• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <string.h>
16 
17 #include "aom_mem/aom_mem.h"
18 
19 #include "av1/common/entropy.h"
20 #include "av1/common/pred_common.h"
21 #include "av1/common/scan.h"
22 #include "av1/common/seg_common.h"
23 
24 #include "av1/encoder/cost.h"
25 #include "av1/encoder/encoder.h"
26 #include "av1/encoder/encodetxb.h"
27 #include "av1/encoder/rdopt.h"
28 #include "av1/encoder/tokenize.h"
29 
av1_fast_palette_color_index_context_on_edge(const uint8_t * color_map,int stride,int r,int c,int * color_idx)30 static AOM_INLINE int av1_fast_palette_color_index_context_on_edge(
31     const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
32   const bool has_left = (c - 1 >= 0);
33   const bool has_above = (r - 1 >= 0);
34   assert(r > 0 || c > 0);
35   assert(has_above ^ has_left);
36   assert(color_idx);
37   (void)has_left;
38 
39   const uint8_t color_neighbor = has_above
40                                      ? color_map[(r - 1) * stride + (c - 0)]
41                                      : color_map[(r - 0) * stride + (c - 1)];
42   // If the neighbor color has higher index than current color index, then we
43   // move up by 1.
44   const uint8_t current_color = *color_idx = color_map[r * stride + c];
45   if (color_neighbor > current_color) {
46     (*color_idx)++;
47   } else if (color_neighbor == current_color) {
48     *color_idx = 0;
49   }
50 
51   // Get hash value of context.
52   // The non-diagonal neighbors get a weight of 2.
53   const uint8_t color_score = 2;
54   const uint8_t hash_multiplier = 1;
55   const uint8_t color_index_ctx_hash = color_score * hash_multiplier;
56 
57   // Lookup context from hash.
58   const int color_index_ctx =
59       av1_palette_color_index_context_lookup[color_index_ctx_hash];
60   assert(color_index_ctx == 0);
61   (void)color_index_ctx;
62   return 0;
63 }
64 
65 #define SWAP(i, j)                           \
66   do {                                       \
67     const uint8_t tmp_score = score_rank[i]; \
68     const uint8_t tmp_color = color_rank[i]; \
69     score_rank[i] = score_rank[j];           \
70     color_rank[i] = color_rank[j];           \
71     score_rank[j] = tmp_score;               \
72     color_rank[j] = tmp_color;               \
73   } while (0)
74 #define INVALID_COLOR_IDX (UINT8_MAX)
75 
76 // A faster version of av1_get_palette_color_index_context used by the encoder
77 // exploiting the fact that the encoder does not need to maintain a color order.
av1_fast_palette_color_index_context(const uint8_t * color_map,int stride,int r,int c,int * color_idx)78 static AOM_INLINE int av1_fast_palette_color_index_context(
79     const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
80   assert(r > 0 || c > 0);
81 
82   const bool has_above = (r - 1 >= 0);
83   const bool has_left = (c - 1 >= 0);
84   assert(has_above || has_left);
85   if (has_above ^ has_left) {
86     return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c,
87                                                         color_idx);
88   }
89 
90   // This goes in the order of left, top, and top-left. This has the advantage
91   // that unless anything here are not distinct or invalid, this will already
92   // be in sorted order. Furthermore, if either of the first two is
93   // invalid, we know the last one is also invalid.
94   uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS];
95   color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)];
96   color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)];
97   color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)];
98 
99   // Aggregate duplicated values.
100   // Since our array is so small, using a couple if statements is faster
101   uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 };
102   uint8_t num_invalid_colors = 0;
103   if (color_neighbors[0] == color_neighbors[1]) {
104     scores[0] += scores[1];
105     color_neighbors[1] = INVALID_COLOR_IDX;
106     num_invalid_colors += 1;
107 
108     if (color_neighbors[0] == color_neighbors[2]) {
109       scores[0] += scores[2];
110       num_invalid_colors += 1;
111     }
112   } else if (color_neighbors[0] == color_neighbors[2]) {
113     scores[0] += scores[2];
114     num_invalid_colors += 1;
115   } else if (color_neighbors[1] == color_neighbors[2]) {
116     scores[1] += scores[2];
117     num_invalid_colors += 1;
118   }
119 
120   const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors;
121 
122   uint8_t *color_rank = color_neighbors;
123   uint8_t *score_rank = scores;
124 
125   // Sort everything
126   if (num_valid_colors > 1) {
127     if (color_neighbors[1] == INVALID_COLOR_IDX) {
128       scores[1] = scores[2];
129       color_neighbors[1] = color_neighbors[2];
130     }
131 
132     // We need to swap the first two elements if they have the same score but
133     // the color indices are not in the right order
134     if (score_rank[0] < score_rank[1] ||
135         (score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) {
136       SWAP(0, 1);
137     }
138     if (num_valid_colors > 2) {
139       if (score_rank[0] < score_rank[2]) {
140         SWAP(0, 2);
141       }
142       if (score_rank[1] < score_rank[2]) {
143         SWAP(1, 2);
144       }
145     }
146   }
147 
148   // If any of the neighbor colors has higher index than current color index,
149   // then we move up by 1 unless the current color is the same as one of the
150   // neighbors.
