1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32 #include <sys/stat.h>
33 #include <fcntl.h>
34
35 #include "brw_eu_defines.h"
36 #include "brw_eu.h"
37 #include "brw_shader.h"
38 #include "brw_gen_enum.h"
39 #include "dev/gen_debug.h"
40
41 #include "util/ralloc.h"
42
43 /* Returns a conditional modifier that negates the condition. */
44 enum brw_conditional_mod
brw_negate_cmod(enum brw_conditional_mod cmod)45 brw_negate_cmod(enum brw_conditional_mod cmod)
46 {
47 switch (cmod) {
48 case BRW_CONDITIONAL_Z:
49 return BRW_CONDITIONAL_NZ;
50 case BRW_CONDITIONAL_NZ:
51 return BRW_CONDITIONAL_Z;
52 case BRW_CONDITIONAL_G:
53 return BRW_CONDITIONAL_LE;
54 case BRW_CONDITIONAL_GE:
55 return BRW_CONDITIONAL_L;
56 case BRW_CONDITIONAL_L:
57 return BRW_CONDITIONAL_GE;
58 case BRW_CONDITIONAL_LE:
59 return BRW_CONDITIONAL_G;
60 default:
61 unreachable("Can't negate this cmod");
62 }
63 }
64
65 /* Returns the corresponding conditional mod for swapping src0 and
66 * src1 in e.g. CMP.
67 */
68 enum brw_conditional_mod
brw_swap_cmod(enum brw_conditional_mod cmod)69 brw_swap_cmod(enum brw_conditional_mod cmod)
70 {
71 switch (cmod) {
72 case BRW_CONDITIONAL_Z:
73 case BRW_CONDITIONAL_NZ:
74 return cmod;
75 case BRW_CONDITIONAL_G:
76 return BRW_CONDITIONAL_L;
77 case BRW_CONDITIONAL_GE:
78 return BRW_CONDITIONAL_LE;
79 case BRW_CONDITIONAL_L:
80 return BRW_CONDITIONAL_G;
81 case BRW_CONDITIONAL_LE:
82 return BRW_CONDITIONAL_GE;
83 default:
84 return BRW_CONDITIONAL_NONE;
85 }
86 }
87
88 /**
89 * Get the least significant bit offset of the i+1-th component of immediate
90 * type \p type. For \p i equal to the two's complement of j, return the
91 * offset of the j-th component starting from the end of the vector. For
92 * scalar register types return zero.
93 */
94 static unsigned
imm_shift(enum brw_reg_type type,unsigned i)95 imm_shift(enum brw_reg_type type, unsigned i)
96 {
97 assert(type != BRW_REGISTER_TYPE_UV && type != BRW_REGISTER_TYPE_V &&
98 "Not implemented.");
99
100 if (type == BRW_REGISTER_TYPE_VF)
101 return 8 * (i & 3);
102 else
103 return 0;
104 }
105
106 /**
107 * Swizzle an arbitrary immediate \p x of the given type according to the
108 * permutation specified as \p swz.
109 */
110 uint32_t
brw_swizzle_immediate(enum brw_reg_type type,uint32_t x,unsigned swz)111 brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz)
112 {
113 if (imm_shift(type, 1)) {
114 const unsigned n = 32 / imm_shift(type, 1);
115 uint32_t y = 0;
116
117 for (unsigned i = 0; i < n; i++) {
118 /* Shift the specified component all the way to the right and left to
119 * discard any undesired L/MSBs, then shift it right into component i.
120 */
121 y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3))
122 << imm_shift(type, ~0u)
123 >> imm_shift(type, ~0u - i);
124 }
125
126 return y;
127 } else {
128 return x;
129 }
130 }
131
132 unsigned
brw_get_default_exec_size(struct brw_codegen * p)133 brw_get_default_exec_size(struct brw_codegen *p)
134 {
135 return p->current->exec_size;
136 }
137
138 unsigned
brw_get_default_group(struct brw_codegen * p)139 brw_get_default_group(struct brw_codegen *p)
140 {
141 return p->current->group;
142 }
143
144 unsigned
brw_get_default_access_mode(struct brw_codegen * p)145 brw_get_default_access_mode(struct brw_codegen *p)
146 {
147 return p->current->access_mode;
148 }
149
150 tgl_swsb
brw_get_default_swsb(struct brw_codegen * p)151 brw_get_default_swsb(struct brw_codegen *p)
152 {
153 return p->current->swsb;
154 }
155
156 void
brw_set_default_exec_size(struct brw_codegen * p,unsigned value)157 brw_set_default_exec_size(struct brw_codegen *p, unsigned value)
158 {
159 p->current->exec_size = value;
160 }
161
brw_set_default_predicate_control(struct brw_codegen * p,enum brw_predicate pc)162 void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc)
163 {
164 p->current->predicate = pc;
165 }
166
brw_set_default_predicate_inverse(struct brw_codegen * p,bool predicate_inverse)167 void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse)
168 {
169 p->current->pred_inv = predicate_inverse;
170 }
171
brw_set_default_flag_reg(struct brw_codegen * p,int reg,int subreg)172 void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg)
173 {
174 assert(subreg < 2);
175 p->current->flag_subreg = reg * 2 + subreg;
176 }
177
brw_set_default_access_mode(struct brw_codegen * p,unsigned access_mode)178 void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode )
179 {
180 p->current->access_mode = access_mode;
181 }
182
183 void
brw_set_default_compression_control(struct brw_codegen * p,enum brw_compression compression_control)184 brw_set_default_compression_control(struct brw_codegen *p,
185 enum brw_compression compression_control)
186 {
187 switch (compression_control) {
188 case BRW_COMPRESSION_NONE:
189 /* This is the "use the first set of bits of dmask/vmask/arf
190 * according to execsize" option.
