(length < olength);
605 interpolate_double_prec(input, length, output, olength);
606 }
607
fill_col_to_arr(uint8_t * img,int stride,int len,uint8_t * arr)608 static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) {
609 int i;
610 uint8_t *iptr = img;
611 uint8_t *aptr = arr;
612 for (i = 0; i < len; ++i, iptr += stride) {
613 *aptr++ = *iptr;
614 }
615 }
616
fill_arr_to_col(uint8_t * img,int stride,int len,uint8_t * arr)617 static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
618 int i;
619 uint8_t *iptr = img;
620 uint8_t *aptr = arr;
621 for (i = 0; i < len; ++i, iptr += stride) {
622 *iptr = *aptr++;
623 }
624 }
625
fill_col_to_arr_double_prec(double * img,int stride,int len,double * arr)626 static void fill_col_to_arr_double_prec(double *img, int stride, int len,
627 double *arr) {
628 int i;
629 double *iptr = img;
630 double *aptr = arr;
631 for (i = 0; i < len; ++i, iptr += stride) {
632 *aptr++ = *iptr;
633 }
634 }
635
fill_arr_to_col_double_prec(double * img,int stride,int len,double * arr)636 static void fill_arr_to_col_double_prec(double *img, int stride, int len,
637 double *arr) {
638 int i;
639 double *iptr = img;
640 double *aptr = arr;
641 for (i = 0; i < len; ++i, iptr += stride) {
642 *iptr = *aptr++;
643 }
644 }
645
av1_resize_plane(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride)646 void av1_resize_plane(const uint8_t *const input, int height, int width,
647 int in_stride, uint8_t *output, int height2, int width2,
648 int out_stride) {
649 int i;
650 uint8_t *intbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * width2 * height);
651 uint8_t *tmpbuf =
652 (uint8_t *)aom_malloc(sizeof(uint8_t) * AOMMAX(width, height));
653 uint8_t *arrbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * height);
654 uint8_t *arrbuf2 = (uint8_t *)aom_malloc(sizeof(uint8_t) * height2);
655 if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL)
656 goto Error;
657 assert(width > 0);
658 assert(height > 0);
659 assert(width2 > 0);
660 assert(height2 > 0);
661 for (i = 0; i < height; ++i)
662 resize_multistep(input + in_stride * i, width, intbuf + width2 * i, width2,
663 tmpbuf);
664 for (i = 0; i < width2; ++i) {
665 fill_col_to_arr(intbuf + i, width2, height, arrbuf);
666 resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf);
667 fill_arr_to_col(output + i, out_stride, height2, arrbuf2);
668 }
669
670 Error:
671 aom_free(intbuf);
672 aom_free(tmpbuf);
673 aom_free(arrbuf);
674 aom_free(arrbuf2);
675 }
676
av1_upscale_plane_double_prec(const double * const input,int height,int width,int in_stride,double * output,int height2,int width2,int out_stride)677 void av1_upscale_plane_double_prec(const double *const input, int height,
678 int width, int in_stride, double *output,
679 int height2, int width2, int out_stride) {
680 int i;
681 double *intbuf = (double *)aom_malloc(sizeof(double) * width2 * height);
682 double *arrbuf = (double *)aom_malloc(sizeof(double) * height);
683 double *arrbuf2 = (double *)aom_malloc(sizeof(double) * height2);
684 if (intbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) goto Error;
685 assert(width > 0);
686 assert(height > 0);
687 assert(width2 > 0);
688 assert(height2 > 0);
689 for (i = 0; i < height; ++i)
690 upscale_multistep_double_prec(input + in_stride * i, width,
691 intbuf + width2 * i, width2);
692 for (i = 0; i < width2; ++i) {
693 fill_col_to_arr_double_prec(intbuf + i, width2, height, arrbuf);
694 upscale_multistep_double_prec(arrbuf, height, arrbuf2, height2);
695 fill_arr_to_col_double_prec(output + i, out_stride, height2, arrbuf2);
696 }
697
698 Error:
699 aom_free(intbuf);
700 aom_free(arrbuf);
701 aom_free(arrbuf2);
702 }
703
upscale_normative_rect(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int x_step_qn,int x0_qn,int pad_left,int pad_right)704 static bool upscale_normative_rect(const uint8_t *const input, int height,
705 int width, int in_stride, uint8_t *output,
706 int height2, int width2, int out_stride,
707 int x_step_qn, int x0_qn, int pad_left,
708 int pad_right) {
709 assert(width > 0);
710 assert(height > 0);
711 assert(width2 > 0);
712 assert(height2 > 0);
713 assert(height2 == height);
714
715 // Extend the left/right pixels of the tile column if needed
716 // (either because we can't sample from other tiles, or because we're at
717 // a frame edge).
718 // Save the overwritten pixels into tmp_left and tmp_right.
719 // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra
720 // column of border pixels compared to what we'd naively think.
