1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/cfl.h"
13 #include "av1/common/reconintra.h"
14 #include "av1/encoder/block.h"
15 #include "av1/encoder/hybrid_fwd_txfm.h"
16 #include "av1/common/idct.h"
17 #include "av1/encoder/model_rd.h"
18 #include "av1/encoder/random.h"
19 #include "av1/encoder/rdopt_utils.h"
20 #include "av1/encoder/sorting_network.h"
21 #include "av1/encoder/tx_prune_model_weights.h"
22 #include "av1/encoder/tx_search.h"
23 #include "av1/encoder/txb_rdopt.h"
24
25 #define PROB_THRESH_OFFSET_TX_TYPE 100
26
27 struct rdcost_block_args {
28 const AV1_COMP *cpi;
29 MACROBLOCK *x;
30 ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
31 ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
32 RD_STATS rd_stats;
33 int64_t current_rd;
34 int64_t best_rd;
35 int exit_early;
36 int incomplete_exit;
37 FAST_TX_SEARCH_MODE ftxs_mode;
38 int skip_trellis;
39 };
40
41 typedef struct {
42 int64_t rd;
43 int txb_entropy_ctx;
44 TX_TYPE tx_type;
45 } TxCandidateInfo;
46
47 // origin_threshold * 128 / 100
48 static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
49 {
50 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
51 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
52 },
53 {
54 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
55 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
56 },
57 {
58 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
59 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
60 },
61 };
62
63 // lookup table for predict_skip_txfm
64 // int max_tx_size = max_txsize_rect_lookup[bsize];
65 // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
66 // max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
67 static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
68 TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8,
69 TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
70 TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4,
71 TX_8X8, TX_8X8, TX_16X16, TX_16X16,
72 };
73
74 // look-up table for sqrt of number of pixels in a transform block
75 // rounded up to the nearest integer.
76 static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4, 8, 16, 32, 32, 6, 6,
77 12, 12, 23, 23, 32, 32, 8,
78 8, 16, 16, 23, 23 };
79
get_block_residue_hash(MACROBLOCK * x,BLOCK_SIZE bsize)80 static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
81 const int rows = block_size_high[bsize];
82 const int cols = block_size_wide[bsize];
83 const int16_t *diff = x->plane[0].src_diff;
84 const uint32_t hash =
85 av1_get_crc32c_value(&x->txfm_search_info.mb_rd_record->crc_calculator,
86 (uint8_t *)diff, 2 * rows * cols);
87 return (hash << 5) + bsize;
88 }
89
find_mb_rd_info(const MB_RD_RECORD * const mb_rd_record,const int64_t ref_best_rd,const uint32_t hash)90 static INLINE int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record,
91 const int64_t ref_best_rd,
92 const uint32_t hash) {
93 int32_t match_index = -1;
94 if (ref_best_rd != INT64_MAX) {
95 for (int i = 0; i < mb_rd_record->num; ++i) {
96 const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
97 // If there is a match in the mb_rd_record, fetch the RD decision and
98 // terminate early.
99 if (mb_rd_record->mb_rd_info[index].hash_value == hash) {
100 match_index = index;
101 break;
102 }
103 }
104 }
105 return match_index;
106 }
107
fetch_mb_rd_info(int n4,const MB_RD_INFO * const mb_rd_info,RD_STATS * const rd_stats,MACROBLOCK * const x)108 static AOM_INLINE void fetch_mb_rd_info(int n4,
109 const MB_RD_INFO *const mb_rd_info,
110 RD_STATS *const rd_stats,
111 MACROBLOCK *const x) {
112 MACROBLOCKD *const xd = &x->e_mbd;
113 MB_MODE_INFO *const mbmi = xd->mi[0];
114 mbmi->tx_size = mb_rd_info->tx_size;
115 memcpy(x->txfm_search_info.blk_skip, mb_rd_info->blk_skip,
116 sizeof(mb_rd_info->blk_skip[0]) * n4);
117 av1_copy(mbmi->inter_tx_size, mb_rd_info->inter_tx_size);
118 av1_copy_array(xd->tx_type_map, mb_rd_info->tx_type_map, n4);
119 *rd_stats = mb_rd_info->rd_stats;
120 }
121
122 // Compute the pixel domain distortion from diff on all visible 4x4s in the
123 // transform block.
pixel_diff_dist(const MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8)124 static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane,
125 int blk_row, int blk_col,
126 const BLOCK_SIZE plane_bsize,
127 const BLOCK_SIZE tx_bsize,
128 unsigned int *block_mse_q8) {
129 int visible_rows, visible_cols;
130 const MACROBLOCKD *xd = &x->e_mbd;
131 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
132 NULL, &visible_cols, &visible_rows);
133 const int diff_stride = block_size_wide[plane_bsize];
134 const int16_t *diff = x->plane[plane].src_diff;
135
136 diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
137 uint64_t sse =
138 aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
139 if (block_mse_q8 != NULL) {
140 if (visible_cols > 0 && visible_rows > 0)
141 *block_mse_q8 =
142 (unsigned int)((256 * sse) / (visible_cols * visible_rows));
143 else
144 *block_mse_q8 = UINT_MAX;
145 }
146 return sse;
147 }
148
149 // Computes the residual block's SSE and mean on all visible 4x4s in the
150 // transform block
pixel_diff_stats(MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8,int64_t * per_px_mean,uint64_t * block_var)151 static INLINE int64_t pixel_diff_stats(
152 MACROBLOCK *x, int plane, int blk_row, int blk_col,
153 const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize,
154 unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) {
155 int visible_rows, visible_cols;
156 const MACROBLOCKD *xd = &x->e_mbd;
157 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
158 NULL, &visible_cols, &visible_rows);
159 const int diff_stride = block_size_wide[plane_bsize];
160 const int16_t *diff = x->plane[plane].src_diff;
161
162 diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
163 uint64_t sse = 0;
164 int sum = 0;
165 sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum);
166 if (visible_cols > 0 && visible_rows > 0) {
167 double norm_factor = 1.0 / (visible_cols * visible_rows);
168 int sign_sum = sum > 0 ? 1 : -1;
169 // Conversion to transform domain
170 *per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7;
171 *per_px_mean = sign_sum * (*per_px_mean);
172 *block_mse_q8 = (unsigned int)(norm_factor * (256 * sse));
173 *block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum));
174 } else {
175 *block_mse_q8 = UINT_MAX;
176 }
177 return sse;
178 }
179
180 // Uses simple features on top of DCT coefficients to quickly predict
181 // whether optimal RD decision is to skip encoding the residual.
182 // The sse value is stored in dist.
predict_skip_txfm(MACROBLOCK * x,BLOCK_SIZE bsize,int64_t * dist,int reduced_tx_set)183 static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
184 int reduced_tx_set) {
185 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
186 const int bw = block_size_wide[bsize];
187 const int bh = block_size_high[bsize];
188 const MACROBLOCKD *xd = &x->e_mbd;
189 const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);
190
191 *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL);
192
193 const int64_t mse = *dist / bw / bh;
194 // Normalized quantizer takes the transform upscaling factor (8 for tx size
195 // smaller than 32) into account.
196 const int16_t normalized_dc_q = dc_q >> 3;
197 const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
198 // For faster early skip decision, use dist to compare against threshold so
199 // that quality risk is less for the skip=1 decision. Otherwise, use mse
200 // since the fwd_txfm coeff checks will take care of quality
201 // TODO(any): Use dist to return 0 when skip_txfm_level is 1
202 int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse;
203 // Predict not to skip when error is larger than threshold.
204 if (pred_err > mse_thresh) return 0;
205 // Return as skip otherwise for aggressive early skip
206 else if (txfm_params->skip_txfm_level >= 2)
207 return 1;
208
209 const int max_tx_size = max_predict_sf_tx_size[bsize];
210 const int tx_h = tx_size_high[max_tx_size];
211 const int tx_w = tx_size_wide[max_tx_size];
212 DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
213 TxfmParam param;
214 param.tx_type = DCT_DCT;
215 param.tx_size = max_tx_size;
216 param.bd = xd->bd;
217 param.is_hbd = is_cur_buf_hbd(xd);
218 param.lossless = 0;
219 param.tx_set_type = av1_get_ext_tx_set_type(
220 param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
221 const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
222 const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
223 const int16_t *src_diff = x->plane[0].src_diff;
224 const int n_coeff = tx_w * tx_h;
225 const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
226 const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
227 const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
228 for (int row = 0; row < bh; row += tx_h) {
229 for (int col = 0; col < bw; col += tx_w) {
230 av1_fwd_txfm(src_diff + col, coefs, bw, ¶m);
231 // Operating on TX domain, not pixels; we want the QTX quantizers
232 const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
233 if (dc_coef >= dc_thresh) return 0;
234 for (int i = 1; i < n_coeff; ++i) {
235 const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
236 if (ac_coef >= ac_thresh) return 0;
237 }
238 }
239 src_diff += tx_h * bw;
240 }
241 return 1;
242 }
243
244 // Used to set proper context for early termination with skip = 1.
set_skip_txfm(MACROBLOCK * x,RD_STATS * rd_stats,int bsize,int64_t dist)245 static AOM_INLINE void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats,
246 int bsize, int64_t dist) {
247 MACROBLOCKD *const xd = &x->e_mbd;
248 MB_MODE_INFO *const mbmi = xd->mi[0];
249 const int n4 = bsize_to_num_blk(bsize);
250 const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
251 memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4);
252 memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
253 mbmi->tx_size = tx_size;
254 for (int i = 0; i < n4; ++i)
255 set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1);
256 rd_stats->skip_txfm = 1;
257 if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
258 rd_stats->dist = rd_stats->sse = (dist << 4);
259 // Though decision is to make the block as skip based on luma stats,
260 // it is possible that block becomes non skip after chroma rd. In addition
261 // intermediate non skip costs calculated by caller function will be
262 // incorrect, if rate is set as zero (i.e., if zero_blk_rate is not
263 // accounted). Hence intermediate rate is populated to code the luma tx blks
264 // as skip, the caller function based on final rd decision (i.e., skip vs
265 // non-skip) sets the final rate accordingly. Here the rate populated
266 // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx
267 // size possible) in the current block. Eg: For 128*128 block, rate would be
268 // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx
269 // block as 'all zeros'
270 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
271 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
272 av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl);
273 ENTROPY_CONTEXT *ta = ctxa;
274 ENTROPY_CONTEXT *tl = ctxl;
275 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
276 TXB_CTX txb_ctx;
277 get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx);
278 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
279 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
280 rd_stats->rate = zero_blk_rate *
281 (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) *
282 (block_size_high[bsize] >> tx_size_high_log2[tx_size]);
283 }
284
save_mb_rd_info(int n4,uint32_t hash,const MACROBLOCK * const x,const RD_STATS * const rd_stats,MB_RD_RECORD * mb_rd_record)285 static AOM_INLINE void save_mb_rd_info(int n4, uint32_t hash,
286 const MACROBLOCK *const x,
287 const RD_STATS *const rd_stats,
288 MB_RD_RECORD *mb_rd_record) {
289 int index;
290 if (mb_rd_record->num < RD_RECORD_BUFFER_LEN) {
291 index =
292 (mb_rd_record->index_start + mb_rd_record->num) % RD_RECORD_BUFFER_LEN;
293 ++mb_rd_record->num;
294 } else {
295 index = mb_rd_record->index_start;
296 mb_rd_record->index_start =
297 (mb_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
298 }
299 MB_RD_INFO *const mb_rd_info = &mb_rd_record->mb_rd_info[index];
300 const MACROBLOCKD *const xd = &x->e_mbd;
301 const MB_MODE_INFO *const mbmi = xd->mi[0];
302 mb_rd_info->hash_value = hash;
303 mb_rd_info->tx_size = mbmi->tx_size;
304 memcpy(mb_rd_info->blk_skip, x->txfm_search_info.blk_skip,
305 sizeof(mb_rd_info->blk_skip[0]) * n4);
306 av1_copy(mb_rd_info->inter_tx_size, mbmi->inter_tx_size);
307 av1_copy_array(mb_rd_info->tx_type_map, xd->tx_type_map, n4);
308 mb_rd_info->rd_stats = *rd_stats;
309 }
310
get_search_init_depth(int mi_width,int mi_height,int is_inter,const SPEED_FEATURES * sf,int tx_size_search_method)311 static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
312 const SPEED_FEATURES *sf,
313 int tx_size_search_method) {
314 if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;
315
316 if (sf->tx_sf.tx_size_search_lgr_block) {
317 if (mi_width > mi_size_wide[BLOCK_64X64] ||
318 mi_height > mi_size_high[BLOCK_64X64])
319 return MAX_VARTX_DEPTH;
320 }
321
322 if (is_inter) {
323 return (mi_height != mi_width)
324 ? sf->tx_sf.inter_tx_size_search_init_depth_rect
325 : sf->tx_sf.inter_tx_size_search_init_depth_sqr;
326 } else {
327 return (mi_height != mi_width)
328 ? sf->tx_sf.intra_tx_size_search_init_depth_rect
329 : sf->tx_sf.intra_tx_size_search_init_depth_sqr;
330 }
331 }
332
333 static AOM_INLINE void select_tx_block(
334 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
335 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
336 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
337 RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
338 int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode);
339
340 // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
341 // 0: Do not collect any RD stats
342 // 1: Collect RD stats for transform units
343 // 2: Collect RD stats for partition units
344 #if CONFIG_COLLECT_RD_STATS
345
get_energy_distribution_fine(const AV1_COMP * cpi,BLOCK_SIZE bsize,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int need_4th,double * hordist,double * verdist)346 static AOM_INLINE void get_energy_distribution_fine(
347 const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride,
348 const uint8_t *dst, int dst_stride, int need_4th, double *hordist,
349 double *verdist) {
350 const int bw = block_size_wide[bsize];
351 const int bh = block_size_high[bsize];
352 unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
353
354 if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
355 // Special cases: calculate 'esq' values manually, as we don't have 'vf'
356 // functions for the 16 (very small) sub-blocks of this block.
357 const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
358 const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
359 assert(bw <= 32);
360 assert(bh <= 32);
361 assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
362 if (cpi->common.seq_params->use_highbitdepth) {
363 const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
364 const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
365 for (int i = 0; i < bh; ++i)
366 for (int j = 0; j < bw; ++j) {
367 const int index = (j >> w_shift) + ((i >> h_shift) << 2);
368 esq[index] +=
369 (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
370 (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
371 }
372 } else {
373 for (int i = 0; i < bh; ++i)
374 for (int j = 0; j < bw; ++j) {
375 const int index = (j >> w_shift) + ((i >> h_shift) << 2);
376 esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
377 (src[j + i * src_stride] - dst[j + i * dst_stride]);
378 }
379 }
380 } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
381 const int f_index =
382 (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
383 assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
384 const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
385 assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
386 assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
387 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
388 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
389 dst_stride, &esq[1]);
390 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
391 dst_stride, &esq[2]);
392 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
393 dst_stride, &esq[3]);
394 src += bh / 4 * src_stride;
395 dst += bh / 4 * dst_stride;
396
397 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
398 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
399 dst_stride, &esq[5]);
400 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
401 dst_stride, &esq[6]);
402 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
403 dst_stride, &esq[7]);
404 src += bh / 4 * src_stride;
405 dst += bh / 4 * dst_stride;
406
407 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
408 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
409 dst_stride, &esq[9]);
410 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
411 dst_stride, &esq[10]);
412 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
413 dst_stride, &esq[11]);
414 src += bh / 4 * src_stride;
415 dst += bh / 4 * dst_stride;
416
417 cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
418 cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
419 dst_stride, &esq[13]);
420 cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
421 dst_stride, &esq[14]);
422 cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
423 dst_stride, &esq[15]);
424 }
425
426 double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
427 esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
428 esq[12] + esq[13] + esq[14] + esq[15];
429 if (total > 0) {
430 const double e_recip = 1.0 / total;
431 hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
432 hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
433 hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
434 if (need_4th) {
435 hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
436 }
437 verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
438 verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
439 verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
440 if (need_4th) {
441 verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
442 }
443 } else {
444 hordist[0] = verdist[0] = 0.25;
445 hordist[1] = verdist[1] = 0.25;
446 hordist[2] = verdist[2] = 0.25;
447 if (need_4th) {
448 hordist[3] = verdist[3] = 0.25;
449 }
450 }
451 }
452
get_sse_norm(const int16_t * diff,int stride,int w,int h)453 static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
454 double sum = 0.0;
455 for (int j = 0; j < h; ++j) {
456 for (int i = 0; i < w; ++i) {
457 const int err = diff[j * stride + i];
458 sum += err * err;
459 }
460 }
461 assert(w > 0 && h > 0);
462 return sum / (w * h);
463 }
464
get_sad_norm(const int16_t * diff,int stride,int w,int h)465 static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
466 double sum = 0.0;
467 for (int j = 0; j < h; ++j) {
468 for (int i = 0; i < w; ++i) {
469 sum += abs(diff[j * stride + i]);
470 }
471 }
472 assert(w > 0 && h > 0);
473 return sum / (w * h);
474 }
475
get_2x2_normalized_sses_and_sads(const AV1_COMP * const cpi,BLOCK_SIZE tx_bsize,const uint8_t * const src,int src_stride,const uint8_t * const dst,int dst_stride,const int16_t * const src_diff,int diff_stride,double * const sse_norm_arr,double * const sad_norm_arr)476 static AOM_INLINE void get_2x2_normalized_sses_and_sads(
477 const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
478 int src_stride, const uint8_t *const dst, int dst_stride,
479 const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
480 double *const sad_norm_arr) {
481 const BLOCK_SIZE tx_bsize_half =
482 get_partition_subsize(tx_bsize, PARTITION_SPLIT);
483 if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats
484 const int half_width = block_size_wide[tx_bsize] / 2;
485 const int half_height = block_size_high[tx_bsize] / 2;
486 for (int row = 0; row < 2; ++row) {
487 for (int col = 0; col < 2; ++col) {
488 const int16_t *const this_src_diff =
489 src_diff + row * half_height * diff_stride + col * half_width;
490 if (sse_norm_arr) {
491 sse_norm_arr[row * 2 + col] =
492 get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
493 }
494 if (sad_norm_arr) {
495 sad_norm_arr[row * 2 + col] =
496 get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
497 }
498 }
499 }
500 } else { // use function pointers to calculate stats
501 const int half_width = block_size_wide[tx_bsize_half];
502 const int half_height = block_size_high[tx_bsize_half];
503 const int num_samples_half = half_width * half_height;
504 for (int row = 0; row < 2; ++row) {
505 for (int col = 0; col < 2; ++col) {
506 const uint8_t *const this_src =
507 src + row * half_height * src_stride + col * half_width;
508 const uint8_t *const this_dst =
509 dst + row * half_height * dst_stride + col * half_width;
510
511 if (sse_norm_arr) {
512 unsigned int this_sse;
513 cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
514 dst_stride, &this_sse);
515 sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
516 }
517
518 if (sad_norm_arr) {
519 const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf(
520 this_src, src_stride, this_dst, dst_stride);
521 sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
522 }
523 }
524 }
525 }
526 }
527
528 #if CONFIG_COLLECT_RD_STATS == 1
get_mean(const int16_t * diff,int stride,int w,int h)529 static double get_mean(const int16_t *diff, int stride, int w, int h) {
530 double sum = 0.0;
531 for (int j = 0; j < h; ++j) {
532 for (int i = 0; i < w; ++i) {
533 sum += diff[j * stride + i];
534 }
535 }
536 assert(w > 0 && h > 0);
537 return sum / (w * h);
538 }
PrintTransformUnitStats(const AV1_COMP * const cpi,MACROBLOCK * x,const RD_STATS * const rd_stats,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,TX_TYPE tx_type,int64_t rd)539 static AOM_INLINE void PrintTransformUnitStats(
540 const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats,
541 int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
542 TX_TYPE tx_type, int64_t rd) {
543 if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
544
545 // Generate small sample to restrict output size.
