• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22 
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)
25 
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28 
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30                                              int num_pixels) {
31   int i;
32   for (i = 0; i + 4 <= num_pixels; i += 4) {
33     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
35     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
37     const __m128i out = _mm_sub_epi8(in, C);
38     _mm_storeu_si128((__m128i*)&argb_data[i], out);
39   }
40   // fallthrough and finish off with plain-C
41   if (i != num_pixels) {
42     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43   }
44 }
45 
46 //------------------------------------------------------------------------------
47 // Color Transform
48 
49 #define MK_CST_16(HI, LO) \
50   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
51 
TransformColor_SSE2(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)52 static void TransformColor_SSE2(const VP8LMultipliers* const m,
53                                 uint32_t* argb_data, int num_pixels) {
54   const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
55                                      CST_5b(m->green_to_blue_));
56   const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
57   const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00);  // alpha-green masks
58   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);       // red-blue masks
59   int i;
60   for (i = 0; i + 4 <= num_pixels; i += 4) {
61     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
62     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
63     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
64     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
65     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
66     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
67     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
68     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
69     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
70     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
71     const __m128i out = _mm_sub_epi8(in, I);
72     _mm_storeu_si128((__m128i*)&argb_data[i], out);
73   }
74   // fallthrough and finish off with plain-C
75   if (i != num_pixels) {
76     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
77   }
78 }
79 
80 //------------------------------------------------------------------------------
81 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])82 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
83                                             int tile_width, int tile_height,
84                                             int green_to_blue, int red_to_blue,
85                                             int histo[]) {
86   const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
87   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
88   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
89   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
90   int y;
91   for (y = 0; y < tile_height; ++y) {
92     const uint32_t* const src = argb + y * stride;
93     int i, x;
94     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
95       uint16_t values[SPAN];
96       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
97       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
98       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
99       const __m128i A1 = _mm_slli_epi16(in1, 8);
100       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
101       const __m128i B1 = _mm_and_si128(in1, mask_g);
102       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
103       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
104       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
105       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
106       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
107       const __m128i E1 = _mm_sub_epi8(in1, D1);
108       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
109       const __m128i F1 = _mm_srli_epi32(C1, 16);
110       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
111       const __m128i G1 = _mm_sub_epi8(E1, F1);
112       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
113       const __m128i H1 = _mm_and_si128(G1, mask_b);
114       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
115       _mm_storeu_si128((__m128i*)values, I);
116       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
117     }
118   }
119   {
120     const int left_over = tile_width & (SPAN - 1);
121     if (left_over > 0) {
122       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
123                                        left_over, tile_height,
124                                        green_to_blue, red_to_blue, histo);
125     }
126   }
127 }
128 
CollectColorRedTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])129 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
130                                            int tile_width, int tile_height,
131                                            int green_to_red, int histo[]) {
132   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
133   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
134   const __m128i mask = _mm_set1_epi32(0xff);
135 
136   int y;
137   for (y = 0; y < tile_height; ++y) {
138     const uint32_t* const src = argb + y * stride;
139     int i, x;
140     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
141       uint16_t values[SPAN];
142       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
143       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
144       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
145       const __m128i A1 = _mm_and_si128(in1, mask_g);
146       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
147       const __m128i B1 = _mm_srli_epi32(in1, 16);
148       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
149       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
150       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
151       const __m128i E1 = _mm_sub_epi8(B1, C1);
152       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
153       const __m128i F1 = _mm_and_si128(E1, mask);
154       const __m128i I = _mm_packs_epi32(F0, F1);
155       _mm_storeu_si128((__m128i*)values, I);
156       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
157     }
158   }
159   {
160     const int left_over = tile_width & (SPAN - 1);
161     if (left_over > 0) {
162       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
163                                       left_over, tile_height,
164                                       green_to_red, histo);
165     }
166   }
167 }
168 #undef SPAN
169 #undef MK_CST_16
170 
171 //------------------------------------------------------------------------------
172 
173 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
174 // that's ok since the histogram values are less than 1<<28 (max picture size).