721 const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1;
722 uint8_t *tmp_left =
723 NULL; // Silence spurious "may be used uninitialized" warnings
724 uint8_t *tmp_right = NULL;
725 uint8_t *const in_tl = (uint8_t *)(input - border_cols); // Cast off 'const'
726 uint8_t *const in_tr = (uint8_t *)(input + width);
727 if (pad_left) {
728 tmp_left = (uint8_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height);
729 if (!tmp_left) return false;
730 for (int i = 0; i < height; i++) {
731 memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_cols);
732 memset(in_tl + i * in_stride, input[i * in_stride], border_cols);
733 }
734 }
735 if (pad_right) {
736 tmp_right =
737 (uint8_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height);
738 if (!tmp_right) {
739 aom_free(tmp_left);
740 return false;
741 }
742 for (int i = 0; i < height; i++) {
743 memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_cols);
744 memset(in_tr + i * in_stride, input[i * in_stride + width - 1],
745 border_cols);
746 }
747 }
748
749 av1_convolve_horiz_rs(input - 1, in_stride, output, out_stride, width2,
750 height2, &av1_resize_filter_normative[0][0], x0_qn,
751 x_step_qn);
752
753 // Restore the left/right border pixels
754 if (pad_left) {
755 for (int i = 0; i < height; i++) {
756 memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_cols);
757 }
758 aom_free(tmp_left);
759 }
760 if (pad_right) {
761 for (int i = 0; i < height; i++) {
762 memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_cols);
763 }
764 aom_free(tmp_right);
765 }
766 return true;
767 }
768
769 #if CONFIG_AV1_HIGHBITDEPTH
highbd_interpolate_core(const uint16_t * const input,int in_length,uint16_t * output,int out_length,int bd,const int16_t * interp_filters,int interp_taps)770 static void highbd_interpolate_core(const uint16_t *const input, int in_length,
771 uint16_t *output, int out_length, int bd,
772 const int16_t *interp_filters,
773 int interp_taps) {
774 const int32_t delta =
775 (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) /
776 out_length;
777 const int32_t offset =
778 in_length > out_length
779 ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
780 out_length / 2) /
781 out_length
782 : -(((int32_t)(out_length - in_length)
783 << (RS_SCALE_SUBPEL_BITS - 1)) +
784 out_length / 2) /
785 out_length;
786 uint16_t *optr = output;
787 int x, x1, x2, sum, k, int_pel, sub_pel;
788 int32_t y;
789
790 x = 0;
791 y = offset + RS_SCALE_EXTRA_OFF;
792 while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) {
793 x++;
794 y += delta;
795 }
796 x1 = x;
797 x = out_length - 1;
798 y = delta * x + offset + RS_SCALE_EXTRA_OFF;
799 while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >=
800 in_length) {
801 x--;
802 y -= delta;
803 }
804 x2 = x;
805 if (x1 > x2) {
806 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length;
807 ++x, y += delta) {
808 int_pel = y >> RS_SCALE_SUBPEL_BITS;
809 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
810 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
811 sum = 0;
812 for (k = 0; k < interp_taps; ++k) {
813 const int pk = int_pel - interp_taps / 2 + 1 + k;
814 sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)];
815 }
816 *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
817 }
818 } else {
819 // Initial part.
820 for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) {
821 int_pel = y >> RS_SCALE_SUBPEL_BITS;
822 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
823 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
824 sum = 0;
825 for (k = 0; k < interp_taps; ++k)
826 sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)];
827 *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
828 }
829 // Middle part.
830 for (; x <= x2; ++x, y += delta) {
831 int_pel = y >> RS_SCALE_SUBPEL_BITS;
832 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
833 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
834 sum = 0;
835 for (k = 0; k < interp_taps; ++k)
836 sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k];
837 *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
838 }
839 // End part.
840 for (; x < out_length; ++x, y += delta) {
841 int_pel = y >> RS_SCALE_SUBPEL_BITS;
842 sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
843 const int16_t *filter = &interp_filters[sub_pel * interp_taps];
844 sum = 0;
845 for (k = 0; k < interp_taps; ++k)
846 sum += filter[k] *
847 input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)];
848 *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
849 }
850 }
851 }
852
highbd_interpolate(const uint16_t * const input,int in_length,uint16_t * output,int out_length,int bd)853 static void highbd_interpolate(const uint16_t *const input, int in_length,
854 uint16_t *output, int out_length, int bd) {
855 const InterpKernel *interp_filters =
856 choose_interp_filter(in_length, out_length);
857
858 highbd_interpolate_core(input, in_length, output, out_length, bd,
859 &interp_filters[0][0], SUBPEL_TAPS);
860 }
861
highbd_down2_symeven(const uint16_t * const input,int length,uint16_t * output,int bd)862 static void highbd_down2_symeven(const uint16_t *const input, int length,
863 uint16_t *output, int bd) {
864 // Actual filter len = 2 * filter_len_half.
865 static const int16_t *filter = av1_down2_symeven_half_filter;
866 const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2;
867 int i, j;
868 uint16_t *optr = output;
869 int l1 = filter_len_half;
870 int l2 = (length - filter_len_half);
871 l1 += (l1 & 1);
872 l2 += (l2 & 1);
873 if (l1 > l2) {
874 // Short input length.
875 for (i = 0; i < length; i += 2) {
876 int sum = (1 << (FILTER_BITS - 1));
877 for (j = 0; j < filter_len_half; ++j) {
878 sum +=
879 (input[AOMMAX(0, i - j)] + input[AOMMIN(i + 1 + j, length - 1)]) *
880 filter[j];
881 }
882 sum >>= FILTER_BITS;
883 *optr++ = clip_pixel_highbd(sum, bd);
884 }
885 } else {
886 // Initial part.