546 static unsigned int seed = 21743;
547 if (lcg_rand16(&seed) % 256 > 0) return;
548
549 const char output_file[] = "tu_stats.txt";
550 FILE *fout = fopen(output_file, "a");
551 if (!fout) return;
552
553 const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
554 const MACROBLOCKD *const xd = &x->e_mbd;
555 const int plane = 0;
556 struct macroblock_plane *const p = &x->plane[plane];
557 const struct macroblockd_plane *const pd = &xd->plane[plane];
558 const int txw = tx_size_wide[tx_size];
559 const int txh = tx_size_high[tx_size];
560 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
561 const int q_step = p->dequant_QTX[1] >> dequant_shift;
562 const int num_samples = txw * txh;
563
564 const double rate_norm = (double)rd_stats->rate / num_samples;
565 const double dist_norm = (double)rd_stats->dist / num_samples;
566
567 fprintf(fout, "%g %g", rate_norm, dist_norm);
568
569 const int src_stride = p->src.stride;
570 const uint8_t *const src =
571 &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
572 const int dst_stride = pd->dst.stride;
573 const uint8_t *const dst =
574 &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
575 unsigned int sse;
576 cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
577 const double sse_norm = (double)sse / num_samples;
578
579 const unsigned int sad =
580 cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
581 const double sad_norm = (double)sad / num_samples;
582
583 fprintf(fout, " %g %g", sse_norm, sad_norm);
584
585 const int diff_stride = block_size_wide[plane_bsize];
586 const int16_t *const src_diff =
587 &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
588
589 double sse_norm_arr[4], sad_norm_arr[4];
590 get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
591 dst_stride, src_diff, diff_stride,
592 sse_norm_arr, sad_norm_arr);
593 for (int i = 0; i < 4; ++i) {
594 fprintf(fout, " %g", sse_norm_arr[i]);
595 }
596 for (int i = 0; i < 4; ++i) {
597 fprintf(fout, " %g", sad_norm_arr[i]);
598 }
599
600 const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
601 const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
602
603 fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
604 tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);
605
606 int model_rate;
607 int64_t model_dist;
608 model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples,
609 &model_rate, &model_dist);
610 const double model_rate_norm = (double)model_rate / num_samples;
611 const double model_dist_norm = (double)model_dist / num_samples;
612 fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);
613
614 const double mean = get_mean(src_diff, diff_stride, txw, txh);
615 float hor_corr, vert_corr;
616 av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr,
617 &vert_corr);
618 fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
619
620 double hdist[4] = { 0 }, vdist[4] = { 0 };
621 get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
622 1, hdist, vdist);
623 fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
624 hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
625
626 fprintf(fout, " %d %" PRId64, x->rdmult, rd);
627
628 fprintf(fout, "\n");
629 fclose(fout);
630 }
631 #endif // CONFIG_COLLECT_RD_STATS == 1
632
633 #if CONFIG_COLLECT_RD_STATS >= 2
get_sse(const AV1_COMP * cpi,const MACROBLOCK * x)634 static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
635 const AV1_COMMON *cm = &cpi->common;
636 const int num_planes = av1_num_planes(cm);
637 const MACROBLOCKD *xd = &x->e_mbd;
638 const MB_MODE_INFO *mbmi = xd->mi[0];
639 int64_t total_sse = 0;
640 for (int plane = 0; plane < num_planes; ++plane) {
641 const struct macroblock_plane *const p = &x->plane[plane];
642 const struct macroblockd_plane *const pd = &xd->plane[plane];
643 const BLOCK_SIZE bs =
644 get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
645 unsigned int sse;
646
647 if (x->skip_chroma_rd && plane) continue;
648
649 cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
650 pd->dst.stride, &sse);
651 total_sse += sse;
652 }
653 total_sse <<= 4;
654 return total_sse;
655 }
656
get_est_rate_dist(const TileDataEnc * tile_data,BLOCK_SIZE bsize,int64_t sse,int * est_residue_cost,int64_t * est_dist)657 static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
658 int64_t sse, int *est_residue_cost,
659 int64_t *est_dist) {
660 const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
661 if (md->ready) {
662 if (sse < md->dist_mean) {
663 *est_residue_cost = 0;
664 *est_dist = sse;
665 } else {
666 *est_dist = (int64_t)round(md->dist_mean);
667 const double est_ld = md->a * sse + md->b;
668 // Clamp estimated rate cost by INT_MAX / 2.
669 // TODO(angiebird@google.com): find better solution than clamping.
670 if (fabs(est_ld) < 1e-2) {
671 *est_residue_cost = INT_MAX / 2;
672 } else {
673 double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
674 if (est_residue_cost_dbl < 0) {
675 *est_residue_cost = 0;
676 } else {
677 *est_residue_cost =
678 (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
679 }
680 }
681 if (*est_residue_cost <= 0) {
682 *est_residue_cost = 0;
683 *est_dist = sse;
684 }
685 }
686 return 1;
687 }
688 return 0;
689 }
690
get_highbd_diff_mean(const uint8_t * src8,int src_stride,const uint8_t * dst8,int dst_stride,int w,int h)691 static double get_highbd_diff_mean(const uint8_t *src8, int src_stride,
692 const uint8_t *dst8, int dst_stride, int w,
693 int h) {
694 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
695 const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
696 double sum = 0.0;
697 for (int j = 0; j < h; ++j) {
698 for (int i = 0; i < w; ++i) {
699 const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
700 sum += diff;
701 }
702 }
703 assert(w > 0 && h > 0);
704 return sum / (w * h);
705 }
706
get_diff_mean(const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int w,int h)707 static double get_diff_mean(const uint8_t *src, int src_stride,
708 const uint8_t *dst, int dst_stride, int w, int h) {
709 double sum = 0.0;
710 for (int j = 0; j < h; ++j) {
711 for (int i = 0; i < w; ++i) {
712 const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
713 sum += diff;
714 }
715 }
716 assert(w > 0 && h > 0);
717 return sum / (w * h);
718 }
719
PrintPredictionUnitStats(const AV1_COMP * const cpi,const TileDataEnc * tile_data,MACROBLOCK * x,const RD_STATS * const rd_stats,BLOCK_SIZE plane_bsize)720 static AOM_INLINE void PrintPredictionUnitStats(const AV1_COMP *const cpi,
721 const TileDataEnc *tile_data,
722 MACROBLOCK *x,
723 const RD_STATS *const rd_stats,
724 BLOCK_SIZE plane_bsize) {
725 if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
726
727 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
728 (tile_data == NULL ||
729 !tile_data->inter_mode_rd_models[plane_bsize].ready))
730 return;
731 (void)tile_data;
732 // Generate small sample to restrict output size.
733 static unsigned int seed = 95014;
734
735 if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) !=
736 1)
737 return;
738
739 const char output_file[] = "pu_stats.txt";
740 FILE *fout = fopen(output_file, "a");
741 if (!fout) return;
742
743 MACROBLOCKD *const xd = &x->e_mbd;
744 const int plane = 0;
745 struct macroblock_plane *const p = &x->plane[plane];
746 struct macroblockd_plane *pd = &xd->plane[plane];
747 const int diff_stride = block_size_wide[plane_bsize];
748 int bw, bh;
749 get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
750 &bh);
751 const int num_samples = bw * bh;
752 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
753 const int q_step = p->dequant_QTX[1] >> dequant_shift;
754 const int shift = (xd->bd - 8);
755
756 const double rate_norm = (double)rd_stats->rate / num_samples;
757 const double dist_norm = (double)rd_stats->dist / num_samples;
758 const double rdcost_norm =
759 (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples;
760
761 fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm);
762
763 const int src_stride = p->src.stride;
764 const uint8_t *const src = p->src.buf;
765 const int dst_stride = pd->dst.stride;
766 const uint8_t *const dst = pd->dst.buf;
767 const int16_t *const src_diff = p->src_diff;
768
769 int64_t sse = calculate_sse(xd, p, pd, bw, bh);
770 const double sse_norm = (double)sse / num_samples;
771
772 const unsigned int sad =
773 cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
774 const double sad_norm =
775 (double)sad / (1 << num_pels_log2_lookup[plane_bsize]);
776
777 fprintf(fout, " %g %g", sse_norm, sad_norm);
778
779 double sse_norm_arr[4], sad_norm_arr[4];
780 get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
781 dst_stride, src_diff, diff_stride,
782 sse_norm_arr, sad_norm_arr);
783 if (shift) {
784 for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
785 for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
786 }
787 for (int i = 0; i < 4; ++i) {
788 fprintf(fout, " %g", sse_norm_arr[i]);
789 }
790 for (int i = 0; i < 4; ++i) {
791 fprintf(fout, " %g", sad_norm_arr[i]);
792 }
793
794 fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh);
795
796 int model_rate;
797 int64_t model_dist;
798 model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples,
799 &model_rate, &model_dist);
800 const double model_rdcost_norm =
801 (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples;
802 const double model_rate_norm = (double)model_rate / num_samples;
803 const double model_dist_norm = (double)model_dist / num_samples;
804 fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm,
805 model_rdcost_norm);
806
807 double mean;
808 if (is_cur_buf_hbd(xd)) {
809 mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf,
810 pd->dst.stride, bw, bh);
811 } else {
812 mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
813 bw, bh);
814 }
815 mean /= (1 << shift);
816 float hor_corr, vert_corr;
817 av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr,
818 &vert_corr);
819 fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
820
821 double hdist[4] = { 0 }, vdist[4] = { 0 };
822 get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
823 dst_stride, 1, hdist, vdist);
824 fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
825 hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
826
827 if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
828 assert(tile_data->inter_mode_rd_models[plane_bsize].ready);
829 const int64_t overall_sse = get_sse(cpi, x);
830 int est_residue_cost = 0;
831 int64_t est_dist = 0;
832 get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost,
833 &est_dist);
834 const double est_residue_cost_norm = (double)est_residue_cost / num_samples;
835 const double est_dist_norm = (double)est_dist / num_samples;
836 const double est_rdcost_norm =
837 (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples;
838 fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm,
839 est_rdcost_norm);
840 }
841
842 fprintf(fout, "\n");
843 fclose(fout);
844 }
845 #endif // CONFIG_COLLECT_RD_STATS >= 2
846 #endif // CONFIG_COLLECT_RD_STATS
847
inverse_transform_block_facade(MACROBLOCK * const x,int plane,int block,int blk_row,int blk_col,int eob,int reduced_tx_set)848 static AOM_INLINE void inverse_transform_block_facade(MACROBLOCK *const x,
849 int plane, int block,
850 int blk_row, int blk_col,
851 int eob,
852 int reduced_tx_set) {
853 if (!eob) return;
854 struct macroblock_plane *const p = &x->plane[plane];
855 MACROBLOCKD *const xd = &x->e_mbd;
856 tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
857 const PLANE_TYPE plane_type = get_plane_type(plane);
858 const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
859 const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
860 tx_size, reduced_tx_set);
861
862 struct macroblockd_plane *const pd = &xd->plane[plane];
863 const int dst_stride = pd->dst.stride;
864 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
865 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
866 dst_stride, eob, reduced_tx_set);
867 }
868
recon_intra(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,int skip_trellis,TX_TYPE best_tx_type,int do_quant,int * rate_cost,uint16_t best_eob)869 static INLINE void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
870 int block, int blk_row, int blk_col,
871 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
872 const TXB_CTX *const txb_ctx, int skip_trellis,
873 TX_TYPE best_tx_type, int do_quant,
874 int *rate_cost, uint16_t best_eob) {
875 const AV1_COMMON *cm = &cpi->common;
876 MACROBLOCKD *xd = &x->e_mbd;
877 MB_MODE_INFO *mbmi = xd->mi[0];
878 const int is_inter = is_inter_block(mbmi);
879 if (!is_inter && best_eob &&
880 (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
881 blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
882 // if the quantized coefficients are stored in the dqcoeff buffer, we don't
883 // need to do transform and quantization again.
884 if (do_quant) {
885 TxfmParam txfm_param_intra;
886 QUANT_PARAM quant_param_intra;
887 av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra);
888 av1_setup_quant(tx_size, !skip_trellis,
889 skip_trellis
890 ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
891 : AV1_XFORM_QUANT_FP)
892 : AV1_XFORM_QUANT_FP,
893 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra);
894 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type,
895 &quant_param_intra);
896 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
897 &txfm_param_intra, &quant_param_intra);
898 if (quant_param_intra.use_optimize_b) {
899 av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx,
900 rate_cost);
901 }
902 }
903
904 inverse_transform_block_facade(x, plane, block, blk_row, blk_col,
905 x->plane[plane].eobs[block],
906 cm->features.reduced_tx_set_used);
907
908 // This may happen because of hash collision. The eob stored in the hash
909 // table is non-zero, but the real eob is zero. We need to make sure tx_type
910 // is DCT_DCT in this case.
911 if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
912 best_tx_type != DCT_DCT) {
913 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
914 }
915 }
916 }
917
pixel_dist_visible_only(const AV1_COMP * const cpi,const MACROBLOCK * x,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,const BLOCK_SIZE tx_bsize,int txb_rows,int txb_cols,int visible_rows,int visible_cols)918 static unsigned pixel_dist_visible_only(
919 const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
920 const int src_stride, const uint8_t *dst, const int dst_stride,
921 const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
922 int visible_cols) {
923 unsigned sse;
924
925 if (txb_rows == visible_rows && txb_cols == visible_cols) {
926 cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
927 return sse;
928 }
929
930 #if CONFIG_AV1_HIGHBITDEPTH
931 const MACROBLOCKD *xd = &x->e_mbd;
932 if (is_cur_buf_hbd(xd)) {
933 uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
934 visible_cols, visible_rows);
935 return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
936 }
937 #else
938 (void)x;
939 #endif
940 sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
941 visible_rows);
942 return sse;
943 }
944
945 // Compute the pixel domain distortion from src and dst on all visible 4x4s in
946 // the
947 // transform block.
pixel_dist(const AV1_COMP * const cpi,const MACROBLOCK * x,int plane,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize)948 static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
949 int plane, const uint8_t *src, const int src_stride,
950 const uint8_t *dst, const int dst_stride,
951 int blk_row, int blk_col,
952 const BLOCK_SIZE plane_bsize,
953 const BLOCK_SIZE tx_bsize) {
954 int txb_rows, txb_cols, visible_rows, visible_cols;
955 const MACROBLOCKD *xd = &x->e_mbd;
956
957 get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
958 &txb_cols, &txb_rows, &visible_cols, &visible_rows);
959 assert(visible_rows > 0);
960 assert(visible_cols > 0);
961
962 unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
963 dst_stride, tx_bsize, txb_rows,
964 txb_cols, visible_rows, visible_cols);
965
966 return sse;
967 }
968
dist_block_px_domain(const AV1_COMP * cpi,MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int block,int blk_row,int blk_col,TX_SIZE tx_size)969 static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
970 int plane, BLOCK_SIZE plane_bsize,
971 int block, int blk_row, int blk_col,
972 TX_SIZE tx_size) {
973 MACROBLOCKD *const xd = &x->e_mbd;
974 const struct macroblock_plane *const p = &x->plane[plane];
975 const uint16_t eob = p->eobs[block];
976 const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
977 const int bsw = block_size_wide[tx_bsize];
978 const int bsh = block_size_high[tx_bsize];
979 const int src_stride = x->plane[plane].src.stride;
980 const int dst_stride = xd->plane[plane].dst.stride;
981 // Scale the transform block index to pixel unit.