151   const uint8_t current_color = *color_idx = color_map[r * stride + c];
152   for (int idx = 0; idx < num_valid_colors; idx++) {
153     if (color_rank[idx] > current_color) {
154       (*color_idx)++;
155     } else if (color_rank[idx] == current_color) {
156       *color_idx = idx;
157       break;
158     }
159   }
160 
161   // Get hash value of context.
162   uint8_t color_index_ctx_hash = 0;
163   static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 };
164   for (int idx = 0; idx < num_valid_colors; ++idx) {
165     color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx];
166   }
167   assert(color_index_ctx_hash > 0);
168   assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH);
169 
170   // Lookup context from hash.
171   const int color_index_ctx = 9 - color_index_ctx_hash;
172   assert(color_index_ctx ==
173          av1_palette_color_index_context_lookup[color_index_ctx_hash]);
174   assert(color_index_ctx >= 0);
175   assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS);
176   return color_index_ctx;
177 }
178 #undef INVALID_COLOR_IDX
179 #undef SWAP
180 
cost_and_tokenize_map(Av1ColorMapParam * param,TokenExtra ** t,int plane,int calc_rate,int allow_update_cdf,FRAME_COUNTS * counts)181 static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t,
182                                  int plane, int calc_rate, int allow_update_cdf,
183                                  FRAME_COUNTS *counts) {
184   const uint8_t *const color_map = param->color_map;
185   MapCdf map_cdf = param->map_cdf;
186   ColorCost color_cost = param->color_cost;
187   const int plane_block_width = param->plane_width;
188   const int rows = param->rows;
189   const int cols = param->cols;
190   const int n = param->n_colors;
191   const int palette_size_idx = n - PALETTE_MIN_SIZE;
192   int this_rate = 0;
193 
194   (void)plane;
195   (void)counts;
196 
197   for (int k = 1; k < rows + cols - 1; ++k) {
198     for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) {
199       int i = k - j;
200       int color_new_idx;
201       const int color_ctx = av1_fast_palette_color_index_context(
202           color_map, plane_block_width, i, j, &color_new_idx);
203       assert(color_new_idx >= 0 && color_new_idx < n);
204       if (calc_rate) {
205         this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx];
206       } else {
207         (*t)->token = color_new_idx;
208         (*t)->color_ctx = color_ctx;
209         ++(*t);
210         if (allow_update_cdf)
211           update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n);
212 #if CONFIG_ENTROPY_STATS
213         if (plane) {
214           ++counts->palette_uv_color_index[palette_size_idx][color_ctx]
215                                           [color_new_idx];
216         } else {
217           ++counts->palette_y_color_index[palette_size_idx][color_ctx]
218                                          [color_new_idx];
219         }
220 #endif
221       }
222     }
223   }
224   if (calc_rate) return this_rate;
225   return 0;
226 }
227 
get_palette_params(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,Av1ColorMapParam * params)228 static void get_palette_params(const MACROBLOCK *const x, int plane,
229                                BLOCK_SIZE bsize, Av1ColorMapParam *params) {
230   const MACROBLOCKD *const xd = &x->e_mbd;
231   const MB_MODE_INFO *const mbmi = xd->mi[0];
232   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
233   params->color_map = xd->plane[plane].color_index_map;
234   params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
235                           : xd->tile_ctx->palette_y_color_index_cdf;
236   params->color_cost = plane ? x->mode_costs.palette_uv_color_cost
237                              : x->mode_costs.palette_y_color_cost;
238   params->n_colors = pmi->palette_size[plane];
239   av1_get_block_dimensions(bsize, plane, xd, &params->plane_width, NULL,
240                            &params->rows, &params->cols);
241 }
242 
243 // TODO(any): Remove this function
get_color_map_params(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type,Av1ColorMapParam * params)244 static void get_color_map_params(const MACROBLOCK *const x, int plane,
245                                  BLOCK_SIZE bsize, TX_SIZE tx_size,
246                                  COLOR_MAP_TYPE type,
247                                  Av1ColorMapParam *params) {
248   (void)tx_size;
249   memset(params, 0, sizeof(*params));
250   switch (type) {
251     case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break;
252     default: assert(0 && "Invalid color map type"); return;
253   }
254 }
255 
av1_cost_color_map(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type)256 int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize,
257                        TX_SIZE tx_size, COLOR_MAP_TYPE type) {
258   assert(plane == 0 || plane == 1);
259   Av1ColorMapParam color_map_params;
260   get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
261   return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL);
262 }
263 
av1_tokenize_color_map(const MACROBLOCK * const x,int plane,TokenExtra ** t,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type,int allow_update_cdf,FRAME_COUNTS * counts)264 void av1_tokenize_color_map(const MACROBLOCK *const x, int plane,
265                             TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size,
266                             COLOR_MAP_TYPE type, int allow_update_cdf,
267                             FRAME_COUNTS *counts) {
268   assert(plane == 0 || plane == 1);
269   Av1ColorMapParam color_map_params;
270   get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
271   // The first color index does not use context or entropy.