887 for (i = 0; i < l1; i += 2) {
888 int sum = (1 << (FILTER_BITS - 1));
889 for (j = 0; j < filter_len_half; ++j) {
890 sum += (input[AOMMAX(0, i - j)] + input[i + 1 + j]) * filter[j];
891 }
892 sum >>= FILTER_BITS;
893 *optr++ = clip_pixel_highbd(sum, bd);
894 }
895 // Middle part.
896 for (; i < l2; i += 2) {
897 int sum = (1 << (FILTER_BITS - 1));
898 for (j = 0; j < filter_len_half; ++j) {
899 sum += (input[i - j] + input[i + 1 + j]) * filter[j];
900 }
901 sum >>= FILTER_BITS;
902 *optr++ = clip_pixel_highbd(sum, bd);
903 }
904 // End part.
905 for (; i < length; i += 2) {
906 int sum = (1 << (FILTER_BITS - 1));
907 for (j = 0; j < filter_len_half; ++j) {
908 sum +=
909 (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j];
910 }
911 sum >>= FILTER_BITS;
912 *optr++ = clip_pixel_highbd(sum, bd);
913 }
914 }
915 }
916
highbd_down2_symodd(const uint16_t * const input,int length,uint16_t * output,int bd)917 static void highbd_down2_symodd(const uint16_t *const input, int length,
918 uint16_t *output, int bd) {
919 // Actual filter len = 2 * filter_len_half - 1.
920 static const int16_t *filter = av1_down2_symodd_half_filter;
921 const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2;
922 int i, j;
923 uint16_t *optr = output;
924 int l1 = filter_len_half - 1;
925 int l2 = (length - filter_len_half + 1);
926 l1 += (l1 & 1);
927 l2 += (l2 & 1);
928 if (l1 > l2) {
929 // Short input length.
930 for (i = 0; i < length; i += 2) {
931 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
932 for (j = 1; j < filter_len_half; ++j) {
933 sum += (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + j, length - 1)]) *
934 filter[j];
935 }
936 sum >>= FILTER_BITS;
937 *optr++ = clip_pixel_highbd(sum, bd);
938 }
939 } else {
940 // Initial part.
941 for (i = 0; i < l1; i += 2) {
942 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
943 for (j = 1; j < filter_len_half; ++j) {
944 sum += (input[AOMMAX(i - j, 0)] + input[i + j]) * filter[j];
945 }
946 sum >>= FILTER_BITS;
947 *optr++ = clip_pixel_highbd(sum, bd);
948 }
949 // Middle part.
950 for (; i < l2; i += 2) {
951 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
952 for (j = 1; j < filter_len_half; ++j) {
953 sum += (input[i - j] + input[i + j]) * filter[j];
954 }
955 sum >>= FILTER_BITS;
956 *optr++ = clip_pixel_highbd(sum, bd);
957 }
958 // End part.
959 for (; i < length; i += 2) {
960 int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
961 for (j = 1; j < filter_len_half; ++j) {
962 sum += (input[i - j] + input[AOMMIN(i + j, length - 1)]) * filter[j];
963 }
964 sum >>= FILTER_BITS;
965 *optr++ = clip_pixel_highbd(sum, bd);
966 }
967 }
968 }
969
highbd_resize_multistep(const uint16_t * const input,int length,uint16_t * output,int olength,uint16_t * otmp,int bd)970 static void highbd_resize_multistep(const uint16_t *const input, int length,
971 uint16_t *output, int olength,
972 uint16_t *otmp, int bd) {
973 if (length == olength) {
974 memcpy(output, input, sizeof(output[0]) * length);
975 return;
976 }
977 const int steps = get_down2_steps(length, olength);
978
979 if (steps > 0) {
980 uint16_t *out = NULL;
981 int filteredlength = length;
982
983 assert(otmp != NULL);
984 uint16_t *otmp2 = otmp + get_down2_length(length, 1);
985 for (int s = 0; s < steps; ++s) {
986 const int proj_filteredlength = get_down2_length(filteredlength, 1);
987 const uint16_t *const in = (s == 0 ? input : out);
988 if (s == steps - 1 && proj_filteredlength == olength)
989 out = output;
990 else
991 out = (s & 1 ? otmp2 : otmp);
992 if (filteredlength & 1)
993 highbd_down2_symodd(in, filteredlength, out, bd);
994 else
995 highbd_down2_symeven(in, filteredlength, out, bd);
996 filteredlength = proj_filteredlength;
997 }
998 if (filteredlength != olength) {
999 highbd_interpolate(out, filteredlength, output, olength, bd);
1000 }
1001 } else {
1002 highbd_interpolate(input, length, output, olength, bd);
1003 }
1004 }
1005
highbd_fill_col_to_arr(uint16_t * img,int stride,int len,uint16_t * arr)1006 static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len,
1007 uint16_t *arr) {
1008 int i;
1009 uint16_t *iptr = img;
1010 uint16_t *aptr = arr;
1011 for (i = 0; i < len; ++i, iptr += stride) {
1012 *aptr++ = *iptr;
1013 }
1014 }
1015
highbd_fill_arr_to_col(uint16_t * img,int stride,int len,uint16_t * arr)1016 static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len,
1017 uint16_t *arr) {
1018 int i;
1019 uint16_t *iptr = img;
1020 uint16_t *aptr = arr;
1021 for (i = 0; i < len; ++i, iptr += stride) {
1022 *iptr = *aptr++;
1023 }
1024 }
1025
av1_highbd_resize_plane(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int bd)1026 void av1_highbd_resize_plane(const uint8_t *const input, int height, int width,
1027 int in_stride, uint8_t *output, int height2,
1028 int width2, int out_stride, int bd) {
1029 int i;
1030 uint16_t *intbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * width2 * height);
1031 uint16_t *tmpbuf =
1032 (uint16_t *)aom_malloc(sizeof(uint16_t) * AOMMAX(width, height));