982 const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2;
983 const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2;
984 const uint8_t *src = &x->plane[plane].src.buf[src_idx];
985 const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
986 const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
987
988 assert(cpi != NULL);
989 assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
990
991 uint8_t *recon;
992 DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
993
994 #if CONFIG_AV1_HIGHBITDEPTH
995 if (is_cur_buf_hbd(xd)) {
996 recon = CONVERT_TO_BYTEPTR(recon16);
997 aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride,
998 CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh);
999 } else {
1000 recon = (uint8_t *)recon16;
1001 aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
1002 }
1003 #else
1004 recon = (uint8_t *)recon16;
1005 aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
1006 #endif
1007
1008 const PLANE_TYPE plane_type = get_plane_type(plane);
1009 TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
1010 cpi->common.features.reduced_tx_set_used);
1011 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
1012 MAX_TX_SIZE, eob,
1013 cpi->common.features.reduced_tx_set_used);
1014
1015 return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
1016 blk_row, blk_col, plane_bsize, tx_bsize);
1017 }
1018
1019 // pruning thresholds for prune_txk_type and prune_txk_type_separ
1020 static const int prune_factors[5] = { 200, 200, 120, 80, 40 }; // scale 1000
1021 static const int mul_factors[5] = { 80, 80, 70, 50, 30 }; // scale 100
1022
1023 // R-D costs are sorted in ascending order.
sort_rd(int64_t rds[],int txk[],int len)1024 static INLINE void sort_rd(int64_t rds[], int txk[], int len) {
1025 int i, j, k;
1026
1027 for (i = 1; i <= len - 1; ++i) {
1028 for (j = 0; j < i; ++j) {
1029 if (rds[j] > rds[i]) {
1030 int64_t temprd;
1031 int tempi;
1032
1033 temprd = rds[i];
1034 tempi = txk[i];
1035
1036 for (k = i; k > j; k--) {
1037 rds[k] = rds[k - 1];
1038 txk[k] = txk[k - 1];
1039 }
1040
1041 rds[j] = temprd;
1042 txk[j] = tempi;
1043 break;
1044 }
1045 }
1046 }
1047 }
1048
av1_block_error_qm(const tran_low_t * coeff,const tran_low_t * dqcoeff,intptr_t block_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * ssz)1049 static INLINE int64_t av1_block_error_qm(const tran_low_t *coeff,
1050 const tran_low_t *dqcoeff,
1051 intptr_t block_size,
1052 const qm_val_t *qmatrix,
1053 const int16_t *scan, int64_t *ssz) {
1054 int i;
1055 int64_t error = 0, sqcoeff = 0;
1056
1057 for (i = 0; i < block_size; i++) {
1058 int64_t weight = qmatrix[scan[i]];
1059 int64_t dd = coeff[i] - dqcoeff[i];
1060 dd *= weight;
1061 int64_t cc = coeff[i];
1062 cc *= weight;
1063 // The ranges of coeff and dqcoeff are
1064 // bd8 : 18 bits (including sign)
1065 // bd10: 20 bits (including sign)
1066 // bd12: 22 bits (including sign)
1067 // As AOM_QM_BITS is 5, the intermediate quantities in the calculation
1068 // below should fit in 54 bits, thus no overflow should happen.
1069 error += (dd * dd + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1070 sqcoeff += (cc * cc + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1071 }
1072
1073 *ssz = sqcoeff;
1074 return error;
1075 }
1076
dist_block_tx_domain(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * out_dist,int64_t * out_sse)1077 static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
1078 TX_SIZE tx_size,
1079 const qm_val_t *qmatrix,
1080 const int16_t *scan, int64_t *out_dist,
1081 int64_t *out_sse) {
1082 const struct macroblock_plane *const p = &x->plane[plane];
1083 // Transform domain distortion computation is more efficient as it does
1084 // not involve an inverse transform, but it is less accurate.
1085 const int buffer_length = av1_get_max_eob(tx_size);
1086 int64_t this_sse;
1087 // TX-domain results need to shift down to Q2/D10 to match pixel
1088 // domain distortion values which are in Q2^2
1089 int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
1090 const int block_offset = BLOCK_OFFSET(block);
1091 tran_low_t *const coeff = p->coeff + block_offset;
1092 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
1093 #if CONFIG_AV1_HIGHBITDEPTH
1094 MACROBLOCKD *const xd = &x->e_mbd;
1095 if (is_cur_buf_hbd(xd)) {
1096 // TODO(veluca): handle use_qm_dist_metric for HBD too.
1097 *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse,
1098 xd->bd);
1099 } else {
1100 #endif
1101 if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) {
1102 *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);
1103 } else {
1104 *out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix,
1105 scan, &this_sse);
1106 }
1107 #if CONFIG_AV1_HIGHBITDEPTH
1108 }
1109 #endif
1110
1111 *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
1112 *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
1113 }
1114
prune_txk_type_separ(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,int16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used,int64_t ref_best_rd,int num_sel)1115 uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
1116 int block, TX_SIZE tx_size, int blk_row,
1117 int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
1118 int16_t allowed_tx_mask, int prune_factor,
1119 const TXB_CTX *const txb_ctx,
1120 int reduced_tx_set_used, int64_t ref_best_rd,
1121 int num_sel) {
1122 const AV1_COMMON *cm = &cpi->common;
1123 MACROBLOCKD *xd = &x->e_mbd;
1124
1125 int idx;
1126
1127 int64_t rds_v[4];
1128 int64_t rds_h[4];
1129 int idx_v[4] = { 0, 1, 2, 3 };
1130 int idx_h[4] = { 0, 1, 2, 3 };
1131 int skip_v[4] = { 0 };
1132 int skip_h[4] = { 0 };
1133 const int idx_map[16] = {
1134 DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
1135 ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
1136 FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1137 H_DCT, H_ADST, H_FLIPADST, IDTX
1138 };
1139
1140 const int sel_pattern_v[16] = {
1141 0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3
1142 };
1143 const int sel_pattern_h[16] = {
1144 0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3
1145 };
1146
1147 QUANT_PARAM quant_param;
1148 TxfmParam txfm_param;
1149 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1150 av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1151 &quant_param);
1152 int tx_type;
1153 // to ensure we can try ones even outside of ext_tx_set of current block
1154 // this function should only be called for size < 16
1155 assert(txsize_sqr_up_map[tx_size] <= TX_16X16);
1156 txfm_param.tx_set_type = EXT_TX_SET_ALL16;
1157
1158 int rate_cost = 0;
1159 int64_t dist = 0, sse = 0;
1160 // evaluate horizontal with vertical DCT
1161 for (idx = 0; idx < 4; ++idx) {
1162 tx_type = idx_map[idx];
1163 txfm_param.tx_type = tx_type;
1164
1165 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1166 &quant_param);
1167
1168 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1169 &quant_param);
1170
1171 const SCAN_ORDER *const scan_order =
1172 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1173 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1174 scan_order->scan, &dist, &sse);
1175
1176 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1177 txb_ctx, reduced_tx_set_used, 0);
1178
1179 rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist);
1180
1181 if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) {
1182 skip_h[idx] = 1;
1183 }
1184 }
1185 sort_rd(rds_h, idx_h, 4);
1186 for (idx = 1; idx < 4; idx++) {
1187 if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1;
1188 }
1189
1190 if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF;
1191
1192 // evaluate vertical with the best horizontal chosen
1193 rds_v[0] = rds_h[0];
1194 int start_v = 1, end_v = 4;
1195 const int *idx_map_v = idx_map + idx_h[0];
1196
1197 for (idx = start_v; idx < end_v; ++idx) {
1198 tx_type = idx_map_v[idx_v[idx] * 4];
1199 txfm_param.tx_type = tx_type;
1200
1201 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1202 &quant_param);
1203
1204 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1205 &quant_param);
1206
1207 const SCAN_ORDER *const scan_order =
1208 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1209 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1210 scan_order->scan, &dist, &sse);
1211
1212 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1213 txb_ctx, reduced_tx_set_used, 0);
1214
1215 rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist);
1216
1217 if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) {
1218 skip_v[idx] = 1;
1219 }
1220 }
1221 sort_rd(rds_v, idx_v, 4);
1222 for (idx = 1; idx < 4; idx++) {
1223 if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1;
1224 }
1225
1226 // combine rd_h and rd_v to prune tx candidates
1227 int i_v, i_h;
1228 int64_t rds[16];
1229 int num_cand = 0, last = TX_TYPES - 1;
1230
1231 for (int i = 0; i < 16; i++) {
1232 i_v = sel_pattern_v[i];
1233 i_h = sel_pattern_h[i];
1234 tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]];
1235 if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] ||
1236 skip_v[idx_v[i_v]]) {
1237 txk_map[last] = tx_type;
1238 last--;
1239 } else {
1240 txk_map[num_cand] = tx_type;
1241 rds[num_cand] = rds_v[i_v] + rds_h[i_h];
1242 if (rds[num_cand] == 0) rds[num_cand] = 1;
1243 num_cand++;
1244 }
1245 }
1246 sort_rd(rds, txk_map, num_cand);
1247
1248 uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1249 num_sel = AOMMIN(num_sel, num_cand);
1250
1251 for (int i = 1; i < num_sel; i++) {
1252 int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]);
1253 if (factor < (int64_t)prune_factor)
1254 prune &= ~(1 << txk_map[i]);
1255 else
1256 break;
1257 }
1258 return prune;
1259 }
1260
prune_txk_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,uint16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1261 uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
1262 int block, TX_SIZE tx_size, int blk_row, int blk_col,
1263 BLOCK_SIZE plane_bsize, int *txk_map,
1264 uint16_t allowed_tx_mask, int prune_factor,
1265 const TXB_CTX *const txb_ctx, int reduced_tx_set_used) {
1266 const AV1_COMMON *cm = &cpi->common;
1267 MACROBLOCKD *xd = &x->e_mbd;
1268 int tx_type;
1269
1270 int64_t rds[TX_TYPES];
1271
1272 int num_cand = 0;
1273 int last = TX_TYPES - 1;
1274
1275 TxfmParam txfm_param;
1276 QUANT_PARAM quant_param;
1277 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1278 av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1279 &quant_param);
1280
1281 for (int idx = 0; idx < TX_TYPES; idx++) {
1282 tx_type = idx;
1283 int rate_cost = 0;
1284 int64_t dist = 0, sse = 0;
1285 if (!(allowed_tx_mask & (1 << tx_type))) {
1286 txk_map[last] = tx_type;
1287 last--;
1288 continue;
1289 }
1290 txfm_param.tx_type = tx_type;
1291
1292 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1293 &quant_param);
1294
1295 // do txfm and quantization
1296 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1297 &quant_param);
1298 // estimate rate cost
1299 rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1300 txb_ctx, reduced_tx_set_used, 0);
1301 // tx domain dist
1302 const SCAN_ORDER *const scan_order =
1303 get_scan(txfm_param.tx_size, txfm_param.tx_type);
1304 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1305 scan_order->scan, &dist, &sse);
1306
1307 txk_map[num_cand] = tx_type;
1308 rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist);
1309 if (rds[num_cand] == 0) rds[num_cand] = 1;
1310 num_cand++;
1311 }
1312
1313 if (num_cand == 0) return (uint16_t)0xFFFF;
1314
1315 sort_rd(rds, txk_map, num_cand);
1316 uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1317
1318 // 0 < prune_factor <= 1000 controls aggressiveness
1319 int64_t factor = 0;
1320 for (int idx = 1; idx < num_cand; idx++) {
1321 factor = 1000 * (rds[idx] - rds[0]) / rds[0];
1322 if (factor < (int64_t)prune_factor)
1323 prune &= ~(1 << txk_map[idx]);
1324 else
1325 break;
1326 }
1327 return prune;
1328 }
1329
1330 // These thresholds were calibrated to provide a certain number of TX types
1331 // pruned by the model on average, i.e. selecting a threshold with index i
1332 // will lead to pruning i+1 TX types on average
1333 static const float *prune_2D_adaptive_thresholds[] = {
1334 // TX_4X4
1335 (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f,
1336 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f,
1337 0.09778f, 0.11780f },
1338 // TX_8X8
1339 (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f,
1340 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f,
1341 0.10803f, 0.14124f },
1342 // TX_16X16
1343 (float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
1344 0.06897f, 0.07629f, 0.08875f, 0.11169f },
1345 // TX_32X32
1346 NULL,
1347 // TX_64X64
1348 NULL,
1349 // TX_4X8
1350 (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f,
1351 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f,
1352 0.10168f, 0.12585f },
1353 // TX_8X4
1354 (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f,
1355 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f,
1356 0.10583f, 0.13123f },
1357 // TX_8X16
1358 (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f,
1359 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f,
1360 0.10730f, 0.14221f },
1361 // TX_16X8
1362 (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f,
1363 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f,
1364 0.10339f, 0.13464f },
1365 // TX_16X32
1366 NULL,
1367 // TX_32X16
1368 NULL,
1369 // TX_32X64
1370 NULL,
1371 // TX_64X32
1372 NULL,
1373 // TX_4X16
1374 (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f,
1375 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f,
1376 0.10242f, 0.12878f },
1377 // TX_16X4
1378 (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f,
1379 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f,
1380 0.10217f, 0.12610f },
1381 // TX_8X32
1382 NULL,
1383 // TX_32X8
1384 NULL,
1385 // TX_16X64
1386 NULL,
1387 // TX_64X16
1388 NULL,
1389 };
1390
get_adaptive_thresholds(TX_SIZE tx_size,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode)1391 static INLINE float get_adaptive_thresholds(
1392 TX_SIZE tx_size, TxSetType tx_set_type,
1393 TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) {
1394 const int prune_aggr_table[5][2] = {
1395 { 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 }
1396 };
1397 int pruning_aggressiveness = 0;
1398 if (tx_set_type == EXT_TX_SET_ALL16)
1399 pruning_aggressiveness =
1400 prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0];
1401 else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1402 pruning_aggressiveness =
1403 prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1];
1404
1405 return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness];
1406 }
1407
get_energy_distribution_finer(const int16_t * diff,int stride,int bw,int bh,float * hordist,float * verdist)1408 static AOM_INLINE void get_energy_distribution_finer(const int16_t *diff,
1409 int stride, int bw, int bh,
1410 float *hordist,
1411 float *verdist) {
1412 // First compute downscaled block energy values (esq); downscale factors
1413 // are defined by w_shift and h_shift.
1414 unsigned int esq[256];
1415 const int w_shift = bw <= 8 ? 0 : 1;
1416 const int h_shift = bh <= 8 ? 0 : 1;
1417 const int esq_w = bw >> w_shift;
1418 const int esq_h = bh >> h_shift;
1419 const int esq_sz = esq_w * esq_h;
1420 int i, j;
1421 memset(esq, 0, esq_sz * sizeof(esq[0]));
1422 if (w_shift) {
1423 for (i = 0; i < bh; i++) {
1424 unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1425 const int16_t *cur_diff_row = diff + i * stride;
1426 for (j = 0; j < bw; j += 2) {
1427 cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
1428 cur_diff_row[j + 1] * cur_diff_row[j + 1]);
1429 }
1430 }
1431 } else {
1432 for (i = 0; i < bh; i++) {
1433 unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1434 const int16_t *cur_diff_row = diff + i * stride;
1435 for (j = 0; j < bw; j++) {
1436 cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
1437 }
1438 }
1439 }
1440
1441 uint64_t total = 0;
1442 for (i = 0; i < esq_sz; i++) total += esq[i];
1443
1444 // Output hordist and verdist arrays are normalized 1D projections of esq
1445 if (total == 0) {
1446 float hor_val = 1.0f / esq_w;
1447 for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
1448 float ver_val = 1.0f / esq_h;
1449 for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
1450 return;
1451 }
1452
1453 const float e_recip = 1.0f / (float)total;
1454 memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
1455 memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
1456 const unsigned int *cur_esq_row;
1457 for (i = 0; i < esq_h - 1; i++) {
1458 cur_esq_row = esq + i * esq_w;
1459 for (j = 0; j < esq_w - 1; j++) {
1460 hordist[j] += (float)cur_esq_row[j];
1461 verdist[i] += (float)cur_esq_row[j];
1462 }
1463 verdist[i] += (float)cur_esq_row[j];
1464 }
1465 cur_esq_row = esq + i * esq_w;
1466 for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];
1467
1468 for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
1469 for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
1470 }
1471
check_bit_mask(uint16_t mask,int val)1472 static AOM_INLINE bool check_bit_mask(uint16_t mask, int val) {
1473 return mask & (1 << val);
1474 }
1475
set_bit_mask(uint16_t * mask,int val)1476 static AOM_INLINE void set_bit_mask(uint16_t *mask, int val) {
1477 *mask |= (1 << val);
1478 }
1479
unset_bit_mask(uint16_t * mask,int val)1480 static AOM_INLINE void unset_bit_mask(uint16_t *mask, int val) {
1481 *mask &= ~(1 << val);
1482 }
1483
prune_tx_2D(MACROBLOCK * x,BLOCK_SIZE bsize,TX_SIZE tx_size,int blk_row,int blk_col,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode,int * txk_map,uint16_t * allowed_tx_mask)1484 static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
1485 int blk_row, int blk_col, TxSetType tx_set_type,
1486 TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map,
1487 uint16_t *allowed_tx_mask) {
1488 // This table is used because the search order is different from the enum
1489 // order.
1490 static const int tx_type_table_2D[16] = {
1491 DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
1492 ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
1493 FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1494 H_DCT, H_ADST, H_FLIPADST, IDTX
1495 };
1496 if (tx_set_type != EXT_TX_SET_ALL16 &&
1497 tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
1498 return;
1499 #if CONFIG_NN_V2
1500 NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1501 NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1502 #else
1503 const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1504 const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1505 #endif
1506 if (!nn_config_hor || !nn_config_ver) return; // Model not established yet.
1507
1508 float hfeatures[16], vfeatures[16];
1509 float hscores[4], vscores[4];
1510 float scores_2D_raw[16];
1511 const int bw = tx_size_wide[tx_size];
1512 const int bh = tx_size_high[tx_size];
1513 const int hfeatures_num = bw <= 8 ? bw : bw / 2;
1514 const int vfeatures_num = bh <= 8 ? bh : bh / 2;
1515 assert(hfeatures_num <= 16);
1516 assert(vfeatures_num <= 16);
1517
1518 const struct macroblock_plane *const p = &x->plane[0];
1519 const int diff_stride = block_size_wide[bsize];
1520 const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1521 get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
1522 vfeatures);
1523
1524 av1_get_horver_correlation_full(diff, diff_stride, bw, bh,
1525 &hfeatures[hfeatures_num - 1],
1526 &vfeatures[vfeatures_num - 1]);
1527
1528 #if CONFIG_NN_V2
1529 av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores);
1530 av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores);
1531 #else
1532 av1_nn_predict(hfeatures, nn_config_hor, 1, hscores);
1533 av1_nn_predict(vfeatures, nn_config_ver, 1, vscores);
1534 #endif
1535
1536 for (int i = 0; i < 4; i++) {
1537 float *cur_scores_2D = scores_2D_raw + i * 4;
1538 cur_scores_2D[0] = vscores[i] * hscores[0];
1539 cur_scores_2D[1] = vscores[i] * hscores[1];
1540 cur_scores_2D[2] = vscores[i] * hscores[2];
1541 cur_scores_2D[3] = vscores[i] * hscores[3];
1542 }
1543
1544 assert(TX_TYPES == 16);
1545 // This version of the function only works when there are at most 16 classes.