175 #define LINE_SIZE 16    // 8 or 16
AddVector_SSE2(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)176 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
177                            int size) {
178   int i;
179   for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) {
180     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
181     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
182 #if (LINE_SIZE == 16)
183     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
184     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
185 #endif
186     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
187     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
188 #if (LINE_SIZE == 16)
189     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
190     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
191 #endif
192     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
193     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
194 #if (LINE_SIZE == 16)
195     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
196     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
197 #endif
198   }
199   for (; i < size; ++i) {
200     out[i] = a[i] + b[i];
201   }
202 }
203 
AddVectorEq_SSE2(const uint32_t * a,uint32_t * out,int size)204 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
205   int i;
206   for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) {
207     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
208     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
209 #if (LINE_SIZE == 16)
210     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
211     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
212 #endif
213     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
214     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
215 #if (LINE_SIZE == 16)
216     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
217     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
218 #endif
219     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
220     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
221 #if (LINE_SIZE == 16)
222     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
223     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
224 #endif
225   }
226   for (; i < size; ++i) {
227     out[i] += a[i];
228   }
229 }
230 #undef LINE_SIZE
231 
232 //------------------------------------------------------------------------------
233 // Entropy
234 
235 // TODO(https://crbug.com/webp/499): this function produces different results
236 // from the C code due to use of double/float resulting in output differences
237 // when compared to -noasm.
238 #if !(defined(WEBP_HAVE_SLOW_CLZ_CTZ) || defined(__i386__) || defined(_M_IX86))
239 
CombinedShannonEntropy_SSE2(const int X[256],const int Y[256])240 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
241   int i;
242   float retval = 0.f;
243   int sumX = 0, sumXY = 0;
244   const __m128i zero = _mm_setzero_si128();
245 
246   for (i = 0; i < 256; i += 16) {
247     const __m128i x0 = _mm_loadu_si128((const __m128i*)(X + i +  0));
248     const __m128i y0 = _mm_loadu_si128((const __m128i*)(Y + i +  0));
249     const __m128i x1 = _mm_loadu_si128((const __m128i*)(X + i +  4));
250     const __m128i y1 = _mm_loadu_si128((const __m128i*)(Y + i +  4));
251     const __m128i x2 = _mm_loadu_si128((const __m128i*)(X + i +  8));
252     const __m128i y2 = _mm_loadu_si128((const __m128i*)(Y + i +  8));
253     const __m128i x3 = _mm_loadu_si128((const __m128i*)(X + i + 12));
254     const __m128i y3 = _mm_loadu_si128((const __m128i*)(Y + i + 12));
255     const __m128i x4 = _mm_packs_epi16(_mm_packs_epi32(x0, x1),
256                                        _mm_packs_epi32(x2, x3));
257     const __m128i y4 = _mm_packs_epi16(_mm_packs_epi32(y0, y1),
258                                        _mm_packs_epi32(y2, y3));
259     const int32_t mx = _mm_movemask_epi8(_mm_cmpgt_epi8(x4, zero));
260     int32_t my = _mm_movemask_epi8(_mm_cmpgt_epi8(y4, zero)) | mx;
261     while (my) {
262       const int32_t j = BitsCtz(my);
263       int xy;
264       if ((mx >> j) & 1) {
265         const int x = X[i + j];
266         sumXY += x;
267         retval -= VP8LFastSLog2(x);
268       }
269       xy = X[i + j] + Y[i + j];
270       sumX += xy;
271       retval -= VP8LFastSLog2(xy);
272       my &= my - 1;
273     }
274   }
275   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
276   return retval;
277 }
278 
279 #else
280 
281 #define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC   // won't be faster
282 
283 #endif
284 
285 //------------------------------------------------------------------------------
286 
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)287 static int VectorMismatch_SSE2(const uint32_t* const array1,
288                                const uint32_t* const array2, int length) {
289   int match_len;
290 
291   if (length >= 12) {
292     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
293     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
294     match_len = 0;
295     do {
296       // Loop unrolling and early load both provide a speedup of 10% for the
297       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
298       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
299       const __m128i B0 =
300           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
301       const __m128i B1 =
302           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
303       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
304       match_len += 4;
305 
306       {
307         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
308         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
309         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
310         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
311         match_len += 4;
312       }
313     } while (match_len + 12 < length);
314   } else {
315     match_len = 0;
316     // Unroll the potential first two loops.
317     if (length >= 4 &&
318         _mm_movemask_epi8(_mm_cmpeq_epi32(
319             _mm_loadu_si128((const __m128i*)&array1[0]),
320             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
321       match_len = 4;
322       if (length >= 8 &&
323           _mm_movemask_epi8(_mm_cmpeq_epi32(
324               _mm_loadu_si128((const __m128i*)&array1[4]),
325               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
326         match_len = 8;
327       }
328     }
329   }
330 
331   while (match_len < length && array1[match_len] == array2[match_len]) {
332     ++match_len;
333   }
334   return match_len;
335 }
336 
337 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)338 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
339                                 uint32_t* dst) {
340   int x;
341   assert(xbits >= 0);
342   assert(xbits <= 3);
343   switch (xbits) {
344     case 0: {
345       const __m128i ff = _mm_set1_epi16((short)0xff00);
346       const __m128i zero = _mm_setzero_si128();
347       // Store 0xff000000 | (row[x] << 8).