1033 uint16_t *arrbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * height);
1034 uint16_t *arrbuf2 = (uint16_t *)aom_malloc(sizeof(uint16_t) * height2);
1035 if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL)
1036 goto Error;
1037 for (i = 0; i < height; ++i) {
1038 highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width,
1039 intbuf + width2 * i, width2, tmpbuf, bd);
1040 }
1041 for (i = 0; i < width2; ++i) {
1042 highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf);
1043 highbd_resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf, bd);
1044 highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2,
1045 arrbuf2);
1046 }
1047
1048 Error:
1049 aom_free(intbuf);
1050 aom_free(tmpbuf);
1051 aom_free(arrbuf);
1052 aom_free(arrbuf2);
1053 }
1054
highbd_upscale_normative_rect(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int x_step_qn,int x0_qn,int pad_left,int pad_right,int bd)1055 static bool highbd_upscale_normative_rect(const uint8_t *const input,
1056 int height, int width, int in_stride,
1057 uint8_t *output, int height2,
1058 int width2, int out_stride,
1059 int x_step_qn, int x0_qn,
1060 int pad_left, int pad_right, int bd) {
1061 assert(width > 0);
1062 assert(height > 0);
1063 assert(width2 > 0);
1064 assert(height2 > 0);
1065 assert(height2 == height);
1066
1067 // Extend the left/right pixels of the tile column if needed
1068 // (either because we can't sample from other tiles, or because we're at
1069 // a frame edge).
1070 // Save the overwritten pixels into tmp_left and tmp_right.
1071 // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra
1072 // column of border pixels compared to what we'd naively think.
1073 const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1;
1074 const int border_size = border_cols * sizeof(uint16_t);
1075 uint16_t *tmp_left =
1076 NULL; // Silence spurious "may be used uninitialized" warnings
1077 uint16_t *tmp_right = NULL;
1078 uint16_t *const input16 = CONVERT_TO_SHORTPTR(input);
1079 uint16_t *const in_tl = input16 - border_cols;
1080 uint16_t *const in_tr = input16 + width;
1081 if (pad_left) {
1082 tmp_left = (uint16_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height);
1083 if (!tmp_left) return false;
1084 for (int i = 0; i < height; i++) {
1085 memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_size);
1086 aom_memset16(in_tl + i * in_stride, input16[i * in_stride], border_cols);
1087 }
1088 }
1089 if (pad_right) {
1090 tmp_right =
1091 (uint16_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height);
1092 if (!tmp_right) {
1093 aom_free(tmp_left);
1094 return false;
1095 }
1096 for (int i = 0; i < height; i++) {
1097 memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_size);
1098 aom_memset16(in_tr + i * in_stride, input16[i * in_stride + width - 1],
1099 border_cols);
1100 }
1101 }
1102
1103 av1_highbd_convolve_horiz_rs(CONVERT_TO_SHORTPTR(input - 1), in_stride,
1104 CONVERT_TO_SHORTPTR(output), out_stride, width2,
1105 height2, &av1_resize_filter_normative[0][0],
1106 x0_qn, x_step_qn, bd);
1107
1108 // Restore the left/right border pixels
1109 if (pad_left) {
1110 for (int i = 0; i < height; i++) {
1111 memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_size);
1112 }
1113 aom_free(tmp_left);
1114 }
1115 if (pad_right) {
1116 for (int i = 0; i < height; i++) {
1117 memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_size);
1118 }
1119 aom_free(tmp_right);
1120 }
1121 return true;
1122 }
1123 #endif // CONFIG_AV1_HIGHBITDEPTH
1124
av1_resize_frame420(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)1125 void av1_resize_frame420(const uint8_t *const y, int y_stride,
1126 const uint8_t *const u, const uint8_t *const v,
1127 int uv_stride, int height, int width, uint8_t *oy,
1128 int oy_stride, uint8_t *ou, uint8_t *ov,
1129 int ouv_stride, int oheight, int owidth) {
1130 av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
1131 av1_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
1132 owidth / 2, ouv_stride);
1133 av1_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
1134 owidth / 2, ouv_stride);
1135 }
1136
av1_resize_frame422(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)1137 void av1_resize_frame422(const uint8_t *const y, int y_stride,
1138 const uint8_t *const u, const uint8_t *const v,
1139 int uv_stride, int height, int width, uint8_t *oy,
1140 int oy_stride, uint8_t *ou, uint8_t *ov,
1141 int ouv_stride, int oheight, int owidth) {
1142 av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
1143 av1_resize_plane(u, height, width / 2, uv_stride, ou, oheight, owidth / 2,
1144 ouv_stride);
1145 av1_resize_plane(v, height, width / 2, uv_stride, ov, oheight, owidth / 2,
1146 ouv_stride);
1147 }
1148
av1_resize_frame444(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)1149 void av1_resize_frame444(const uint8_t *const y, int y_stride,
1150 const uint8_t *const u, const uint8_t *const v,
1151 int uv_stride, int height, int width, uint8_t *oy,