1546 // So we will need to change the optimization or use av1_nn_softmax instead if
1547 // this ever gets changed.
1548 av1_nn_fast_softmax_16(scores_2D_raw, scores_2D_raw);
1549
1550 const float score_thresh =
1551 get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode);
1552
1553 // Always keep the TX type with the highest score, prune all others with
1554 // score below score_thresh.
1555 int max_score_i = 0;
1556 float max_score = 0.0f;
1557 uint16_t allow_bitmask = 0;
1558 float sum_score = 0.0;
1559 // Calculate sum of allowed tx type score and Populate allow bit mask based
1560 // on score_thresh and allowed_tx_mask
1561 int allow_count = 0;
1562 int tx_type_allowed[16] = { TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1563 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1564 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1565 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1566 TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1567 TX_TYPE_INVALID };
1568 float scores_2D[16] = {
1569 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1570 };
1571 for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) {
1572 const int allow_tx_type =
1573 check_bit_mask(*allowed_tx_mask, tx_type_table_2D[tx_idx]);
1574 if (!allow_tx_type) {
1575 continue;
1576 }
1577 if (scores_2D_raw[tx_idx] > max_score) {
1578 max_score = scores_2D_raw[tx_idx];
1579 max_score_i = tx_idx;
1580 }
1581 if (scores_2D_raw[tx_idx] >= score_thresh) {
1582 // Set allow mask based on score_thresh
1583 set_bit_mask(&allow_bitmask, tx_type_table_2D[tx_idx]);
1584
1585 // Accumulate score of allowed tx type
1586 sum_score += scores_2D_raw[tx_idx];
1587
1588 scores_2D[allow_count] = scores_2D_raw[tx_idx];
1589 tx_type_allowed[allow_count] = tx_type_table_2D[tx_idx];
1590 allow_count += 1;
1591 }
1592 }
1593 if (!check_bit_mask(allow_bitmask, tx_type_table_2D[max_score_i])) {
1594 // If even the tx_type with max score is pruned, this means that no other
1595 // tx_type is feasible. When this happens, we force enable max_score_i and
1596 // end the search.
1597 set_bit_mask(&allow_bitmask, tx_type_table_2D[max_score_i]);
1598 memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D));
1599 *allowed_tx_mask = allow_bitmask;
1600 return;
1601 }
1602
1603 // Sort tx type probability of all types
1604 if (allow_count <= 8) {
1605 av1_sort_fi32_8(scores_2D, tx_type_allowed);
1606 } else {
1607 av1_sort_fi32_16(scores_2D, tx_type_allowed);
1608 }
1609
1610 // Enable more pruning based on tx type probability and number of allowed tx
1611 // types
1612 if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) {
1613 float temp_score = 0.0;
1614 float score_ratio = 0.0;
1615 int tx_idx, tx_count = 0;
1616 const float inv_sum_score = 100 / sum_score;
1617 // Get allowed tx types based on sorted probability score and tx count
1618 for (tx_idx = 0; tx_idx < allow_count; tx_idx++) {
1619 // Skip the tx type which has more than 30% of cumulative
1620 // probability and allowed tx type count is more than 2
1621 if (score_ratio > 30.0 && tx_count >= 2) break;
1622
1623 assert(check_bit_mask(allow_bitmask, tx_type_allowed[tx_idx]));
1624 // Calculate cumulative probability
1625 temp_score += scores_2D[tx_idx];
1626
1627 // Calculate percentage of cumulative probability of allowed tx type
1628 score_ratio = temp_score * inv_sum_score;
1629 tx_count++;
1630 }
1631 // Set remaining tx types as pruned
1632 for (; tx_idx < allow_count; tx_idx++)
1633 unset_bit_mask(&allow_bitmask, tx_type_allowed[tx_idx]);
1634 }
1635
1636 memcpy(txk_map, tx_type_allowed, sizeof(tx_type_table_2D));
1637 *allowed_tx_mask = allow_bitmask;
1638 }
1639
get_dev(float mean,double x2_sum,int num)1640 static float get_dev(float mean, double x2_sum, int num) {
1641 const float e_x2 = (float)(x2_sum / num);
1642 const float diff = e_x2 - mean * mean;
1643 const float dev = (diff > 0) ? sqrtf(diff) : 0;
1644 return dev;
1645 }
1646
1647 // Writes the features required by the ML model to predict tx split based on
1648 // mean and standard deviation values of the block and sub-blocks.
1649 // Returns the number of elements written to the output array which is at most
1650 // 12 currently. Hence 'features' buffer should be able to accommodate at least
1651 // 12 elements.
get_mean_dev_features(const int16_t * data,int stride,int bw,int bh,float * features)1652 static AOM_INLINE int get_mean_dev_features(const int16_t *data, int stride,
1653 int bw, int bh, float *features) {
1654 const int16_t *const data_ptr = &data[0];
1655 const int subh = (bh >= bw) ? (bh >> 1) : bh;
1656 const int subw = (bw >= bh) ? (bw >> 1) : bw;
1657 const int num = bw * bh;
1658 const int sub_num = subw * subh;
1659 int feature_idx = 2;
1660 int total_x_sum = 0;
1661 int64_t total_x2_sum = 0;
1662 int num_sub_blks = 0;
1663 double mean2_sum = 0.0f;
1664 float dev_sum = 0.0f;
1665
1666 for (int row = 0; row < bh; row += subh) {
1667 for (int col = 0; col < bw; col += subw) {
1668 int x_sum;
1669 int64_t x2_sum;
1670 // TODO(any): Write a SIMD version. Clear registers.
1671 aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
1672 &x_sum, &x2_sum);
1673 total_x_sum += x_sum;
1674 total_x2_sum += x2_sum;
1675
1676 const float mean = (float)x_sum / sub_num;
1677 const float dev = get_dev(mean, (double)x2_sum, sub_num);
1678 features[feature_idx++] = mean;
1679 features[feature_idx++] = dev;
1680 mean2_sum += (double)(mean * mean);
1681 dev_sum += dev;
1682 num_sub_blks++;
1683 }
1684 }
1685
1686 const float lvl0_mean = (float)total_x_sum / num;
1687 features[0] = lvl0_mean;
1688 features[1] = get_dev(lvl0_mean, (double)total_x2_sum, num);
1689
1690 // Deviation of means.
1691 features[feature_idx++] = get_dev(lvl0_mean, mean2_sum, num_sub_blks);
1692 // Mean of deviations.
1693 features[feature_idx++] = dev_sum / num_sub_blks;
1694
1695 return feature_idx;
1696 }
1697
ml_predict_tx_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size)1698 static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
1699 int blk_col, TX_SIZE tx_size) {
1700 const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
1701 if (!nn_config) return -1;
1702
1703 const int diff_stride = block_size_wide[bsize];
1704 const int16_t *diff =
1705 x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1706 const int bw = tx_size_wide[tx_size];
1707 const int bh = tx_size_high[tx_size];
1708
1709 float features[64] = { 0.0f };
1710 get_mean_dev_features(diff, diff_stride, bw, bh, features);
1711
1712 float score = 0.0f;
1713 av1_nn_predict(features, nn_config, 1, &score);
1714
1715 int int_score = (int)(score * 10000);
1716 return clamp(int_score, -80000, 80000);
1717 }
1718
1719 static INLINE uint16_t
get_tx_mask(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_best_rd,TX_TYPE * allowed_txk_types,int * txk_map)1720 get_tx_mask(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block,
1721 int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1722 const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode,
1723 int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) {
1724 const AV1_COMMON *cm = &cpi->common;
1725 MACROBLOCKD *xd = &x->e_mbd;
1726 MB_MODE_INFO *mbmi = xd->mi[0];
1727 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1728 const int is_inter = is_inter_block(mbmi);
1729 const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
1730 // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed <
1731 // TX_TYPES, only that specific tx type is allowed.
1732 TX_TYPE txk_allowed = TX_TYPES;
1733
1734 const FRAME_UPDATE_TYPE update_type =
1735 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
1736 int use_actual_frame_probs = 1;
1737 const int *tx_type_probs;
1738 #if CONFIG_FPMT_TEST
1739 use_actual_frame_probs =
1740 (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
1741 if (!use_actual_frame_probs) {
1742 tx_type_probs =
1743 (int *)cpi->ppi->temp_frame_probs.tx_type_probs[update_type][tx_size];
1744 }
1745 #endif
1746 if (use_actual_frame_probs) {
1747 tx_type_probs = cpi->ppi->frame_probs.tx_type_probs[update_type][tx_size];
1748 }
1749
1750 if ((!is_inter && txfm_params->use_default_intra_tx_type) ||
1751 (is_inter && txfm_params->default_inter_tx_type_prob_thresh == 0)) {
1752 txk_allowed =
1753 get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools);
1754 } else if (is_inter &&
1755 txfm_params->default_inter_tx_type_prob_thresh != INT_MAX) {
1756 if (tx_type_probs[DEFAULT_INTER_TX_TYPE] >
1757 txfm_params->default_inter_tx_type_prob_thresh) {
1758 txk_allowed = DEFAULT_INTER_TX_TYPE;
1759 } else {
1760 int force_tx_type = 0;
1761 int max_prob = 0;
1762 const int tx_type_prob_threshold =
1763 txfm_params->default_inter_tx_type_prob_thresh +
1764 PROB_THRESH_OFFSET_TX_TYPE;
1765 for (int i = 1; i < TX_TYPES; i++) { // find maximum probability.
1766 if (tx_type_probs[i] > max_prob) {
1767 max_prob = tx_type_probs[i];
1768 force_tx_type = i;
1769 }
1770 }
1771 if (max_prob > tx_type_prob_threshold) // force tx type with max prob.
1772 txk_allowed = force_tx_type;
1773 else if (x->rd_model == LOW_TXFM_RD) {
1774 if (plane == 0) txk_allowed = DCT_DCT;
1775 }
1776 }
1777 } else if (x->rd_model == LOW_TXFM_RD) {
1778 if (plane == 0) txk_allowed = DCT_DCT;
1779 }
1780
1781 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
1782 tx_size, is_inter, cm->features.reduced_tx_set_used);
1783
1784 TX_TYPE uv_tx_type = DCT_DCT;
1785 if (plane) {
1786 // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
1787 uv_tx_type = txk_allowed =
1788 av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size,
1789 cm->features.reduced_tx_set_used);
1790 }
1791 PREDICTION_MODE intra_dir =
1792 mbmi->filter_intra_mode_info.use_filter_intra
1793 ? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]
1794 : mbmi->mode;
1795 uint16_t ext_tx_used_flag =
1796 cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 &&
1797 tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT
1798 ? av1_reduced_intra_tx_used_flag[intra_dir]
1799 : av1_ext_tx_used_flag[tx_set_type];
1800
1801 if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2)
1802 ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir];
1803
1804 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
1805 ext_tx_used_flag == 0x0001 ||
1806 (is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) ||
1807 (!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) {
1808 txk_allowed = DCT_DCT;
1809 }
1810
1811 if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0)
1812 ext_tx_used_flag &= DCT_ADST_TX_MASK;
1813
1814 uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip.
1815 if (txk_allowed < TX_TYPES) {
1816 allowed_tx_mask = 1 << txk_allowed;
1817 allowed_tx_mask &= ext_tx_used_flag;
1818 } else if (fast_tx_search) {
1819 allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT
1820 allowed_tx_mask &= ext_tx_used_flag;
1821 } else {
1822 assert(plane == 0);
1823 allowed_tx_mask = ext_tx_used_flag;
1824 int num_allowed = 0;
1825 int i;
1826
1827 if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) {
1828 static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 },
1829 { 10, 17, 17, 10, 17, 17, 17 } };
1830 const int thresh =
1831 thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1]
1832 [update_type];
1833 uint16_t prune = 0;
1834 int max_prob = -1;
1835 int max_idx = 0;
1836 for (i = 0; i < TX_TYPES; i++) {
1837 if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) {
1838 max_prob = tx_type_probs[i];
1839 max_idx = i;
1840 }
1841 if (tx_type_probs[i] < thresh) prune |= (1 << i);
1842 }
1843 if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx);
1844 allowed_tx_mask &= (~prune);
1845 }
1846 for (i = 0; i < TX_TYPES; i++) {
1847 if (allowed_tx_mask & (1 << i)) num_allowed++;
1848 }
1849 assert(num_allowed > 0);
1850
1851 if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) {
1852 int pf = prune_factors[txfm_params->prune_2d_txfm_mode];
1853 int mf = mul_factors[txfm_params->prune_2d_txfm_mode];
1854 if (num_allowed <= 7) {
1855 const uint16_t prune =
1856 prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col,
1857 plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx,
1858 cm->features.reduced_tx_set_used);
1859 allowed_tx_mask &= (~prune);
1860 } else {
1861 const int num_sel = (num_allowed * mf + 50) / 100;
1862 const uint16_t prune = prune_txk_type_separ(
1863 cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize,
1864 txk_map, allowed_tx_mask, pf, txb_ctx,
1865 cm->features.reduced_tx_set_used, ref_best_rd, num_sel);
1866
1867 allowed_tx_mask &= (~prune);
1868 }
1869 } else {
1870 assert(num_allowed > 0);
1871 int allowed_tx_count =
1872 (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5;
1873 // !fast_tx_search && txk_end != txk_start && plane == 0
1874 if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter &&
1875 num_allowed > allowed_tx_count) {
1876 prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
1877 txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask);
1878 }
1879 }
1880 }
1881
1882 // Need to have at least one transform type allowed.
1883 if (allowed_tx_mask == 0) {
1884 txk_allowed = (plane ? uv_tx_type : DCT_DCT);
1885 allowed_tx_mask = (1 << txk_allowed);
1886 }
1887
1888 assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed));
1889 *allowed_txk_types = txk_allowed;
1890 return allowed_tx_mask;
1891 }
1892
1893 #if CONFIG_RD_DEBUG
update_txb_coeff_cost(RD_STATS * rd_stats,int plane,int txb_coeff_cost)1894 static INLINE void update_txb_coeff_cost(RD_STATS *rd_stats, int plane,
1895 int txb_coeff_cost) {
1896 rd_stats->txb_coeff_cost[plane] += txb_coeff_cost;
1897 }
1898 #endif
1899
cost_coeffs(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1900 static INLINE int cost_coeffs(MACROBLOCK *x, int plane, int block,
1901 TX_SIZE tx_size, const TX_TYPE tx_type,
1902 const TXB_CTX *const txb_ctx,
1903 int reduced_tx_set_used) {
1904 #if TXCOEFF_COST_TIMER
1905 struct aom_usec_timer timer;
1906 aom_usec_timer_start(&timer);
1907 #endif
1908 const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type,
1909 txb_ctx, reduced_tx_set_used);
1910 #if TXCOEFF_COST_TIMER
1911 AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common;
1912 aom_usec_timer_mark(&timer);
1913 const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
1914 tmp_cm->txcoeff_cost_timer += elapsed_time;
1915 ++tmp_cm->txcoeff_cost_count;
1916 #endif
1917 return cost;
1918 }
1919
skip_trellis_opt_based_on_satd(MACROBLOCK * x,QUANT_PARAM * quant_param,int plane,int block,TX_SIZE tx_size,int quant_b_adapt,int qstep,unsigned int coeff_opt_satd_threshold,int skip_trellis,int dc_only_blk)1920 static int skip_trellis_opt_based_on_satd(MACROBLOCK *x,
1921 QUANT_PARAM *quant_param, int plane,
1922 int block, TX_SIZE tx_size,
1923 int quant_b_adapt, int qstep,
1924 unsigned int coeff_opt_satd_threshold,
1925 int skip_trellis, int dc_only_blk) {
1926 if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX))
1927 return skip_trellis;
1928
1929 const struct macroblock_plane *const p = &x->plane[plane];
1930 const int block_offset = BLOCK_OFFSET(block);
1931 tran_low_t *const coeff_ptr = p->coeff + block_offset;
1932 const int n_coeffs = av1_get_max_eob(tx_size);
1933 const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size));
1934 int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs);
1935 satd = RIGHT_SIGNED_SHIFT(satd, shift);
1936 satd >>= (x->e_mbd.bd - 8);
1937
1938 const int skip_block_trellis =
1939 ((uint64_t)satd >
1940 (uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]);
1941
1942 av1_setup_quant(
1943 tx_size, !skip_block_trellis,
1944 skip_block_trellis
1945 ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP)
1946 : AV1_XFORM_QUANT_FP,
1947 quant_b_adapt, quant_param);
1948
1949 return skip_block_trellis;
1950 }
1951
1952 // Predict DC only blocks if the residual variance is below a qstep based
1953 // threshold.For such blocks, transform type search is bypassed.
predict_dc_only_block(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,int block,int blk_row,int blk_col,RD_STATS * best_rd_stats,int64_t * block_sse,unsigned int * block_mse_q8,int64_t * per_px_mean,int * dc_only_blk)1954 static INLINE void predict_dc_only_block(
1955 MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1956 int block, int blk_row, int blk_col, RD_STATS *best_rd_stats,
1957 int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean,
1958 int *dc_only_blk) {
1959 MACROBLOCKD *xd = &x->e_mbd;
1960 MB_MODE_INFO *mbmi = xd->mi[0];
1961 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
1962 const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
1963 uint64_t block_var = UINT64_MAX;
1964 const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3;
1965 *block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize,
1966 txsize_to_bsize[tx_size], block_mse_q8,
1967 per_px_mean, &block_var);
1968 assert((*block_mse_q8) != UINT_MAX);
1969 uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep);
1970 if (is_cur_buf_hbd(xd))
1971 block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2);
1972
1973 if (block_var >= var_threshold) return;
1974 const unsigned int predict_dc_level = x->txfm_search_params.predict_dc_level;
1975 assert(predict_dc_level != 0);
1976
1977 // Prediction of skip block if residual mean and variance are less
1978 // than qstep based threshold
1979 if ((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) {
1980 // If the normalized mean of residual block is less than the dc qstep and
1981 // the normalized block variance is less than ac qstep, then the block is
1982 // assumed to be a skip block and its rdcost is updated accordingly.