272   (*t)->token = color_map_params.color_map[0];
273   (*t)->color_ctx = -1;
274   ++(*t);
275   cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf,
276                         counts);
277 }
278 
tokenize_vartx(ThreadData * td,TX_SIZE tx_size,BLOCK_SIZE plane_bsize,int blk_row,int blk_col,int block,int plane,void * arg)279 static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size,
280                            BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
281                            int block, int plane, void *arg) {
282   MACROBLOCK *const x = &td->mb;
283   MACROBLOCKD *const xd = &x->e_mbd;
284   MB_MODE_INFO *const mbmi = xd->mi[0];
285   const struct macroblockd_plane *const pd = &xd->plane[plane];
286   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
287   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
288 
289   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
290 
291   const TX_SIZE plane_tx_size =
292       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
293                                     pd->subsampling_y)
294             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
295                                                          blk_col)];
296 
297   if (tx_size == plane_tx_size || plane) {
298     plane_bsize =
299         get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
300 
301     struct tokenize_b_args *args = arg;
302     if (args->allow_update_cdf)
303       av1_update_and_record_txb_context(plane, block, blk_row, blk_col,
304                                         plane_bsize, tx_size, arg);
305     else
306       av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize,
307                              tx_size, arg);
308 
309   } else {
310     // Half the block size in transform block unit.
311     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
312     const int bsw = tx_size_wide_unit[sub_txs];
313     const int bsh = tx_size_high_unit[sub_txs];
314     const int step = bsw * bsh;
315     const int row_end =
316         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
317     const int col_end =
318         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
319 
320     assert(bsw > 0 && bsh > 0);
321 
322     for (int row = 0; row < row_end; row += bsh) {
323       const int offsetr = blk_row + row;
324       for (int col = 0; col < col_end; col += bsw) {
325         const int offsetc = blk_col + col;
326 
327         tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane,
328                        arg);
329         block += step;
330       }
331     }
332   }
333 }
334 
av1_tokenize_sb_vartx(const AV1_COMP * cpi,ThreadData * td,RUN_TYPE dry_run,BLOCK_SIZE bsize,int * rate,uint8_t allow_update_cdf)335 void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td,
336                            RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
337                            uint8_t allow_update_cdf) {
338   assert(bsize < BLOCK_SIZES_ALL);
339   const AV1_COMMON *const cm = &cpi->common;
340   MACROBLOCK *const x = &td->mb;
341   MACROBLOCKD *const xd = &x->e_mbd;
342   const int mi_row = xd->mi_row;
343   const int mi_col = xd->mi_col;
344   if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
345     return;
346 
347   const int num_planes = av1_num_planes(cm);
348   MB_MODE_INFO *const mbmi = xd->mi[0];
349   struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
350 
351   if (mbmi->skip_txfm) {
352     av1_reset_entropy_context(xd, bsize, num_planes);
353     return;
354   }
355 
356   for (int plane = 0; plane < num_planes; ++plane) {
357     if (plane && !xd->is_chroma_ref) break;
358     const struct macroblockd_plane *const pd = &xd->plane[plane];
359     const int ss_x = pd->subsampling_x;
360     const int ss_y = pd->subsampling_y;
361     const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
362     assert(plane_bsize < BLOCK_SIZES_ALL);
363     const int mi_width = mi_size_wide[plane_bsize];
364     const int mi_height = mi_size_high[plane_bsize];
365     const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
366     const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
367     const int bw = mi_size_wide[txb_size];
368     const int bh = mi_size_high[txb_size];
369     int block = 0;
370     const int step =
371         tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
372 
373     const BLOCK_SIZE max_unit_bsize =
374         get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
375     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
376     int mu_blocks_high = mi_size_high[max_unit_bsize];
377 
378     mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
379     mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
380 
381     for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
382       for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
383         const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
384         const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
385         for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
386           for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
387             tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col,
388                            block, plane, &arg);
389             block += step;
390           }
391         }
392       }
393     }
394   }
395   if (rate) *rate += arg.this_rate;
396 }
397