1152 int oy_stride, uint8_t *ou, uint8_t *ov,
1153 int ouv_stride, int oheight, int owidth) {
1154 av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride);
1155 av1_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
1156 ouv_stride);
1157 av1_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
1158 ouv_stride);
1159 }
1160
1161 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_resize_frame420(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1162 void av1_highbd_resize_frame420(const uint8_t *const y, int y_stride,
1163 const uint8_t *const u, const uint8_t *const v,
1164 int uv_stride, int height, int width,
1165 uint8_t *oy, int oy_stride, uint8_t *ou,
1166 uint8_t *ov, int ouv_stride, int oheight,
1167 int owidth, int bd) {
1168 av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1169 oy_stride, bd);
1170 av1_highbd_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
1171 owidth / 2, ouv_stride, bd);
1172 av1_highbd_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
1173 owidth / 2, ouv_stride, bd);
1174 }
1175
av1_highbd_resize_frame422(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1176 void av1_highbd_resize_frame422(const uint8_t *const y, int y_stride,
1177 const uint8_t *const u, const uint8_t *const v,
1178 int uv_stride, int height, int width,
1179 uint8_t *oy, int oy_stride, uint8_t *ou,
1180 uint8_t *ov, int ouv_stride, int oheight,
1181 int owidth, int bd) {
1182 av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1183 oy_stride, bd);
1184 av1_highbd_resize_plane(u, height, width / 2, uv_stride, ou, oheight,
1185 owidth / 2, ouv_stride, bd);
1186 av1_highbd_resize_plane(v, height, width / 2, uv_stride, ov, oheight,
1187 owidth / 2, ouv_stride, bd);
1188 }
1189
av1_highbd_resize_frame444(const uint8_t * const y,int y_stride,const uint8_t * const u,const uint8_t * const v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1190 void av1_highbd_resize_frame444(const uint8_t *const y, int y_stride,
1191 const uint8_t *const u, const uint8_t *const v,
1192 int uv_stride, int height, int width,
1193 uint8_t *oy, int oy_stride, uint8_t *ou,
1194 uint8_t *ov, int ouv_stride, int oheight,
1195 int owidth, int bd) {
1196 av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1197 oy_stride, bd);
1198 av1_highbd_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
1199 ouv_stride, bd);
1200 av1_highbd_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
1201 ouv_stride, bd);
1202 }
1203 #endif // CONFIG_AV1_HIGHBITDEPTH
1204
av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst,const InterpFilter filter,const int phase_scaler,const int num_planes)1205 void av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG *src,
1206 YV12_BUFFER_CONFIG *dst,
1207 const InterpFilter filter,
1208 const int phase_scaler,
1209 const int num_planes) {
1210 assert(filter == BILINEAR || filter == EIGHTTAP_SMOOTH ||
1211 filter == EIGHTTAP_REGULAR);
1212 const InterpKernel *const kernel =
1213 (const InterpKernel *)av1_interp_filter_params_list[filter].filter_ptr;
1214
1215 for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
1216 const int is_uv = i > 0;
1217 const int src_w = src->crop_widths[is_uv];
1218 const int src_h = src->crop_heights[is_uv];
1219 const uint8_t *src_buffer = src->buffers[i];
1220 const int src_stride = src->strides[is_uv];
1221 const int dst_w = dst->crop_widths[is_uv];
1222 const int dst_h = dst->crop_heights[is_uv];
1223 uint8_t *dst_buffer = dst->buffers[i];
1224 const int dst_stride = dst->strides[is_uv];
1225 for (int y = 0; y < dst_h; y += 16) {
1226 const int y_q4 = y * 16 * src_h / dst_h + phase_scaler;
1227 for (int x = 0; x < dst_w; x += 16) {
1228 const int x_q4 = x * 16 * src_w / dst_w + phase_scaler;
1229 const uint8_t *src_ptr =
1230 src_buffer + y * src_h / dst_h * src_stride + x * src_w / dst_w;
1231 uint8_t *dst_ptr = dst_buffer + y * dst_stride + x;
1232
1233 // Width and height of the actual working area.
1234 const int work_w = AOMMIN(16, dst_w - x);
1235 const int work_h = AOMMIN(16, dst_h - y);
1236 // SIMD versions of aom_scaled_2d() have some trouble handling
1237 // nonstandard sizes, so fall back on the C version to handle borders.
1238 if (work_w != 16 || work_h != 16) {
1239 aom_scaled_2d_c(src_ptr, src_stride, dst_ptr, dst_stride, kernel,
1240 x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
1241 16 * src_h / dst_h, work_w, work_h);
1242 } else {
1243 aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel,
1244 x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
1245 16 * src_h / dst_h, 16, 16);
1246 }
1247 }
1248 }
1249 }
1250 aom_extend_frame_borders(dst, num_planes);
1251 }
1252
av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst,int bd,const int num_planes)1253 void av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
1254 YV12_BUFFER_CONFIG *dst, int bd,
1255 const int num_planes) {
1256 // TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t
1257
1258 // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
1259 // the static analysis warnings.