1983 best_rd_stats->skip_txfm = 1;
1984
1985 x->plane[plane].eobs[block] = 0;
1986
1987 if (is_cur_buf_hbd(xd))
1988 *block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2);
1989
1990 best_rd_stats->dist = (*block_sse) << 4;
1991 best_rd_stats->sse = best_rd_stats->dist;
1992
1993 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
1994 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
1995 av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl);
1996 ENTROPY_CONTEXT *ta = ctxa;
1997 ENTROPY_CONTEXT *tl = ctxl;
1998 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
1999 TXB_CTX txb_ctx_tmp;
2000 const PLANE_TYPE plane_type = get_plane_type(plane);
2001 get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp);
2002 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type]
2003 .txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1];
2004 best_rd_stats->rate = zero_blk_rate;
2005
2006 best_rd_stats->rdcost =
2007 RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse);
2008
2009 x->plane[plane].txb_entropy_ctx[block] = 0;
2010 } else if (predict_dc_level > 1) {
2011 // Predict DC only blocks based on residual variance.
2012 // For chroma plane, this prediction is disabled for intra blocks.
2013 if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1;
2014 }
2015 }
2016
2017 // Search for the best transform type for a given transform block.
2018 // This function can be used for both inter and intra, both luma and chroma.
search_tx_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis,int64_t ref_best_rd,RD_STATS * best_rd_stats)2019 static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
2020 int block, int blk_row, int blk_col,
2021 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
2022 const TXB_CTX *const txb_ctx,
2023 FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis,
2024 int64_t ref_best_rd, RD_STATS *best_rd_stats) {
2025 const AV1_COMMON *cm = &cpi->common;
2026 MACROBLOCKD *xd = &x->e_mbd;
2027 MB_MODE_INFO *mbmi = xd->mi[0];
2028 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2029 int64_t best_rd = INT64_MAX;
2030 uint16_t best_eob = 0;
2031 TX_TYPE best_tx_type = DCT_DCT;
2032 int rate_cost = 0;
2033 // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff
2034 // of the best tx_type
2035 DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]);
2036 struct macroblock_plane *const p = &x->plane[plane];
2037 tran_low_t *orig_dqcoeff = p->dqcoeff;
2038 tran_low_t *best_dqcoeff = this_dqcoeff;
2039 const int tx_type_map_idx =
2040 plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col;
2041 av1_invalid_rd_stats(best_rd_stats);
2042
2043 skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id],
2044 DRY_RUN_NORMAL);
2045
2046 uint8_t best_txb_ctx = 0;
2047 // txk_allowed = TX_TYPES: >1 tx types are allowed
2048 // txk_allowed < TX_TYPES: only that specific tx type is allowed.
2049 TX_TYPE txk_allowed = TX_TYPES;
2050 int txk_map[TX_TYPES] = {
2051 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
2052 };
2053 const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
2054 const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
2055
2056 const uint8_t txw = tx_size_wide[tx_size];
2057 const uint8_t txh = tx_size_high[tx_size];
2058 int64_t block_sse;
2059 unsigned int block_mse_q8;
2060 int dc_only_blk = 0;
2061 const bool predict_dc_block =
2062 txfm_params->predict_dc_level >= 1 && txw != 64 && txh != 64;
2063 int64_t per_px_mean = INT64_MAX;
2064 if (predict_dc_block) {
2065 predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row,
2066 blk_col, best_rd_stats, &block_sse, &block_mse_q8,
2067 &per_px_mean, &dc_only_blk);
2068 if (best_rd_stats->skip_txfm == 1) {
2069 const TX_TYPE tx_type = DCT_DCT;
2070 if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2071 return;
2072 }
2073 } else {
2074 block_sse = pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize,
2075 txsize_to_bsize[tx_size], &block_mse_q8);
2076 assert(block_mse_q8 != UINT_MAX);
2077 }
2078
2079 // Bit mask to indicate which transform types are allowed in the RD search.
2080 uint16_t tx_mask;
2081
2082 // Use DCT_DCT transform for DC only block.
2083 if (dc_only_blk)
2084 tx_mask = 1 << DCT_DCT;
2085 else
2086 tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize,
2087 tx_size, txb_ctx, ftxs_mode, ref_best_rd,
2088 &txk_allowed, txk_map);
2089 const uint16_t allowed_tx_mask = tx_mask;
2090
2091 if (is_cur_buf_hbd(xd)) {
2092 block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
2093 block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2);
2094 }
2095 block_sse *= 16;
2096 // Use mse / qstep^2 based threshold logic to take decision of R-D
2097 // optimization of coeffs. For smaller residuals, coeff optimization
2098 // would be helpful. For larger residuals, R-D optimization may not be
2099 // effective.
2100 // TODO(any): Experiment with variance and mean based thresholds
2101 const int perform_block_coeff_opt =
2102 ((uint64_t)block_mse_q8 <=
2103 (uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep);
2104 skip_trellis |= !perform_block_coeff_opt;
2105
2106 // Flag to indicate if distortion should be calculated in transform domain or
2107 // not during iterating through transform type candidates.
2108 // Transform domain distortion is accurate for higher residuals.
2109 // TODO(any): Experiment with variance and mean based thresholds
2110 int use_transform_domain_distortion =
2111 (txfm_params->use_transform_domain_distortion > 0) &&
2112 (block_mse_q8 >= txfm_params->tx_domain_dist_threshold) &&
2113 // Any 64-pt transforms only preserves half the coefficients.
2114 // Therefore transform domain distortion is not valid for these
2115 // transform sizes.
2116 (txsize_sqr_up_map[tx_size] != TX_64X64) &&
2117 // Use pixel domain distortion for DC only blocks
2118 !dc_only_blk;
2119 // Flag to indicate if an extra calculation of distortion in the pixel domain
2120 // should be performed at the end, after the best transform type has been
2121 // decided.
2122 int calc_pixel_domain_distortion_final =
2123 txfm_params->use_transform_domain_distortion == 1 &&
2124 use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD;
2125 if (calc_pixel_domain_distortion_final &&
2126 (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001))
2127 calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;
2128
2129 const uint16_t *eobs_ptr = x->plane[plane].eobs;
2130
2131 TxfmParam txfm_param;
2132 QUANT_PARAM quant_param;
2133 int skip_trellis_based_on_satd[TX_TYPES] = { 0 };
2134 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
2135 av1_setup_quant(tx_size, !skip_trellis,
2136 skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
2137 : AV1_XFORM_QUANT_FP)
2138 : AV1_XFORM_QUANT_FP,
2139 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
2140
2141 // Iterate through all transform type candidates.
2142 for (int idx = 0; idx < TX_TYPES; ++idx) {
2143 const TX_TYPE tx_type = (TX_TYPE)txk_map[idx];
2144 if (tx_type == TX_TYPE_INVALID || !check_bit_mask(allowed_tx_mask, tx_type))
2145 continue;
2146 txfm_param.tx_type = tx_type;
2147 if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) {
2148 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
2149 &quant_param);
2150 }
2151 if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2152 RD_STATS this_rd_stats;
2153 av1_invalid_rd_stats(&this_rd_stats);
2154
2155 if (!dc_only_blk)
2156 av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param);
2157 else
2158 av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean);
2159
2160 skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd(
2161 x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt,
2162 qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk);
2163
2164 av1_quant(x, plane, block, &txfm_param, &quant_param);
2165
2166 // Calculate rate cost of quantized coefficients.
2167 if (quant_param.use_optimize_b) {
2168 // TODO(aomedia:3209): update Trellis quantization to take into account
2169 // quantization matrices.
2170 av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
2171 &rate_cost);
2172 } else {
2173 rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx,
2174 cm->features.reduced_tx_set_used);
2175 }
2176
2177 // If rd cost based on coeff rate alone is already more than best_rd,
2178 // terminate early.
2179 if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue;
2180
2181 // Calculate distortion.
2182 if (eobs_ptr[block] == 0) {
2183 // When eob is 0, pixel domain distortion is more efficient and accurate.
2184 this_rd_stats.dist = this_rd_stats.sse = block_sse;
2185 } else if (dc_only_blk) {
2186 this_rd_stats.sse = block_sse;
2187 this_rd_stats.dist = dist_block_px_domain(
2188 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2189 } else if (use_transform_domain_distortion) {
2190 const SCAN_ORDER *const scan_order =
2191 get_scan(txfm_param.tx_size, txfm_param.tx_type);
2192 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2193 scan_order->scan, &this_rd_stats.dist,
2194 &this_rd_stats.sse);
2195 } else {
2196 int64_t sse_diff = INT64_MAX;
2197 // high_energy threshold assumes that every pixel within a txfm block
2198 // has a residue energy of at least 25% of the maximum, i.e. 128 * 128
2199 // for 8 bit.
2200 const int64_t high_energy_thresh =
2201 ((int64_t)128 * 128 * tx_size_2d[tx_size]);
2202 const int is_high_energy = (block_sse >= high_energy_thresh);
2203 if (tx_size == TX_64X64 || is_high_energy) {
2204 // Because 3 out 4 quadrants of transform coefficients are forced to
2205 // zero, the inverse transform has a tendency to overflow. sse_diff
2206 // is effectively the energy of those 3 quadrants, here we use it
2207 // to decide if we should do pixel domain distortion. If the energy
2208 // is mostly in first quadrant, then it is unlikely that we have
2209 // overflow issue in inverse transform.
2210 const SCAN_ORDER *const scan_order =
2211 get_scan(txfm_param.tx_size, txfm_param.tx_type);
2212 dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2213 scan_order->scan, &this_rd_stats.dist,
2214 &this_rd_stats.sse);
2215 sse_diff = block_sse - this_rd_stats.sse;
2216 }
2217 if (tx_size != TX_64X64 || !is_high_energy ||
2218 (sse_diff * 2) < this_rd_stats.sse) {
2219 const int64_t tx_domain_dist = this_rd_stats.dist;
2220 this_rd_stats.dist = dist_block_px_domain(
2221 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2222 // For high energy blocks, occasionally, the pixel domain distortion
2223 // can be artificially low due to clamping at reconstruction stage
2224 // even when inverse transform output is hugely different from the
2225 // actual residue.
2226 if (is_high_energy && this_rd_stats.dist < tx_domain_dist)
2227 this_rd_stats.dist = tx_domain_dist;
2228 } else {
2229 assert(sse_diff < INT64_MAX);
2230 this_rd_stats.dist += sse_diff;
2231 }
2232 this_rd_stats.sse = block_sse;
2233 }
2234
2235 this_rd_stats.rate = rate_cost;
2236
2237 const int64_t rd =
2238 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
2239
2240 if (rd < best_rd) {
2241 best_rd = rd;
2242 *best_rd_stats = this_rd_stats;
2243 best_tx_type = tx_type;
2244 best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
2245 best_eob = x->plane[plane].eobs[block];
2246 // Swap dqcoeff buffers
2247 tran_low_t *const tmp_dqcoeff = best_dqcoeff;
2248 best_dqcoeff = p->dqcoeff;
2249 p->dqcoeff = tmp_dqcoeff;
2250 }
2251
2252 #if CONFIG_COLLECT_RD_STATS == 1
2253 if (plane == 0) {
2254 PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
2255 plane_bsize, tx_size, tx_type, rd);
2256 }
2257 #endif // CONFIG_COLLECT_RD_STATS == 1
2258
2259 #if COLLECT_TX_SIZE_DATA
2260 // Generate small sample to restrict output size.
2261 static unsigned int seed = 21743;
2262 if (lcg_rand16(&seed) % 200 == 0) {
2263 FILE *fp = NULL;
2264
2265 if (within_border) {
2266 fp = fopen(av1_tx_size_data_output_file, "a");
2267 }
2268
2269 if (fp) {
2270 // Transform info and RD
2271 const int txb_w = tx_size_wide[tx_size];
2272 const int txb_h = tx_size_high[tx_size];
2273
2274 // Residue signal.
2275 const int diff_stride = block_size_wide[plane_bsize];
2276 struct macroblock_plane *const p = &x->plane[plane];
2277 const int16_t *src_diff =
2278 &p->src_diff[(blk_row * diff_stride + blk_col) * 4];
2279
2280 for (int r = 0; r < txb_h; ++r) {
2281 for (int c = 0; c < txb_w; ++c) {
2282 fprintf(fp, "%d,", src_diff[c]);
2283 }
2284 src_diff += diff_stride;
2285 }
2286
2287 fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd);
2288 fprintf(fp, "\n");
2289 fclose(fp);
2290 }
2291 }
2292 #endif // COLLECT_TX_SIZE_DATA
2293
2294 // If the current best RD cost is much worse than the reference RD cost,
2295 // terminate early.
2296 if (cpi->sf.tx_sf.adaptive_txb_search_level) {
2297 if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) >
2298 ref_best_rd) {
2299 break;
2300 }
2301 }
2302
2303 // Terminate transform type search if the block has been quantized to
2304 // all zero.
2305 if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break;
2306 }
2307
2308 assert(best_rd != INT64_MAX);
2309
2310 best_rd_stats->skip_txfm = best_eob == 0;
2311 if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type);
2312 x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
2313 x->plane[plane].eobs[block] = best_eob;
2314 skip_trellis = skip_trellis_based_on_satd[best_tx_type];
2315
2316 // Point dqcoeff to the quantized coefficients corresponding to the best
2317 // transform type, then we can skip transform and quantization, e.g. in the
2318 // final pixel domain distortion calculation and recon_intra().
2319 p->dqcoeff = best_dqcoeff;
2320
2321 if (calc_pixel_domain_distortion_final && best_eob) {
2322 best_rd_stats->dist = dist_block_px_domain(
2323 cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2324 best_rd_stats->sse = block_sse;
2325 }
2326
2327 // Intra mode needs decoded pixels such that the next transform block
2328 // can use them for prediction.
2329 recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
2330 txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob);
2331 p->dqcoeff = orig_dqcoeff;
2332 }
2333
2334 // Pick transform type for a luma transform block of tx_size. Note this function
2335 // is used only for inter-predicted blocks.
tx_type_rd(const AV1_COMP * cpi,MACROBLOCK * x,TX_SIZE tx_size,int blk_row,int blk_col,int block,int plane_bsize,TXB_CTX * txb_ctx,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_rdcost)2336 static AOM_INLINE void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x,
2337 TX_SIZE tx_size, int blk_row, int blk_col,
2338 int block, int plane_bsize, TXB_CTX *txb_ctx,
2339 RD_STATS *rd_stats,
2340 FAST_TX_SEARCH_MODE ftxs_mode,
2341 int64_t ref_rdcost) {
2342 assert(is_inter_block(x->e_mbd.mi[0]));
2343 RD_STATS this_rd_stats;
2344 const int skip_trellis = 0;
2345 search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size,
2346 txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats);
2347
2348 av1_merge_rd_stats(rd_stats, &this_rd_stats);
2349 }
2350
try_tx_block_no_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,const ENTROPY_CONTEXT * ta,const ENTROPY_CONTEXT * tl,int txfm_partition_ctx,RD_STATS * rd_stats,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,TxCandidateInfo * no_split)2351 static AOM_INLINE void try_tx_block_no_split(
2352 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2353 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
2354 const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
2355 int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
2356 FAST_TX_SEARCH_MODE ftxs_mode, TxCandidateInfo *no_split) {
2357 MACROBLOCKD *const xd = &x->e_mbd;
2358 MB_MODE_INFO *const mbmi = xd->mi[0];
2359 struct macroblock_plane *const p = &x->plane[0];
2360 const int bw = mi_size_wide[plane_bsize];
2361 const ENTROPY_CONTEXT *const pta = ta + blk_col;
2362 const ENTROPY_CONTEXT *const ptl = tl + blk_row;
2363 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
2364 TXB_CTX txb_ctx;
2365 get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
2366 const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
2367 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
2368 rd_stats->zero_rate = zero_blk_rate;
2369 const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
2370 mbmi->inter_tx_size[index] = tx_size;
2371 tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
2372 rd_stats, ftxs_mode, ref_best_rd);
2373 assert(rd_stats->rate < INT_MAX);
2374
2375 const int pick_skip_txfm =
2376 !xd->lossless[mbmi->segment_id] &&
2377 (rd_stats->skip_txfm == 1 ||
2378 RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
2379 RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse));
2380 if (pick_skip_txfm) {
2381 #if CONFIG_RD_DEBUG
2382 update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate);
2383 #endif // CONFIG_RD_DEBUG
2384 rd_stats->rate = zero_blk_rate;
2385 rd_stats->dist = rd_stats->sse;
2386 p->eobs[block] = 0;
2387 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
2388 }
2389 rd_stats->skip_txfm = pick_skip_txfm;
2390 set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2391 pick_skip_txfm);
2392
2393 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
2394 rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0];
2395
2396 no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
2397 no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
2398 no_split->tx_type =
2399 xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
2400 }
2401
try_tx_block_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int txfm_partition_ctx,int64_t no_split_rd,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,RD_STATS * split_rd_stats)2402 static AOM_INLINE void try_tx_block_split(
2403 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2404 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2405 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2406 int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
2407 FAST_TX_SEARCH_MODE ftxs_mode, RD_STATS *split_rd_stats) {
2408 assert(tx_size < TX_SIZES_ALL);
2409 MACROBLOCKD *const xd = &x->e_mbd;
2410 const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
2411 const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
2412 const int txb_width = tx_size_wide_unit[tx_size];
2413 const int txb_height = tx_size_high_unit[tx_size];
2414 // Transform size after splitting current block.