348       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
349         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
350         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
351         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
352         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
353         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
354         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
355         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
356         _mm_storeu_si128((__m128i*)&dst[0], dst0);
357         _mm_storeu_si128((__m128i*)&dst[4], dst1);
358         _mm_storeu_si128((__m128i*)&dst[8], dst2);
359         _mm_storeu_si128((__m128i*)&dst[12], dst3);
360       }
361       break;
362     }
363     case 1: {
364       const __m128i ff = _mm_set1_epi16((short)0xff00);
365       const __m128i mul = _mm_set1_epi16(0x110);
366       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
367         // 0a0b | (where a/b are 4 bits).
368         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
369         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
370         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
371         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
372         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
373         _mm_storeu_si128((__m128i*)&dst[0], dst0);
374         _mm_storeu_si128((__m128i*)&dst[4], dst1);
375       }
376       break;
377     }
378     case 2: {
379       const __m128i mask_or = _mm_set1_epi32((int)0xff000000);
380       const __m128i mul_cst = _mm_set1_epi16(0x0104);
381       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
382       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
383         // 000a000b000c000d | (where a/b/c/d are 2 bits).
384         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
385         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
386         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
387         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
388         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
389         // Convert to 0xff00**00.
390         const __m128i res = _mm_or_si128(pack, mask_or);
391         _mm_storeu_si128((__m128i*)dst, res);
392       }
393       break;
394     }
395     default: {
396       assert(xbits == 3);
397       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
398         // 0000000a00000000b... | (where a/b are 1 bit).
399         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
400         const __m128i shift = _mm_slli_epi64(in, 7);
401         const uint32_t move = _mm_movemask_epi8(shift);
402         dst[0] = 0xff000000 | ((move & 0xff) << 8);
403         dst[1] = 0xff000000 | (move & 0xff00);
404       }
405       break;
406     }
407   }
408   if (x != width) {
409     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
410   }
411 }
412 
413 //------------------------------------------------------------------------------
414 // Batch version of Predictor Transform subtraction
415 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)416 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
417                                        const __m128i* const a1,
418                                        __m128i* const avg) {
419   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
420   const __m128i ones = _mm_set1_epi8(1);
421   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
422   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
423   *avg = _mm_sub_epi8(avg1, one);
424 }
425 
426 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)427 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
428                                int num_pixels, uint32_t* out) {
429   int i;
430   const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
431   for (i = 0; i + 4 <= num_pixels; i += 4) {
432     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
433     const __m128i res = _mm_sub_epi8(src, black);
434     _mm_storeu_si128((__m128i*)&out[i], res);
435   }
436   if (i != num_pixels) {
437     VP8LPredictorsSub_C[0](in + i, NULL, num_pixels - i, out + i);
438   }
439   (void)upper;
440 }
441 
442 #define GENERATE_PREDICTOR_1(X, IN)                                         \
443   static void PredictorSub##X##_SSE2(const uint32_t* const in,              \
444                                      const uint32_t* const upper,           \
445                                      int num_pixels, uint32_t* const out) { \
446     int i;                                                                  \
447     for (i = 0; i + 4 <= num_pixels; i += 4) {                              \
448       const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);          \
449       const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));          \
450       const __m128i res = _mm_sub_epi8(src, pred);                          \
451       _mm_storeu_si128((__m128i*)&out[i], res);                             \
452     }                                                                       \
453     if (i != num_pixels) {                                                  \
454       VP8LPredictorsSub_C[(X)](in + i, WEBP_OFFSET_PTR(upper, i),           \
455                                num_pixels - i, out + i);                    \
456     }                                                                       \
457   }
458 
459 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
460 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
461 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
462 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
463 #undef GENERATE_PREDICTOR_1
464 
465 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)466 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
467                                int num_pixels, uint32_t* out) {
468   int i;
469   for (i = 0; i + 4 <= num_pixels; i += 4) {
470     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
471     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
472     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
473     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
474     __m128i avg, pred, res;
475     Average2_m128i(&L, &TR, &avg);
476     Average2_m128i(&avg, &T, &pred);
477     res = _mm_sub_epi8(src, pred);
478     _mm_storeu_si128((__m128i*)&out[i], res);
479   }
480   if (i != num_pixels) {
481     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
482   }
483 }
484 
485 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
486 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
487                                    int num_pixels, uint32_t* out) {           \
488   int i;                                                                      \
489   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
490     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
491     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
492     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
493     __m128i pred, res;                                                        \
494     Average2_m128i(&tA, &tB, &pred);                                          \
495     res = _mm_sub_epi8(src, pred);                                            \
496     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
497   }                                                                           \
498   if (i != num_pixels) {                                                      \
499     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
500   }                                                                           \
501 }
502 
503 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