1260 for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
1261 const int is_uv = i > 0;
1262 #if CONFIG_AV1_HIGHBITDEPTH
1263 if (src->flags & YV12_FLAG_HIGHBITDEPTH)
1264 av1_highbd_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1265 src->crop_widths[is_uv], src->strides[is_uv],
1266 dst->buffers[i], dst->crop_heights[is_uv],
1267 dst->crop_widths[is_uv], dst->strides[is_uv], bd);
1268 else
1269 av1_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1270 src->crop_widths[is_uv], src->strides[is_uv],
1271 dst->buffers[i], dst->crop_heights[is_uv],
1272 dst->crop_widths[is_uv], dst->strides[is_uv]);
1273 #else
1274 (void)bd;
1275 av1_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1276 src->crop_widths[is_uv], src->strides[is_uv],
1277 dst->buffers[i], dst->crop_heights[is_uv],
1278 dst->crop_widths[is_uv], dst->strides[is_uv]);
1279 #endif
1280 }
1281 aom_extend_frame_borders(dst, num_planes);
1282 }
1283
av1_upscale_normative_rows(const AV1_COMMON * cm,const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int plane,int rows)1284 void av1_upscale_normative_rows(const AV1_COMMON *cm, const uint8_t *src,
1285 int src_stride, uint8_t *dst, int dst_stride,
1286 int plane, int rows) {
1287 const int is_uv = (plane > 0);
1288 const int ss_x = is_uv && cm->seq_params->subsampling_x;
1289 const int downscaled_plane_width = ROUND_POWER_OF_TWO(cm->width, ss_x);
1290 const int upscaled_plane_width =
1291 ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
1292 const int superres_denom = cm->superres_scale_denominator;
1293
1294 TileInfo tile_col;
1295 const int32_t x_step_qn = av1_get_upscale_convolve_step(
1296 downscaled_plane_width, upscaled_plane_width);
1297 int32_t x0_qn = get_upscale_convolve_x0(downscaled_plane_width,
1298 upscaled_plane_width, x_step_qn);
1299
1300 for (int j = 0; j < cm->tiles.cols; j++) {
1301 av1_tile_set_col(&tile_col, cm, j);
1302 // Determine the limits of this tile column in both the source
1303 // and destination images.
1304 // Note: The actual location which we start sampling from is
1305 // (downscaled_x0 - 1 + (x0_qn/2^14)), and this quantity increases
1306 // by exactly dst_width * (x_step_qn/2^14) pixels each iteration.
1307 const int downscaled_x0 = tile_col.mi_col_start << (MI_SIZE_LOG2 - ss_x);
1308 const int downscaled_x1 = tile_col.mi_col_end << (MI_SIZE_LOG2 - ss_x);
1309 const int src_width = downscaled_x1 - downscaled_x0;
1310
1311 const int upscaled_x0 = (downscaled_x0 * superres_denom) / SCALE_NUMERATOR;
1312 int upscaled_x1;
1313 if (j == cm->tiles.cols - 1) {
1314 // Note that we can't just use AOMMIN here - due to rounding,
1315 // (downscaled_x1 * superres_denom) / SCALE_NUMERATOR may be less than
1316 // upscaled_plane_width.
1317 upscaled_x1 = upscaled_plane_width;
1318 } else {
1319 upscaled_x1 = (downscaled_x1 * superres_denom) / SCALE_NUMERATOR;
1320 }
1321
1322 const uint8_t *const src_ptr = src + downscaled_x0;
1323 uint8_t *const dst_ptr = dst + upscaled_x0;
1324 const int dst_width = upscaled_x1 - upscaled_x0;
1325
1326 const int pad_left = (j == 0);
1327 const int pad_right = (j == cm->tiles.cols - 1);
1328
1329 bool success;
1330 #if CONFIG_AV1_HIGHBITDEPTH
1331 if (cm->seq_params->use_highbitdepth)
1332 success = highbd_upscale_normative_rect(
1333 src_ptr, rows, src_width, src_stride, dst_ptr, rows, dst_width,
1334 dst_stride, x_step_qn, x0_qn, pad_left, pad_right,
1335 cm->seq_params->bit_depth);
1336 else
1337 success = upscale_normative_rect(src_ptr, rows, src_width, src_stride,
1338 dst_ptr, rows, dst_width, dst_stride,
1339 x_step_qn, x0_qn, pad_left, pad_right);
1340 #else
1341 success = upscale_normative_rect(src_ptr, rows, src_width, src_stride,
1342 dst_ptr, rows, dst_width, dst_stride,
1343 x_step_qn, x0_qn, pad_left, pad_right);
1344 #endif
1345 if (!success) {
1346 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1347 "Error upscaling frame");
1348 }
1349 // Update the fractional pixel offset to prepare for the next tile column.
1350 x0_qn += (dst_width * x_step_qn) - (src_width << RS_SCALE_SUBPEL_BITS);
1351 }
1352 }
1353
av1_upscale_normative_and_extend_frame(const AV1_COMMON * cm,const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst)1354 void av1_upscale_normative_and_extend_frame(const AV1_COMMON *cm,
1355 const YV12_BUFFER_CONFIG *src,
1356 YV12_BUFFER_CONFIG *dst) {
1357 const int num_planes = av1_num_planes(cm);
1358 for (int i = 0; i < num_planes; ++i) {
1359 const int is_uv = (i > 0);
1360 av1_upscale_normative_rows(cm, src->buffers[i], src->strides[is_uv],
1361 dst->buffers[i], dst->strides[is_uv], i,
1362 src->crop_heights[is_uv]);
1363 }
1364
1365 aom_extend_frame_borders(dst, num_planes);
1366 }
1367
av1_realloc_and_scale_if_required(AV1_COMMON * cm,YV12_BUFFER_CONFIG * unscaled,YV12_BUFFER_CONFIG * scaled,const InterpFilter filter,const int phase,const bool use_optimized_scaler,const bool for_psnr,const int border_in_pixels,const bool alloc_y_buffer_8bit)1368 YV12_BUFFER_CONFIG *av1_realloc_and_scale_if_required(
1369 AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
1370 const InterpFilter filter, const int phase, const bool use_optimized_scaler,
1371 const bool for_psnr, const int border_in_pixels,
1372 const bool alloc_y_buffer_8bit) {
1373 // If scaling is performed for the sole purpose of calculating PSNR, then our
1374 // target dimensions are superres upscaled width/height. Otherwise our target
1375 // dimensions are coded width/height.