2415 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
2416 const int sub_txb_width = tx_size_wide_unit[sub_txs];
2417 const int sub_txb_height = tx_size_high_unit[sub_txs];
2418 const int sub_step = sub_txb_width * sub_txb_height;
2419 const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width);
2420 assert(nblks > 0);
2421 av1_init_rd_stats(split_rd_stats);
2422 split_rd_stats->rate =
2423 x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1];
2424
2425 for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) {
2426 const int offsetr = blk_row + r;
2427 if (offsetr >= max_blocks_high) break;
2428 for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) {
2429 assert(blk_idx < 4);
2430 const int offsetc = blk_col + c;
2431 if (offsetc >= max_blocks_wide) continue;
2432
2433 RD_STATS this_rd_stats;
2434 int this_cost_valid = 1;
2435 select_tx_block(cpi, x, offsetr, offsetc, block, sub_txs, depth + 1,
2436 plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats,
2437 no_split_rd / nblks, ref_best_rd - split_rd_stats->rdcost,
2438 &this_cost_valid, ftxs_mode);
2439 if (!this_cost_valid) {
2440 split_rd_stats->rdcost = INT64_MAX;
2441 return;
2442 }
2443 av1_merge_rd_stats(split_rd_stats, &this_rd_stats);
2444 split_rd_stats->rdcost =
2445 RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
2446 if (split_rd_stats->rdcost > ref_best_rd) {
2447 split_rd_stats->rdcost = INT64_MAX;
2448 return;
2449 }
2450 block += sub_step;
2451 }
2452 }
2453 }
2454
get_var(float mean,double x2_sum,int num)2455 static float get_var(float mean, double x2_sum, int num) {
2456 const float e_x2 = (float)(x2_sum / num);
2457 const float diff = e_x2 - mean * mean;
2458 return diff;
2459 }
2460
get_blk_var_dev(const int16_t * data,int stride,int bw,int bh,float * dev_of_mean,float * var_of_vars)2461 static AOM_INLINE void get_blk_var_dev(const int16_t *data, int stride, int bw,
2462 int bh, float *dev_of_mean,
2463 float *var_of_vars) {
2464 const int16_t *const data_ptr = &data[0];
2465 const int subh = (bh >= bw) ? (bh >> 1) : bh;
2466 const int subw = (bw >= bh) ? (bw >> 1) : bw;
2467 const int num = bw * bh;
2468 const int sub_num = subw * subh;
2469 int total_x_sum = 0;
2470 int64_t total_x2_sum = 0;
2471 int blk_idx = 0;
2472 float var_sum = 0.0f;
2473 float mean_sum = 0.0f;
2474 double var2_sum = 0.0f;
2475 double mean2_sum = 0.0f;
2476
2477 for (int row = 0; row < bh; row += subh) {
2478 for (int col = 0; col < bw; col += subw) {
2479 int x_sum;
2480 int64_t x2_sum;
2481 aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
2482 &x_sum, &x2_sum);
2483 total_x_sum += x_sum;
2484 total_x2_sum += x2_sum;
2485
2486 const float mean = (float)x_sum / sub_num;
2487 const float var = get_var(mean, (double)x2_sum, sub_num);
2488 mean_sum += mean;
2489 mean2_sum += (double)(mean * mean);
2490 var_sum += var;
2491 var2_sum += var * var;
2492 blk_idx++;
2493 }
2494 }
2495
2496 const float lvl0_mean = (float)total_x_sum / num;
2497 const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num);
2498 mean_sum += lvl0_mean;
2499 mean2_sum += (double)(lvl0_mean * lvl0_mean);
2500 var_sum += block_var;
2501 var2_sum += block_var * block_var;
2502 const float av_mean = mean_sum / 5;
2503
2504 if (blk_idx > 1) {
2505 // Deviation of means.
2506 *dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1));
2507 // Variance of variances.
2508 const float mean_var = var_sum / (blk_idx + 1);
2509 *var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1));
2510 }
2511 }
2512
prune_tx_split_no_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size,int * try_no_split,int * try_split,int pruning_level)2513 static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize,
2514 int blk_row, int blk_col, TX_SIZE tx_size,
2515 int *try_no_split, int *try_split,
2516 int pruning_level) {
2517 const int diff_stride = block_size_wide[bsize];
2518 const int16_t *diff =
2519 x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
2520 const int bw = tx_size_wide[tx_size];
2521 const int bh = tx_size_high[tx_size];
2522 float dev_of_means = 0.0f;
2523 float var_of_vars = 0.0f;
2524
2525 // This function calculates the deviation of means, and the variance of pixel
2526 // variances of the block as well as it's sub-blocks.
2527 get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars);
2528 const int dc_q = x->plane[0].dequant_QTX[0] >> 3;
2529 const int ac_q = x->plane[0].dequant_QTX[1] >> 3;
2530 const int no_split_thresh_scales[4] = { 0, 24, 8, 8 };
2531 const int no_split_thresh_scale = no_split_thresh_scales[pruning_level];
2532 const int split_thresh_scales[4] = { 0, 24, 10, 8 };
2533 const int split_thresh_scale = split_thresh_scales[pruning_level];
2534
2535 if ((dev_of_means <= dc_q) &&
2536 (split_thresh_scale * var_of_vars <= ac_q * ac_q)) {
2537 *try_split = 0;
2538 }
2539 if ((dev_of_means > no_split_thresh_scale * dc_q) &&
2540 (var_of_vars > no_split_thresh_scale * ac_q * ac_q)) {
2541 *try_no_split = 0;
2542 }
2543 }
2544
2545 // Search for the best transform partition(recursive)/type for a given
2546 // inter-predicted luma block. The obtained transform selection will be saved
2547 // in xd->mi[0], the corresponding RD stats will be saved in rd_stats.
select_tx_block(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,RD_STATS * rd_stats,int64_t prev_level_rd,int64_t ref_best_rd,int * is_cost_valid,FAST_TX_SEARCH_MODE ftxs_mode)2548 static AOM_INLINE void select_tx_block(
2549 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2550 TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2551 ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2552 RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
2553 int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode) {
2554 assert(tx_size < TX_SIZES_ALL);
2555 av1_init_rd_stats(rd_stats);
2556 if (ref_best_rd < 0) {
2557 *is_cost_valid = 0;
2558 return;
2559 }
2560
2561 MACROBLOCKD *const xd = &x->e_mbd;
2562 assert(blk_row < max_block_high(xd, plane_bsize, 0) &&
2563 blk_col < max_block_wide(xd, plane_bsize, 0));
2564 MB_MODE_INFO *const mbmi = xd->mi[0];
2565 const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
2566 mbmi->bsize, tx_size);
2567 struct macroblock_plane *const p = &x->plane[0];
2568
2569 int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 ||
2570 txsize_sqr_up_map[tx_size] != TX_64X64) &&
2571 (cpi->oxcf.txfm_cfg.enable_rect_tx ||
2572 tx_size_wide[tx_size] == tx_size_high[tx_size]);
2573 int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;
2574 TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };
2575
2576 // Prune tx_split and no-split based on sub-block properties.
2577 if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 &&
2578 cpi->sf.tx_sf.prune_tx_size_level > 0) {
2579 prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size,
2580 &try_no_split, &try_split,
2581 cpi->sf.tx_sf.prune_tx_size_level);
2582 }
2583
2584 if (cpi->sf.rt_sf.skip_tx_no_split_var_based_partition) {
2585 if (x->try_merge_partition && try_split && p->eobs[block]) try_no_split = 0;
2586 }
2587
2588 // Try using current block as a single transform block without split.
2589 if (try_no_split) {
2590 try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2591 plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
2592 ftxs_mode, &no_split);
2593
2594 // Speed features for early termination.
2595 const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level;
2596 if (search_level) {
2597 if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) {
2598 *is_cost_valid = 0;
2599 return;
2600 }
2601 if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) {
2602 try_split = 0;
2603 }
2604 }
2605 if (cpi->sf.tx_sf.txb_split_cap) {
2606 if (p->eobs[block] == 0) try_split = 0;
2607 }
2608 }
2609
2610 // ML based speed feature to skip searching for split transform blocks.
2611 if (x->e_mbd.bd == 8 && try_split &&
2612 !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) {
2613 const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh;
2614 if (threshold >= 0) {
2615 const int split_score =
2616 ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
2617 if (split_score < -threshold) try_split = 0;
2618 }
2619 }
2620
2621 RD_STATS split_rd_stats;
2622 split_rd_stats.rdcost = INT64_MAX;
2623 // Try splitting current block into smaller transform blocks.
2624 if (try_split) {
2625 try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2626 plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
2627 AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
2628 &split_rd_stats);
2629 }
2630
2631 if (no_split.rd < split_rd_stats.rdcost) {
2632 ENTROPY_CONTEXT *pta = ta + blk_col;
2633 ENTROPY_CONTEXT *ptl = tl + blk_row;
2634 p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
2635 av1_set_txb_context(x, 0, block, tx_size, pta, ptl);
2636 txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
2637 tx_size);
2638 for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
2639 for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
2640 const int index =
2641 av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
2642 mbmi->inter_tx_size[index] = tx_size;
2643 }
2644 }
2645 mbmi->tx_size = tx_size;
2646 update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type);
2647 const int bw = mi_size_wide[plane_bsize];
2648 set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2649 rd_stats->skip_txfm);
2650 } else {
2651 *rd_stats = split_rd_stats;
2652 if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0;
2653 }
2654 }
2655
choose_largest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2656 static AOM_INLINE void choose_largest_tx_size(const AV1_COMP *const cpi,
2657 MACROBLOCK *x, RD_STATS *rd_stats,
2658 int64_t ref_best_rd,
2659 BLOCK_SIZE bs) {
2660 MACROBLOCKD *const xd = &x->e_mbd;
2661 MB_MODE_INFO *const mbmi = xd->mi[0];
2662 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2663 mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2664
2665 // If tx64 is not enabled, we need to go down to the next available size
2666 if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) {
2667 static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = {
2668 TX_4X4, // 4x4 transform
2669 TX_8X8, // 8x8 transform
2670 TX_16X16, // 16x16 transform
2671 TX_32X32, // 32x32 transform
2672 TX_32X32, // 64x64 transform
2673 TX_4X8, // 4x8 transform
2674 TX_8X4, // 8x4 transform
2675 TX_8X16, // 8x16 transform
2676 TX_16X8, // 16x8 transform
2677 TX_16X32, // 16x32 transform
2678 TX_32X16, // 32x16 transform
2679 TX_32X32, // 32x64 transform
2680 TX_32X32, // 64x32 transform
2681 TX_4X16, // 4x16 transform
2682 TX_16X4, // 16x4 transform
2683 TX_8X32, // 8x32 transform
2684 TX_32X8, // 32x8 transform
2685 TX_16X32, // 16x64 transform
2686 TX_32X16, // 64x16 transform
2687 };
2688 mbmi->tx_size = tx_size_max_32[mbmi->tx_size];
2689 } else if (cpi->oxcf.txfm_cfg.enable_tx64 &&
2690 !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2691 static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = {
2692 TX_4X4, // 4x4 transform
2693 TX_8X8, // 8x8 transform
2694 TX_16X16, // 16x16 transform
2695 TX_32X32, // 32x32 transform
2696 TX_64X64, // 64x64 transform
2697 TX_4X4, // 4x8 transform
2698 TX_4X4, // 8x4 transform
2699 TX_8X8, // 8x16 transform
2700 TX_8X8, // 16x8 transform
2701 TX_16X16, // 16x32 transform
2702 TX_16X16, // 32x16 transform
2703 TX_32X32, // 32x64 transform
2704 TX_32X32, // 64x32 transform
2705 TX_4X4, // 4x16 transform
2706 TX_4X4, // 16x4 transform
2707 TX_8X8, // 8x32 transform
2708 TX_8X8, // 32x8 transform
2709 TX_16X16, // 16x64 transform
2710 TX_16X16, // 64x16 transform
2711 };
2712 mbmi->tx_size = tx_size_max_square[mbmi->tx_size];
2713 } else if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
2714 !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2715 static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = {
2716 TX_4X4, // 4x4 transform
2717 TX_8X8, // 8x8 transform
2718 TX_16X16, // 16x16 transform
2719 TX_32X32, // 32x32 transform
2720 TX_32X32, // 64x64 transform
2721 TX_4X4, // 4x8 transform
2722 TX_4X4, // 8x4 transform
2723 TX_8X8, // 8x16 transform
2724 TX_8X8, // 16x8 transform
2725 TX_16X16, // 16x32 transform
2726 TX_16X16, // 32x16 transform
2727 TX_32X32, // 32x64 transform
2728 TX_32X32, // 64x32 transform
2729 TX_4X4, // 4x16 transform
2730 TX_4X4, // 16x4 transform
2731 TX_8X8, // 8x32 transform
2732 TX_8X8, // 32x8 transform
2733 TX_16X16, // 16x64 transform
2734 TX_16X16, // 64x16 transform
2735 };
2736
2737 mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size];
2738 }
2739
2740 const int skip_ctx = av1_get_skip_txfm_context(xd);
2741 const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
2742 const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
2743 // Skip RDcost is used only for Inter blocks
2744 const int64_t skip_txfm_rd =
2745 is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
2746 const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0);
2747 const int skip_trellis = 0;
2748 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
2749 AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
2750 mbmi->tx_size, FTXS_NONE, skip_trellis);
2751 }
2752
choose_smallest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2753 static AOM_INLINE void choose_smallest_tx_size(const AV1_COMP *const cpi,
2754 MACROBLOCK *x,
2755 RD_STATS *rd_stats,
2756 int64_t ref_best_rd,
2757 BLOCK_SIZE bs) {
2758 MACROBLOCKD *const xd = &x->e_mbd;
2759 MB_MODE_INFO *const mbmi = xd->mi[0];
2760
2761 mbmi->tx_size = TX_4X4;
2762 // TODO(any) : Pass this_rd based on skip/non-skip cost
2763 const int skip_trellis = 0;
2764 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size,
2765 FTXS_NONE, skip_trellis);
2766 }
2767
2768 #if !CONFIG_REALTIME_ONLY
ml_predict_intra_tx_depth_prune(MACROBLOCK * x,int blk_row,int blk_col,BLOCK_SIZE bsize,TX_SIZE tx_size)2769 static void ml_predict_intra_tx_depth_prune(MACROBLOCK *x, int blk_row,
2770 int blk_col, BLOCK_SIZE bsize,
2771 TX_SIZE tx_size) {
2772 const MACROBLOCKD *const xd = &x->e_mbd;
2773 const MB_MODE_INFO *const mbmi = xd->mi[0];
2774
2775 // Disable the pruning logic using NN model for the following cases:
2776 // 1) Lossless coding as only 4x4 transform is evaluated in this case
2777 // 2) When transform and current block sizes do not match as the features are
2778 // obtained over the current block
2779 // 3) When operating bit-depth is not 8-bit as the input features are not
2780 // scaled according to bit-depth.
2781 if (xd->lossless[mbmi->segment_id] || txsize_to_bsize[tx_size] != bsize ||
2782 xd->bd != 8)
2783 return;
2784
2785 // Currently NN model based pruning is supported only when largest transform
2786 // size is 8x8
2787 if (tx_size != TX_8X8) return;
2788
2789 // Neural network model is a sequential neural net and was trained using SGD
2790 // optimizer. The model can be further improved in terms of speed/quality by
2791 // considering the following experiments:
2792 // 1) Generate ML model by training with balanced data for different learning
2793 // rates and optimizers.
2794 // 2) Experiment with ML model by adding features related to the statistics of
2795 // top and left pixels to capture the accuracy of reconstructed neighbouring
2796 // pixels for 4x4 blocks numbered 1, 2, 3 in 8x8 block, source variance of 4x4
2797 // sub-blocks, etc.
2798 // 3) Generate ML models for transform blocks other than 8x8.
2799 const NN_CONFIG *const nn_config = &av1_intra_tx_split_nnconfig_8x8;
2800 const float *const intra_tx_prune_thresh = av1_intra_tx_prune_nn_thresh_8x8;
2801
2802 float features[NUM_INTRA_TX_SPLIT_FEATURES] = { 0.0f };
2803 const int diff_stride = block_size_wide[bsize];
2804
2805 const int16_t *diff = x->plane[0].src_diff + MI_SIZE * blk_row * diff_stride +
2806 MI_SIZE * blk_col;
2807 const int bw = tx_size_wide[tx_size];
2808 const int bh = tx_size_high[tx_size];
2809
2810 int feature_idx = get_mean_dev_features(diff, diff_stride, bw, bh, features);
2811
2812 features[feature_idx++] = logf(1.0f + (float)x->source_variance);
2813
2814 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
2815 const float log_dc_q_square = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
2816 features[feature_idx++] = log_dc_q_square;
2817 assert(feature_idx == NUM_INTRA_TX_SPLIT_FEATURES);
2818 for (int i = 0; i < NUM_INTRA_TX_SPLIT_FEATURES; i++) {
2819 features[i] = (features[i] - av1_intra_tx_split_8x8_mean[i]) /
2820 av1_intra_tx_split_8x8_std[i];
2821 }
2822
2823 float score;
2824 av1_nn_predict(features, nn_config, 1, &score);
2825
2826 TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2827 if (score <= intra_tx_prune_thresh[0])
2828 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_SPLIT;
2829 else if (score > intra_tx_prune_thresh[1])
2830 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_LARGEST;
2831 }
2832 #endif // !CONFIG_REALTIME_ONLY
2833
2834 // Search for the best uniform transform size and type for current coding block.
choose_tx_size_type_from_rd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2835 static AOM_INLINE void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
2836 MACROBLOCK *x,
2837 RD_STATS *rd_stats,
2838 int64_t ref_best_rd,
2839 BLOCK_SIZE bs) {
2840 av1_invalid_rd_stats(rd_stats);
2841
2842 MACROBLOCKD *const xd = &x->e_mbd;
2843 MB_MODE_INFO *const mbmi = xd->mi[0];
2844 TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2845 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
2846 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT;
2847 int start_tx;
2848 // The split depth can be at most MAX_TX_DEPTH, so the init_depth controls
2849 // how many times of splitting is allowed during the RD search.