504 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
505 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
506 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
507 #undef GENERATE_PREDICTOR_2
508 
509 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)510 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
511                                 int num_pixels, uint32_t* out) {
512   int i;
513   for (i = 0; i + 4 <= num_pixels; i += 4) {
514     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
515     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
516     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
517     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
518     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
519     __m128i avgTTR, avgLTL, avg, res;
520     Average2_m128i(&T, &TR, &avgTTR);
521     Average2_m128i(&L, &TL, &avgLTL);
522     Average2_m128i(&avgTTR, &avgLTL, &avg);
523     res = _mm_sub_epi8(src, avg);
524     _mm_storeu_si128((__m128i*)&out[i], res);
525   }
526   if (i != num_pixels) {
527     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
528   }
529 }
530 
531 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)532 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
533                                  __m128i* const out) {
534   // We can unpack with any value on the upper 32 bits, provided it's the same
535   // on both operands (to that their sum of abs diff is zero). Here we use *A.
536   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
537   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
538   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
539   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
540   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
541   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
542   *out = _mm_packs_epi32(s_lo, s_hi);
543 }
544 
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)545 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
546                                 int num_pixels, uint32_t* out) {
547   int i;
548   for (i = 0; i + 4 <= num_pixels; i += 4) {
549     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
550     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
551     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
552     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
553     __m128i pa, pb;
554     GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
555     GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
556     {
557       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
558       const __m128i A = _mm_and_si128(mask, L);
559       const __m128i B = _mm_andnot_si128(mask, T);
560       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
561       const __m128i res = _mm_sub_epi8(src, pred);
562       _mm_storeu_si128((__m128i*)&out[i], res);
563     }
564   }
565   if (i != num_pixels) {
566     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
567   }
568 }
569 
570 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)571 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
572                                 int num_pixels, uint32_t* out) {
573   int i;
574   const __m128i zero = _mm_setzero_si128();
575   for (i = 0; i + 4 <= num_pixels; i += 4) {
576     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
577     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
578     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
579     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
580     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
581     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
582     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
583     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
584     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
585     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
586     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
587     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
588     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
589     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
590     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
591     const __m128i res = _mm_sub_epi8(src, pred);
592     _mm_storeu_si128((__m128i*)&out[i], res);
593   }
594   if (i != num_pixels) {
595     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
596   }
597 }
598 
599 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)600 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
601                                 int num_pixels, uint32_t* out) {
602   int i;
603   const __m128i zero = _mm_setzero_si128();
604   for (i = 0; i + 2 <= num_pixels; i += 2) {
605     // we can only process two pixels at a time
606     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
607     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
608     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
609     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
610     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
611     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
612     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
613     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
614     const __m128i avg = _mm_srli_epi16(sum, 1);
615     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
616     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
617     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
618     const __m128i A3 = _mm_srai_epi16(A2, 1);
619     const __m128i A4 = _mm_add_epi16(avg, A3);
620     const __m128i pred = _mm_packus_epi16(A4, A4);
621     const __m128i res = _mm_sub_epi8(src, pred);
622     _mm_storel_epi64((__m128i*)&out[i], res);
623   }
624   if (i != num_pixels) {
625     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
626   }
627 }
628 
629 //------------------------------------------------------------------------------
630 // Entry point
631 
632 extern void VP8LEncDspInitSSE2(void);
633 
VP8LEncDspInitSSE2(void)634 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
635   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
636   VP8LTransformColor = TransformColor_SSE2;
637   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
638   VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
639   VP8LAddVector = AddVector_SSE2;
640   VP8LAddVectorEq = AddVectorEq_SSE2;
641 #if !defined(DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC)
642   VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
643 #endif
644   VP8LVectorMismatch = VectorMismatch_SSE2;
645   VP8LBundleColorMap = BundleColorMap_SSE2;
646 
647   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
648   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
649   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
650   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
651   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
652   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
653   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
654   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
655   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
656   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
657   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
658   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
659   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
660   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
661   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
662   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
663 }
664 
665 #else  // !WEBP_USE_SSE2
666 
667 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
668 
669 #endif  // WEBP_USE_SSE2
670