1376 const int scaled_width = for_psnr ? cm->superres_upscaled_width : cm->width;
1377 const int scaled_height =
1378 for_psnr ? cm->superres_upscaled_height : cm->height;
1379 const bool scaling_required = (scaled_width != unscaled->y_crop_width) ||
1380 (scaled_height != unscaled->y_crop_height);
1381
1382 if (scaling_required) {
1383 const int num_planes = av1_num_planes(cm);
1384 const SequenceHeader *seq_params = cm->seq_params;
1385
1386 // Reallocate the frame buffer based on the target dimensions when scaling
1387 // is required.
1388 if (aom_realloc_frame_buffer(
1389 scaled, scaled_width, scaled_height, seq_params->subsampling_x,
1390 seq_params->subsampling_y, seq_params->use_highbitdepth,
1391 border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL,
1392 alloc_y_buffer_8bit, 0))
1393 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1394 "Failed to allocate scaled buffer");
1395
1396 bool has_optimized_scaler = av1_has_optimized_scaler(
1397 unscaled->y_crop_width, unscaled->y_crop_height, scaled_width,
1398 scaled_height);
1399 if (num_planes > 1) {
1400 has_optimized_scaler = has_optimized_scaler &&
1401 av1_has_optimized_scaler(unscaled->uv_crop_width,
1402 unscaled->uv_crop_height,
1403 scaled->uv_crop_width,
1404 scaled->uv_crop_height);
1405 }
1406
1407 #if CONFIG_AV1_HIGHBITDEPTH
1408 if (use_optimized_scaler && has_optimized_scaler &&
1409 cm->seq_params->bit_depth == AOM_BITS_8) {
1410 av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes);
1411 } else {
1412 av1_resize_and_extend_frame_nonnormative(
1413 unscaled, scaled, (int)cm->seq_params->bit_depth, num_planes);
1414 }
1415 #else
1416 if (use_optimized_scaler && has_optimized_scaler) {
1417 av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes);
1418 } else {
1419 av1_resize_and_extend_frame_nonnormative(
1420 unscaled, scaled, (int)cm->seq_params->bit_depth, num_planes);
1421 }
1422 #endif
1423 return scaled;
1424 } else {
1425 return unscaled;
1426 }
1427 }
1428
1429 // Calculates the scaled dimension given the original dimension and the scale
1430 // denominator.
calculate_scaled_size_helper(int * dim,int denom)1431 static void calculate_scaled_size_helper(int *dim, int denom) {
1432 if (denom != SCALE_NUMERATOR) {
1433 // We need to ensure the constraint in "Appendix A" of the spec:
1434 // * FrameWidth is greater than or equal to 16
1435 // * FrameHeight is greater than or equal to 16
1436 // For this, we clamp the downscaled dimension to at least 16. One
1437 // exception: if original dimension itself was < 16, then we keep the
1438 // downscaled dimension to be same as the original, to ensure that resizing
1439 // is valid.
1440 const int min_dim = AOMMIN(16, *dim);
1441 // Use this version if we need *dim to be even
1442 // *width = (*width * SCALE_NUMERATOR + denom) / (2 * denom);
1443 // *width <<= 1;
1444 *dim = (*dim * SCALE_NUMERATOR + denom / 2) / (denom);
1445 *dim = AOMMAX(*dim, min_dim);
1446 }
1447 }
1448
av1_calculate_scaled_size(int * width,int * height,int resize_denom)1449 void av1_calculate_scaled_size(int *width, int *height, int resize_denom) {
1450 calculate_scaled_size_helper(width, resize_denom);
1451 calculate_scaled_size_helper(height, resize_denom);
1452 }
1453
av1_calculate_scaled_superres_size(int * width,int * height,int superres_denom)1454 void av1_calculate_scaled_superres_size(int *width, int *height,
1455 int superres_denom) {
1456 (void)height;
1457 calculate_scaled_size_helper(width, superres_denom);
1458 }
1459
av1_calculate_unscaled_superres_size(int * width,int * height,int denom)1460 void av1_calculate_unscaled_superres_size(int *width, int *height, int denom) {
1461 if (denom != SCALE_NUMERATOR) {
1462 // Note: av1_calculate_scaled_superres_size() rounds *up* after division
1463 // when the resulting dimensions are odd. So here, we round *down*.