2850 int init_depth;
2851
2852 if (tx_select) {
2853 start_tx = max_rect_tx_size;
2854 init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
2855 is_inter_block(mbmi), &cpi->sf,
2856 txfm_params->tx_size_search_method);
2857 if (init_depth == MAX_TX_DEPTH && !cpi->oxcf.txfm_cfg.enable_tx64 &&
2858 txsize_sqr_up_map[start_tx] == TX_64X64) {
2859 start_tx = sub_tx_size_map[start_tx];
2860 }
2861 } else {
2862 const TX_SIZE chosen_tx_size =
2863 tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2864 start_tx = chosen_tx_size;
2865 init_depth = MAX_TX_DEPTH;
2866 }
2867
2868 const int skip_trellis = 0;
2869 uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
2870 uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
2871 TX_SIZE best_tx_size = max_rect_tx_size;
2872 int64_t best_rd = INT64_MAX;
2873 const int num_blks = bsize_to_num_blk(bs);
2874 x->rd_model = FULL_TXFM_RD;
2875 int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX };
2876 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2877 for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH;
2878 depth++, tx_size = sub_tx_size_map[tx_size]) {
2879 if ((!cpi->oxcf.txfm_cfg.enable_tx64 &&
2880 txsize_sqr_up_map[tx_size] == TX_64X64) ||
2881 (!cpi->oxcf.txfm_cfg.enable_rect_tx &&
2882 tx_size_wide[tx_size] != tx_size_high[tx_size])) {
2883 continue;
2884 }
2885
2886 #if !CONFIG_REALTIME_ONLY
2887 if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_SPLIT) break;
2888
2889 // Set the flag to enable the evaluation of NN classifier to prune transform
2890 // depths. As the features are based on intra residual information of
2891 // largest transform, the evaluation of NN model is enabled only for this
2892 // case.
2893 txfm_params->enable_nn_prune_intra_tx_depths =
2894 (cpi->sf.tx_sf.prune_intra_tx_depths_using_nn && tx_size == start_tx);
2895 #endif
2896
2897 RD_STATS this_rd_stats;
2898 rd[depth] = av1_uniform_txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs,
2899 tx_size, FTXS_NONE, skip_trellis);
2900 if (rd[depth] < best_rd) {
2901 av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks);
2902 av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks);
2903 best_tx_size = tx_size;
2904 best_rd = rd[depth];
2905 *rd_stats = this_rd_stats;
2906 }
2907 if (tx_size == TX_4X4) break;
2908 // If we are searching three depths, prune the smallest size depending
2909 // on rd results for the first two depths for low contrast blocks.
2910 if (depth > init_depth && depth != MAX_TX_DEPTH &&
2911 x->source_variance < 256) {
2912 if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break;
2913 }
2914 }
2915
2916 if (rd_stats->rate != INT_MAX) {
2917 mbmi->tx_size = best_tx_size;
2918 av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks);
2919 av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks);
2920 }
2921
2922 #if !CONFIG_REALTIME_ONLY
2923 // Reset the flags to avoid any unintentional evaluation of NN model and
2924 // consumption of prune depths.
2925 txfm_params->enable_nn_prune_intra_tx_depths = false;
2926 txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_NONE;
2927 #endif
2928 }
2929
2930 // Search for the best transform type for the given transform block in the
2931 // given plane/channel, and calculate the corresponding RD cost.
block_rd_txfm(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)2932 static AOM_INLINE void block_rd_txfm(int plane, int block, int blk_row,
2933 int blk_col, BLOCK_SIZE plane_bsize,
2934 TX_SIZE tx_size, void *arg) {
2935 struct rdcost_block_args *args = arg;
2936 if (args->exit_early) {
2937 args->incomplete_exit = 1;
2938 return;
2939 }
2940
2941 MACROBLOCK *const x = args->x;
2942 MACROBLOCKD *const xd = &x->e_mbd;
2943 const int is_inter = is_inter_block(xd->mi[0]);
2944 const AV1_COMP *cpi = args->cpi;
2945 ENTROPY_CONTEXT *a = args->t_above + blk_col;
2946 ENTROPY_CONTEXT *l = args->t_left + blk_row;
2947 const AV1_COMMON *cm = &cpi->common;
2948 RD_STATS this_rd_stats;
2949 av1_init_rd_stats(&this_rd_stats);
2950
2951 if (!is_inter) {
2952 av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
2953 av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
2954 #if !CONFIG_REALTIME_ONLY
2955 const TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2956 if (txfm_params->enable_nn_prune_intra_tx_depths) {
2957 ml_predict_intra_tx_depth_prune(x, blk_row, blk_col, plane_bsize,
2958 tx_size);
2959 if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_LARGEST) {
2960 av1_invalid_rd_stats(&args->rd_stats);
2961 args->exit_early = 1;
2962 return;
2963 }
2964 }
2965 #endif
2966 }
2967
2968 TXB_CTX txb_ctx;
2969 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
2970 search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
2971 &txb_ctx, args->ftxs_mode, args->skip_trellis,
2972 args->best_rd - args->current_rd, &this_rd_stats);
2973
2974 if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
2975 assert(!is_inter || plane_bsize < BLOCK_8X8);
2976 cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
2977 }
2978
2979 #if CONFIG_RD_DEBUG
2980 update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate);
2981 #endif // CONFIG_RD_DEBUG
2982 av1_set_txb_context(x, plane, block, tx_size, a, l);
2983
2984 const int blk_idx =
2985 blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col;
2986
2987 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2988 if (plane == 0)
2989 set_blk_skip(txfm_info->blk_skip, plane, blk_idx,
2990 x->plane[plane].eobs[block] == 0);
2991 else
2992 set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0);
2993
2994 int64_t rd;
2995 if (is_inter) {
2996 const int64_t no_skip_txfm_rd =
2997 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
2998 const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
2999 rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd);
3000 this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block];
3001 } else {
3002 // Signal non-skip_txfm for Intra blocks
3003 rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3004 this_rd_stats.skip_txfm = 0;
3005 }
3006
3007 av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
3008
3009 args->current_rd += rd;
3010 if (args->current_rd > args->best_rd) args->exit_early = 1;
3011 }
3012
av1_estimate_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size)3013 int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3014 RD_STATS *rd_stats, int64_t ref_best_rd,
3015 BLOCK_SIZE bs, TX_SIZE tx_size) {
3016 MACROBLOCKD *const xd = &x->e_mbd;
3017 MB_MODE_INFO *const mbmi = xd->mi[0];
3018 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3019 const ModeCosts *mode_costs = &x->mode_costs;
3020 const int is_inter = is_inter_block(mbmi);
3021 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3022 block_signals_txsize(mbmi->bsize);
3023 int tx_size_rate = 0;
3024 if (tx_select) {
3025 const int ctx = txfm_partition_context(
3026 xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
3027 tx_size_rate = mode_costs->txfm_partition_cost[ctx][0];
3028 }
3029 const int skip_ctx = av1_get_skip_txfm_context(xd);
3030 const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
3031 const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
3032 const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0);
3033 const int64_t no_this_rd =
3034 RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
3035 mbmi->tx_size = tx_size;
3036
3037 const uint8_t txw_unit = tx_size_wide_unit[tx_size];
3038 const uint8_t txh_unit = tx_size_high_unit[tx_size];
3039 const int step = txw_unit * txh_unit;
3040 const int max_blocks_wide = max_block_wide(xd, bs, 0);
3041 const int max_blocks_high = max_block_high(xd, bs, 0);
3042
3043 struct rdcost_block_args args;
3044 av1_zero(args);
3045 args.x = x;
3046 args.cpi = cpi;
3047 args.best_rd = ref_best_rd;
3048 args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd);
3049 av1_init_rd_stats(&args.rd_stats);
3050 av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left);
3051 int i = 0;
3052 for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit;
3053 blk_row += txh_unit) {
3054 for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) {
3055 RD_STATS this_rd_stats;
3056 av1_init_rd_stats(&this_rd_stats);
3057
3058 if (args.exit_early) {
3059 args.incomplete_exit = 1;
3060 break;
3061 }
3062
3063 ENTROPY_CONTEXT *a = args.t_above + blk_col;
3064 ENTROPY_CONTEXT *l = args.t_left + blk_row;
3065 TXB_CTX txb_ctx;
3066 get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx);
3067
3068 TxfmParam txfm_param;
3069 QUANT_PARAM quant_param;
3070 av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param);
3071 av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param);
3072
3073 av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param);
3074 av1_quant(x, 0, i, &txfm_param, &quant_param);
3075
3076 this_rd_stats.rate =
3077 cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0);
3078
3079 const SCAN_ORDER *const scan_order =
3080 get_scan(txfm_param.tx_size, txfm_param.tx_type);
3081 dist_block_tx_domain(x, 0, i, tx_size, quant_param.qmatrix,
3082 scan_order->scan, &this_rd_stats.dist,
3083 &this_rd_stats.sse);
3084
3085 const int64_t no_skip_txfm_rd =
3086 RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3087 const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
3088
3089 this_rd_stats.skip_txfm &= !x->plane[0].eobs[i];
3090
3091 av1_merge_rd_stats(&args.rd_stats, &this_rd_stats);
3092 args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd);
3093
3094 if (args.current_rd > ref_best_rd) {
3095 args.exit_early = 1;
3096 break;
3097 }
3098
3099 av1_set_txb_context(x, 0, i, tx_size, a, l);
3100 i += step;
3101 }
3102 }
3103
3104 if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats);
3105
3106 *rd_stats = args.rd_stats;
3107 if (rd_stats->rate == INT_MAX) return INT64_MAX;
3108
3109 int64_t rd;
3110 // rdstats->rate should include all the rate except skip/non-skip cost as the
3111 // same is accounted in the caller functions after rd evaluation of all
3112 // planes. However the decisions should be done after considering the
3113 // skip/non-skip header cost
3114 if (rd_stats->skip_txfm && is_inter) {
3115 rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3116 } else {
3117 // Intra blocks are always signalled as non-skip
3118 rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
3119 rd_stats->dist);
3120 rd_stats->rate += tx_size_rate;
3121 }
3122 // Check if forcing the block to skip transform leads to smaller RD cost.
3123 if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
3124 int64_t temp_skip_txfm_rd =
3125 RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3126 if (temp_skip_txfm_rd <= rd) {
3127 rd = temp_skip_txfm_rd;
3128 rd_stats->rate = 0;
3129 rd_stats->dist = rd_stats->sse;
3130 rd_stats->skip_txfm = 1;
3131 }
3132 }
3133
3134 return rd;
3135 }
3136
av1_uniform_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)3137 int64_t av1_uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3138 RD_STATS *rd_stats, int64_t ref_best_rd,
3139 BLOCK_SIZE bs, TX_SIZE tx_size,
3140 FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis) {
3141 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
3142 MACROBLOCKD *const xd = &x->e_mbd;
3143 MB_MODE_INFO *const mbmi = xd->mi[0];
3144 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3145 const ModeCosts *mode_costs = &x->mode_costs;
3146 const int is_inter = is_inter_block(mbmi);
3147 const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3148 block_signals_txsize(mbmi->bsize);
3149 int tx_size_rate = 0;
3150 if (tx_select) {
3151 const int ctx = txfm_partition_context(
3152 xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
3153 tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0]
3154 : tx_size_cost(x, bs, tx_size);
3155 }
3156 const int skip_ctx = av1_get_skip_txfm_context(xd);
3157 const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
3158 const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
3159 const int64_t skip_txfm_rd =
3160 is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
3161 const int64_t no_this_rd =
3162 RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
3163
3164 mbmi->tx_size = tx_size;
3165 av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
3166 AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
3167 tx_size, ftxs_mode, skip_trellis);
3168 if (rd_stats->rate == INT_MAX) return INT64_MAX;
3169
3170 int64_t rd;
3171 // rdstats->rate should include all the rate except skip/non-skip cost as the
3172 // same is accounted in the caller functions after rd evaluation of all
3173 // planes. However the decisions should be done after considering the
3174 // skip/non-skip header cost
3175 if (rd_stats->skip_txfm && is_inter) {
3176 rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3177 } else {
3178 // Intra blocks are always signalled as non-skip
3179 rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
3180 rd_stats->dist);
3181 rd_stats->rate += tx_size_rate;
3182 }
3183 // Check if forcing the block to skip transform leads to smaller RD cost.
3184 if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
3185 int64_t temp_skip_txfm_rd =
3186 RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3187 if (temp_skip_txfm_rd <= rd) {
3188 rd = temp_skip_txfm_rd;
3189 rd_stats->rate = 0;
3190 rd_stats->dist = rd_stats->sse;
3191 rd_stats->skip_txfm = 1;
3192 }
3193 }
3194
3195 return rd;
3196 }
3197
3198 // Search for the best transform type for a luma inter-predicted block, given
3199 // the transform block partitions.
3200 // This function is used only when some speed features are enabled.
tx_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,BLOCK_SIZE plane_bsize,int depth,ENTROPY_CONTEXT * above_ctx,ENTROPY_CONTEXT * left_ctx,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int64_t ref_best_rd,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode)3201 static AOM_INLINE void tx_block_yrd(
3202 const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
3203 TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int depth,
3204 ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx,
3205 TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, int64_t ref_best_rd,
3206 RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode) {
3207 assert(tx_size < TX_SIZES_ALL);
3208 MACROBLOCKD *const xd = &x->e_mbd;
3209 MB_MODE_INFO *const mbmi = xd->mi[0];
3210 assert(is_inter_block(mbmi));
3211 const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
3212 const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
3213
3214 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
3215
3216 const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
3217 plane_bsize, blk_row, blk_col)];
3218 const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
3219 mbmi->bsize, tx_size);
3220
3221 av1_init_rd_stats(rd_stats);
3222 if (tx_size == plane_tx_size) {
3223 ENTROPY_CONTEXT *ta = above_ctx + blk_col;
3224 ENTROPY_CONTEXT *tl = left_ctx + blk_row;
3225 const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
3226 TXB_CTX txb_ctx;
3227 get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);
3228
3229 const int zero_blk_rate =
3230 x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)]
3231 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
3232 rd_stats->zero_rate = zero_blk_rate;
3233 tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
3234 rd_stats, ftxs_mode, ref_best_rd);
3235 const int mi_width = mi_size_wide[plane_bsize];
3236 TxfmSearchInfo *txfm_info = &x->txfm_search_info;
3237 if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
3238 RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
3239 rd_stats->skip_txfm == 1) {
3240 rd_stats->rate = zero_blk_rate;
3241 rd_stats->dist = rd_stats->sse;
3242 rd_stats->skip_txfm = 1;
3243 set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1);
3244 x->plane[0].eobs[block] = 0;
3245 x->plane[0].txb_entropy_ctx[block] = 0;
3246 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
3247 } else {
3248 rd_stats->skip_txfm = 0;
3249 set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0);
3250 }
3251 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3252 rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0];
3253 av1_set_txb_context(x, 0, block, tx_size, ta, tl);
3254 txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
3255 tx_size);
3256 } else {
3257 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
3258 const int txb_width = tx_size_wide_unit[sub_txs];
3259 const int txb_height = tx_size_high_unit[sub_txs];
3260 const int step = txb_height * txb_width;
3261 const int row_end =
3262 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
3263 const int col_end =
3264 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
3265 RD_STATS pn_rd_stats;
3266 int64_t this_rd = 0;
3267 assert(txb_width > 0 && txb_height > 0);
3268
3269 for (int row = 0; row < row_end; row += txb_height) {
3270 const int offsetr = blk_row + row;
3271 for (int col = 0; col < col_end; col += txb_width) {
3272 const int offsetc = blk_col + col;
3273
3274 av1_init_rd_stats(&pn_rd_stats);
3275 tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
3276 depth + 1, above_ctx, left_ctx, tx_above, tx_left,
3277 ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
3278 if (pn_rd_stats.rate == INT_MAX) {
3279 av1_invalid_rd_stats(rd_stats);
3280 return;
3281 }
3282 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3283 this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
3284 block += step;
3285 }
3286 }
3287
3288 if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3289 rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1];
3290 }
3291 }
3292
3293 // search for tx type with tx sizes already decided for a inter-predicted luma
3294 // partition block. It's used only when some speed features are enabled.
3295 // Return value 0: early termination triggered, no valid rd cost available;
3296 // 1: rd cost values are valid.
inter_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode)3297 static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3298 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3299 int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
3300 if (ref_best_rd < 0) {
3301 av1_invalid_rd_stats(rd_stats);
3302 return 0;
3303 }
3304
3305 av1_init_rd_stats(rd_stats);
3306
3307 MACROBLOCKD *const xd = &x->e_mbd;
3308 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3309 const struct macroblockd_plane *const pd = &xd->plane[0];
3310 const int mi_width = mi_size_wide[bsize];
3311 const int mi_height = mi_size_high[bsize];
3312 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
3313 const int bh = tx_size_high_unit[max_tx_size];
3314 const int bw = tx_size_wide_unit[max_tx_size];
3315 const int step = bw * bh;
3316 const int init_depth = get_search_init_depth(
3317 mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3318 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3319 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3320 TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3321 TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3322 av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3323 memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3324 memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3325
3326 int64_t this_rd = 0;
3327 for (int idy = 0, block = 0; idy < mi_height; idy += bh) {
3328 for (int idx = 0; idx < mi_width; idx += bw) {
3329 RD_STATS pn_rd_stats;
3330 av1_init_rd_stats(&pn_rd_stats);
3331 tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth,
3332 ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd,
3333 &pn_rd_stats, ftxs_mode);
3334 if (pn_rd_stats.rate == INT_MAX) {
3335 av1_invalid_rd_stats(rd_stats);
3336 return 0;
3337 }
3338 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3339 this_rd +=
3340 AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
3341 RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
3342 block += step;
3343 }
3344 }
3345
3346 const int skip_ctx = av1_get_skip_txfm_context(xd);
3347 const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3348 const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3349 const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3350 this_rd =
3351 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist);
3352 if (skip_txfm_rd < this_rd) {
3353 this_rd = skip_txfm_rd;
3354 rd_stats->rate = 0;
3355 rd_stats->dist = rd_stats->sse;
3356 rd_stats->skip_txfm = 1;
3357 }
3358
3359 const int is_cost_valid = this_rd > ref_best_rd;
3360 if (!is_cost_valid) {
3361 // reset cost value
3362 av1_invalid_rd_stats(rd_stats);
3363 }
3364 return is_cost_valid;
3365 }
3366
3367 // Search for the best transform size and type for current inter-predicted
3368 // luma block with recursive transform block partitioning. The obtained
3369 // transform selection will be saved in xd->mi[0], the corresponding RD stats
3370 // will be saved in rd_stats. The returned value is the corresponding RD cost.
select_tx_size_and_type(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3371 static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x,
3372 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3373 int64_t ref_best_rd) {
3374 MACROBLOCKD *const xd = &x->e_mbd;
3375 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3376 assert(is_inter_block(xd->mi[0]));
3377 assert(bsize < BLOCK_SIZES_ALL);
3378 const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD;
3379 int64_t rd_thresh = ref_best_rd;
3380 if (rd_thresh == 0) {
3381 av1_invalid_rd_stats(rd_stats);
3382 return INT64_MAX;
3383 }
3384 if (fast_tx_search && rd_thresh < INT64_MAX) {
3385 if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
3386 }
3387 assert(rd_thresh > 0);
3388 const FAST_TX_SEARCH_MODE ftxs_mode =
3389 fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
3390 const struct macroblockd_plane *const pd = &xd->plane[0];
3391 assert(bsize < BLOCK_SIZES_ALL);
3392 const int mi_width = mi_size_wide[bsize];
3393 const int mi_height = mi_size_high[bsize];
3394 ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3395 ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3396 TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3397 TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3398 av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3399 memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3400 memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3401 const int init_depth = get_search_init_depth(
3402 mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3403 const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
3404 const int bh = tx_size_high_unit[max_tx_size];
3405 const int bw = tx_size_wide_unit[max_tx_size];
3406 const int step = bw * bh;
3407 const int skip_ctx = av1_get_skip_txfm_context(xd);
3408 const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3409 const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3410 int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0);
3411 int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0);
3412 int block = 0;
3413
3414 av1_init_rd_stats(rd_stats);
3415 for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) {
3416 for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) {
3417 const int64_t best_rd_sofar =
3418 (rd_thresh == INT64_MAX)
3419 ? INT64_MAX
3420 : (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd)));
3421 int is_cost_valid = 1;
3422 RD_STATS pn_rd_stats;
3423 // Search for the best transform block size and type for the sub-block.
3424 select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize,
3425 ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX,
3426 best_rd_sofar, &is_cost_valid, ftxs_mode);
3427 if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
3428 av1_invalid_rd_stats(rd_stats);
3429 return INT64_MAX;
3430 }
3431 av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3432 skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3433 no_skip_txfm_rd =
3434 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3435 block += step;
3436 }
3437 }
3438
3439 if (rd_stats->rate == INT_MAX) return INT64_MAX;
3440
3441 rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd);
3442
3443 // If fast_tx_search is true, only DCT and 1D DCT were tested in
3444 // select_inter_block_yrd() above. Do a better search for tx type with
3445 // tx sizes already decided.
3446 if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) {
3447 if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
3448 return INT64_MAX;
3449 }
3450
3451 int64_t final_rd;
3452 if (rd_stats->skip_txfm) {
3453 final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3454 } else {
3455 final_rd =
3456 RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3457 if (!xd->lossless[xd->mi[0]->segment_id]) {
3458 final_rd =
3459 AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse));
3460 }
3461 }
3462
3463 return final_rd;
3464 }
3465
3466 // Return 1 to terminate transform search early. The decision is made based on
3467 // the comparison with the reference RD cost and the model-estimated RD cost.
model_based_tx_search_prune(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int64_t ref_best_rd)3468 static AOM_INLINE int model_based_tx_search_prune(const AV1_COMP *cpi,
3469 MACROBLOCK *x,
3470 BLOCK_SIZE bsize,
3471 int64_t ref_best_rd) {
3472 const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level;
3473 assert(level >= 0 && level <= 2);
3474 int model_rate;
3475 int64_t model_dist;
3476 uint8_t model_skip;
3477 MACROBLOCKD *const xd = &x->e_mbd;
3478 model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE](
3479 cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL,
3480 NULL, NULL, NULL);
3481 if (model_skip) return 0;
3482 const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
3483 // TODO(debargha, urvang): Improve the model and make the check below
3484 // tighter.
3485 static const int prune_factor_by8[] = { 3, 5 };
3486 const int factor = prune_factor_by8[level - 1];
3487 return ((model_rd * factor) >> 3) > ref_best_rd;
3488 }
3489
av1_pick_recursive_tx_size_type_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3490 void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3491 RD_STATS *rd_stats, BLOCK_SIZE bsize,
3492 int64_t ref_best_rd) {
3493 MACROBLOCKD *const xd = &x->e_mbd;
3494 const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3495 assert(is_inter_block(xd->mi[0]));
3496
3497 av1_invalid_rd_stats(rd_stats);
3498
3499 // If modeled RD cost is a lot worse than the best so far, terminate early.
3500 if (cpi->sf.tx_sf.model_based_prune_tx_search_level &&
3501 ref_best_rd != INT64_MAX) {
3502 if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return;
3503 }
3504
3505 // Hashing based speed feature. If the hash of the prediction residue block is
3506 // found in the hash table, use previous search results and terminate early.
3507 uint32_t hash = 0;
3508 MB_RD_RECORD *mb_rd_record = NULL;
3509 const int mi_row = x->e_mbd.mi_row;
3510 const int mi_col = x->e_mbd.mi_col;
3511 const int within_border =
3512 mi_row >= xd->tile.mi_row_start &&
3513 (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
3514 mi_col >= xd->tile.mi_col_start &&
3515 (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);
3516 const int is_mb_rd_hash_enabled =
3517 (within_border && cpi->sf.rd_sf.use_mb_rd_hash);
3518 const int n4 = bsize_to_num_blk(bsize);
3519 if (is_mb_rd_hash_enabled) {
3520 hash = get_block_residue_hash(x, bsize);
3521 mb_rd_record = x->txfm_search_info.mb_rd_record;
3522 const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3523 if (match_index != -1) {
3524 MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3525 fetch_mb_rd_info(n4, mb_rd_info, rd_stats, x);
3526 return;
3527 }
3528 }
3529
3530 // If we predict that skip is the optimal RD decision - set the respective
3531 // context and terminate early.
3532 int64_t dist;
3533 if (txfm_params->skip_txfm_level &&
3534 predict_skip_txfm(x, bsize, &dist,
3535 cpi->common.features.reduced_tx_set_used)) {
3536 set_skip_txfm(x, rd_stats, bsize, dist);
3537 // Save the RD search results into mb_rd_record.
3538 if (is_mb_rd_hash_enabled)
3539 save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3540 return;
3541 }
3542 #if CONFIG_SPEED_STATS
3543 ++x->txfm_search_info.tx_search_count;
3544 #endif // CONFIG_SPEED_STATS
3545
3546 const int64_t rd =
3547 select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd);
3548
3549 if (rd == INT64_MAX) {
3550 // We should always find at least one candidate unless ref_best_rd is less
3551 // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
3552 // might have failed to find something better)
3553 assert(ref_best_rd != INT64_MAX);
3554 av1_invalid_rd_stats(rd_stats);
3555 return;
3556 }
3557
3558 // Save the RD search results into mb_rd_record.
3559 if (is_mb_rd_hash_enabled) {
3560 assert(mb_rd_record != NULL);
3561 save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3562 }
3563 }
3564
av1_pick_uniform_tx_size_type_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bs,int64_t ref_best_rd)3565 void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3566 RD_STATS *rd_stats, BLOCK_SIZE bs,
3567 int64_t ref_best_rd) {
3568 MACROBLOCKD *const xd = &x->e_mbd;
3569 MB_MODE_INFO *const mbmi = xd->mi[0];
3570 const TxfmSearchParams *tx_params = &x->txfm_search_params;
3571 assert(bs == mbmi->bsize);
3572 const int is_inter = is_inter_block(mbmi);
3573 const int mi_row = xd->mi_row;
3574 const int mi_col = xd->mi_col;
3575
3576 av1_init_rd_stats(rd_stats);
3577
3578 // Hashing based speed feature for inter blocks. If the hash of the residue
3579 // block is found in the table, use previously saved search results and
3580 // terminate early.
3581 uint32_t hash = 0;
3582 MB_RD_RECORD *mb_rd_record = NULL;
3583 const int num_blks = bsize_to_num_blk(bs);
3584 if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) {
3585 const int within_border =
3586 mi_row >= xd->tile.mi_row_start &&
3587 (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) &&
3588 mi_col >= xd->tile.mi_col_start &&
3589 (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end);
3590 if (within_border) {
3591 hash = get_block_residue_hash(x, bs);
3592 mb_rd_record = x->txfm_search_info.mb_rd_record;
3593 const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3594 if (match_index != -1) {
3595 MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3596 fetch_mb_rd_info(num_blks, mb_rd_info, rd_stats, x);
3597 return;
3598 }
3599 }
3600 }
3601
3602 // If we predict that skip is the optimal RD decision - set the respective
3603 // context and terminate early.
3604 int64_t dist;
3605 if (tx_params->skip_txfm_level && is_inter &&
3606 !xd->lossless[mbmi->segment_id] &&
3607 predict_skip_txfm(x, bs, &dist,
3608 cpi->common.features.reduced_tx_set_used)) {
3609 // Populate rdstats as per skip decision
3610 set_skip_txfm(x, rd_stats, bs, dist);
3611 // Save the RD search results into mb_rd_record.
3612 if (mb_rd_record) {
3613 save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3614 }
3615 return;
3616 }
3617
3618 if (xd->lossless[mbmi->segment_id]) {
3619 // Lossless mode can only pick the smallest (4x4) transform size.
3620 choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3621 } else if (tx_params->tx_size_search_method == USE_LARGESTALL) {
3622 choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3623 } else {
3624 choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
3625 }
3626
3627 // Save the RD search results into mb_rd_record for possible reuse in future.
3628 if (mb_rd_record) {
3629 save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3630 }
3631 }
3632
av1_txfm_uvrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3633 int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats,
3634 BLOCK_SIZE bsize, int64_t ref_best_rd) {
3635 av1_init_rd_stats(rd_stats);
3636 if (ref_best_rd < 0) return 0;
3637 if (!x->e_mbd.is_chroma_ref) return 1;
3638
3639 MACROBLOCKD *const xd = &x->e_mbd;
3640 MB_MODE_INFO *const mbmi = xd->mi[0];
3641 struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
3642 const int is_inter = is_inter_block(mbmi);
3643 int64_t this_rd = 0, skip_txfm_rd = 0;
3644 const BLOCK_SIZE plane_bsize =
3645 get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
3646
3647 if (is_inter) {
3648 for (int plane = 1; plane < MAX_MB_PLANE; ++plane)
3649 av1_subtract_plane(x, plane_bsize, plane);
3650 }
3651
3652 const int skip_trellis = 0;
3653 const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
3654 int is_cost_valid = 1;
3655 for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
3656 RD_STATS this_rd_stats;
3657 int64_t chroma_ref_best_rd = ref_best_rd;
3658 // For inter blocks, refined ref_best_rd is used for early exit
3659 // For intra blocks, even though current rd crosses ref_best_rd, early
3660 // exit is not recommended as current rd is used for gating subsequent
3661 // modes as well (say, for angular modes)
3662 // TODO(any): Extend the early exit mechanism for intra modes as well
3663 if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter &&
3664 chroma_ref_best_rd != INT64_MAX)
3665 chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd);
3666 av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane,
3667 plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis);
3668 if (this_rd_stats.rate == INT_MAX) {
3669 is_cost_valid = 0;
3670 break;
3671 }
3672 av1_merge_rd_stats(rd_stats, &this_rd_stats);
3673 this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3674 skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse);
3675 if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) {
3676 is_cost_valid = 0;
3677 break;
3678 }
3679 }
3680
3681 if (!is_cost_valid) {
3682 // reset cost value
3683 av1_invalid_rd_stats(rd_stats);
3684 }
3685
3686 return is_cost_valid;
3687 }
3688
av1_txfm_rd_in_plane(MACROBLOCK * x,const AV1_COMP * cpi,RD_STATS * rd_stats,int64_t ref_best_rd,int64_t current_rd,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)3689 void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
3690 RD_STATS *rd_stats, int64_t ref_best_rd,
3691 int64_t current_rd, int plane, BLOCK_SIZE plane_bsize,
3692 TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode,
3693 int skip_trellis) {
3694 assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size));
3695
3696 if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
3697 txsize_sqr_up_map[tx_size] == TX_64X64) {
3698 av1_invalid_rd_stats(rd_stats);
3699 return;
3700 }
3701
3702 if (current_rd > ref_best_rd) {
3703 av1_invalid_rd_stats(rd_stats);
3704 return;
3705 }
3706
3707 MACROBLOCKD *const xd = &x->e_mbd;
3708 const struct macroblockd_plane *const pd = &xd->plane[plane];
3709 struct rdcost_block_args args;
3710 av1_zero(args);
3711 args.x = x;
3712 args.cpi = cpi;
3713 args.best_rd = ref_best_rd;
3714 args.current_rd = current_rd;
3715 args.ftxs_mode = ftxs_mode;
3716 args.skip_trellis = skip_trellis;
3717 av1_init_rd_stats(&args.rd_stats);
3718
3719 av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left);
3720 av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm,
3721 &args);
3722
3723 MB_MODE_INFO *const mbmi = xd->mi[0];
3724 const int is_inter = is_inter_block(mbmi);
3725 const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early;
3726
3727 if (invalid_rd) {
3728 av1_invalid_rd_stats(rd_stats);
3729 } else {
3730 *rd_stats = args.rd_stats;
3731 }
3732 }
3733
av1_txfm_search(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RD_STATS * rd_stats,RD_STATS * rd_stats_y,RD_STATS * rd_stats_uv,int mode_rate,int64_t ref_best_rd)3734 int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
3735 RD_STATS *rd_stats, RD_STATS *rd_stats_y,
3736 RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) {
3737 MACROBLOCKD *const xd = &x->e_mbd;
3738 TxfmSearchParams *txfm_params = &x->txfm_search_params;
3739 const int skip_ctx = av1_get_skip_txfm_context(xd);
3740 const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0],
3741 x->mode_costs.skip_txfm_cost[skip_ctx][1] };
3742 const int64_t min_header_rate =
3743 mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]);
3744 // Account for minimum skip and non_skip rd.
3745 // Eventually either one of them will be added to mode_rate
3746 const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0);
3747 if (min_header_rd_possible > ref_best_rd) {
3748 av1_invalid_rd_stats(rd_stats_y);
3749 return 0;
3750 }
3751
3752 const AV1_COMMON *cm = &cpi->common;
3753 MB_MODE_INFO *const mbmi = xd->mi[0];
3754 const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0);
3755 const int64_t rd_thresh =
3756 ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd;
3757 av1_init_rd_stats(rd_stats);
3758 av1_init_rd_stats(rd_stats_y);
3759 rd_stats->rate = mode_rate;
3760
3761 // cost and distortion
3762 av1_subtract_plane(x, bsize, 0);
3763 if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3764 !xd->lossless[mbmi->segment_id]) {
3765 av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3766 #if CONFIG_COLLECT_RD_STATS == 2
3767 PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize);
3768 #endif // CONFIG_COLLECT_RD_STATS == 2
3769 } else {
3770 av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3771 memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
3772 for (int i = 0; i < xd->height * xd->width; ++i)
3773 set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm);
3774 }
3775
3776 if (rd_stats_y->rate == INT_MAX) return 0;
3777
3778 av1_merge_rd_stats(rd_stats, rd_stats_y);
3779
3780 const int64_t non_skip_txfm_rdcosty =
3781 RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist);
3782 const int64_t skip_txfm_rdcosty =
3783 RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse);
3784 const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty);
3785 if (min_rdcosty > ref_best_rd) return 0;
3786
3787 av1_init_rd_stats(rd_stats_uv);
3788 const int num_planes = av1_num_planes(cm);
3789 if (num_planes > 1) {
3790 int64_t ref_best_chroma_rd = ref_best_rd;
3791 // Calculate best rd cost possible for chroma
3792 if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma &&
3793 (ref_best_chroma_rd != INT64_MAX)) {
3794 ref_best_chroma_rd = (ref_best_chroma_rd -
3795 AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty));
3796 }
3797 const int is_cost_valid_uv =
3798 av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd);
3799 if (!is_cost_valid_uv) return 0;
3800 av1_merge_rd_stats(rd_stats, rd_stats_uv);
3801 }
3802
3803 int choose_skip_txfm = rd_stats->skip_txfm;
3804 if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) {
3805 const int64_t rdcost_no_skip_txfm = RDCOST(
3806 x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0],
3807 rd_stats->dist);
3808 const int64_t rdcost_skip_txfm =
3809 RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse);
3810 if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1;
3811 }
3812 if (choose_skip_txfm) {
3813 rd_stats_y->rate = 0;
3814 rd_stats_uv->rate = 0;
3815 rd_stats->rate = mode_rate + skip_txfm_cost[1];
3816 rd_stats->dist = rd_stats->sse;
3817 rd_stats_y->dist = rd_stats_y->sse;
3818 rd_stats_uv->dist = rd_stats_uv->sse;
3819 mbmi->skip_txfm = 1;
3820 if (rd_stats->skip_txfm) {
3821 const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3822 if (tmprd > ref_best_rd) return 0;
3823 }
3824 } else {
3825 rd_stats->rate += skip_txfm_cost[0];
3826 mbmi->skip_txfm = 0;
3827 }
3828
3829 return 1;
3830 }
3831