1464 *width = *width * denom / SCALE_NUMERATOR;
1465 (void)height;
1466 }
1467 }
1468
1469 // Copy only the config data from 'src' to 'dst'.
copy_buffer_config(const YV12_BUFFER_CONFIG * const src,YV12_BUFFER_CONFIG * const dst)1470 static void copy_buffer_config(const YV12_BUFFER_CONFIG *const src,
1471 YV12_BUFFER_CONFIG *const dst) {
1472 dst->bit_depth = src->bit_depth;
1473 dst->color_primaries = src->color_primaries;
1474 dst->transfer_characteristics = src->transfer_characteristics;
1475 dst->matrix_coefficients = src->matrix_coefficients;
1476 dst->monochrome = src->monochrome;
1477 dst->chroma_sample_position = src->chroma_sample_position;
1478 dst->color_range = src->color_range;
1479 }
1480
1481 // TODO(afergs): Look for in-place upscaling
1482 // TODO(afergs): aom_ vs av1_ functions? Which can I use?
1483 // Upscale decoded image.
av1_superres_upscale(AV1_COMMON * cm,BufferPool * const pool)1484 void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool) {
1485 const int num_planes = av1_num_planes(cm);
1486 if (!av1_superres_scaled(cm)) return;
1487 const SequenceHeader *const seq_params = cm->seq_params;
1488 const int byte_alignment = cm->features.byte_alignment;
1489
1490 YV12_BUFFER_CONFIG copy_buffer;
1491 memset(©_buffer, 0, sizeof(copy_buffer));
1492
1493 YV12_BUFFER_CONFIG *const frame_to_show = &cm->cur_frame->buf;
1494
1495 const int aligned_width = ALIGN_POWER_OF_TWO(cm->width, 3);
1496 if (aom_alloc_frame_buffer(
1497 ©_buffer, aligned_width, cm->height, seq_params->subsampling_x,
1498 seq_params->subsampling_y, seq_params->use_highbitdepth,
1499 AOM_BORDER_IN_PIXELS, byte_alignment, 0))
1500 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1501 "Failed to allocate copy buffer for superres upscaling");
1502
1503 // Copy function assumes the frames are the same size.
1504 // Note that it does not copy YV12_BUFFER_CONFIG config data.
1505 aom_yv12_copy_frame(frame_to_show, ©_buffer, num_planes);
1506
1507 assert(copy_buffer.y_crop_width == aligned_width);
1508 assert(copy_buffer.y_crop_height == cm->height);
1509
1510 // Realloc the current frame buffer at a higher resolution in place.
1511 if (pool != NULL) {
1512 // Use callbacks if on the decoder.
1513 aom_codec_frame_buffer_t *fb = &cm->cur_frame->raw_frame_buffer;
1514 aom_release_frame_buffer_cb_fn_t release_fb_cb = pool->release_fb_cb;
1515 aom_get_frame_buffer_cb_fn_t cb = pool->get_fb_cb;
1516 void *cb_priv = pool->cb_priv;
1517
1518 lock_buffer_pool(pool);
1519 // Realloc with callback does not release the frame buffer - release first.
1520 if (release_fb_cb(cb_priv, fb)) {
1521 unlock_buffer_pool(pool);
1522 aom_internal_error(
1523 cm->error, AOM_CODEC_MEM_ERROR,
1524 "Failed to free current frame buffer before superres upscaling");
1525 }
1526 // aom_realloc_frame_buffer() leaves config data for frame_to_show intact
1527 if (aom_realloc_frame_buffer(
1528 frame_to_show, cm->superres_upscaled_width,
1529 cm->superres_upscaled_height, seq_params->subsampling_x,
1530 seq_params->subsampling_y, seq_params->use_highbitdepth,
1531 AOM_BORDER_IN_PIXELS, byte_alignment, fb, cb, cb_priv, 0, 0)) {
1532 unlock_buffer_pool(pool);
1533 aom_internal_error(
1534 cm->error, AOM_CODEC_MEM_ERROR,
1535 "Failed to allocate current frame buffer for superres upscaling");
1536 }
1537 unlock_buffer_pool(pool);
1538 } else {
1539 // Make a copy of the config data for frame_to_show in copy_buffer
1540 copy_buffer_config(frame_to_show, ©_buffer);
1541
1542 // Don't use callbacks on the encoder.
1543 // aom_alloc_frame_buffer() clears the config data for frame_to_show
1544 if (aom_alloc_frame_buffer(
1545 frame_to_show, cm->superres_upscaled_width,
1546 cm->superres_upscaled_height, seq_params->subsampling_x,
1547 seq_params->subsampling_y, seq_params->use_highbitdepth,
1548 AOM_BORDER_IN_PIXELS, byte_alignment, 0))
1549 aom_internal_error(
1550 cm->error, AOM_CODEC_MEM_ERROR,
1551 "Failed to reallocate current frame buffer for superres upscaling");
1552
1553 // Restore config data back to frame_to_show
1554 copy_buffer_config(©_buffer, frame_to_show);
1555 }
1556 // TODO(afergs): verify frame_to_show is correct after realloc
1557 // encoder:
1558 // decoder:
1559
1560 assert(frame_to_show->y_crop_width == cm->superres_upscaled_width);
1561 assert(frame_to_show->y_crop_height == cm->superres_upscaled_height);
1562
1563 // Scale up and back into frame_to_show.
1564 assert(frame_to_show->y_crop_width != cm->width);
1565 av1_upscale_normative_and_extend_frame(cm, ©_buffer, frame_to_show);
1566
1567 // Free the copy buffer
1568 aom_free_frame_buffer(©_buffer);
1569 }
1570