191 */
192 p->current->group = 0;
193 break;
194 case BRW_COMPRESSION_2NDHALF:
195 /* For SIMD8, this is "use the second set of 8 bits." */
196 p->current->group = 8;
197 break;
198 case BRW_COMPRESSION_COMPRESSED:
199 /* For SIMD16 instruction compression, use the first set of 16 bits
200 * since we don't do SIMD32 dispatch.
201 */
202 p->current->group = 0;
203 break;
204 default:
205 unreachable("not reached");
206 }
207
208 if (p->devinfo->gen <= 6) {
209 p->current->compressed =
210 (compression_control == BRW_COMPRESSION_COMPRESSED);
211 }
212 }
213
214 /**
215 * Enable or disable instruction compression on the given instruction leaving
216 * the currently selected channel enable group untouched.
217 */
218 void
brw_inst_set_compression(const struct gen_device_info * devinfo,brw_inst * inst,bool on)219 brw_inst_set_compression(const struct gen_device_info *devinfo,
220 brw_inst *inst, bool on)
221 {
222 if (devinfo->gen >= 6) {
223 /* No-op, the EU will figure out for us whether the instruction needs to
224 * be compressed.
225 */
226 } else {
227 /* The channel group and compression controls are non-orthogonal, there
228 * are two possible representations for uncompressed instructions and we
229 * may need to preserve the current one to avoid changing the selected
230 * channel group inadvertently.
231 */
232 if (on)
233 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_COMPRESSED);
234 else if (brw_inst_qtr_control(devinfo, inst)
235 == BRW_COMPRESSION_COMPRESSED)
236 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
237 }
238 }
239
240 void
brw_set_default_compression(struct brw_codegen * p,bool on)241 brw_set_default_compression(struct brw_codegen *p, bool on)
242 {
243 p->current->compressed = on;
244 }
245
246 /**
247 * Apply the range of channel enable signals given by
248 * [group, group + exec_size) to the instruction passed as argument.
249 */
250 void
brw_inst_set_group(const struct gen_device_info * devinfo,brw_inst * inst,unsigned group)251 brw_inst_set_group(const struct gen_device_info *devinfo,
252 brw_inst *inst, unsigned group)
253 {
254 if (devinfo->gen >= 7) {
255 assert(group % 4 == 0 && group < 32);
256 brw_inst_set_qtr_control(devinfo, inst, group / 8);
257 brw_inst_set_nib_control(devinfo, inst, (group / 4) % 2);
258
259 } else if (devinfo->gen == 6) {
260 assert(group % 8 == 0 && group < 32);
261 brw_inst_set_qtr_control(devinfo, inst, group / 8);
262
263 } else {
264 assert(group % 8 == 0 && group < 16);
265 /* The channel group and compression controls are non-orthogonal, there
266 * are two possible representations for group zero and we may need to
267 * preserve the current one to avoid changing the selected compression
268 * enable inadvertently.
269 */
270 if (group == 8)
271 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_2NDHALF);
272 else if (brw_inst_qtr_control(devinfo, inst) == BRW_COMPRESSION_2NDHALF)
273 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
274 }
275 }
276
277 void
brw_set_default_group(struct brw_codegen * p,unsigned group)278 brw_set_default_group(struct brw_codegen *p, unsigned group)
279 {
280 p->current->group = group;
281 }
282
brw_set_default_mask_control(struct brw_codegen * p,unsigned value)283 void brw_set_default_mask_control( struct brw_codegen *p, unsigned value )
284 {
285 p->current->mask_control = value;
286 }
287
brw_set_default_saturate(struct brw_codegen * p,bool enable)288 void brw_set_default_saturate( struct brw_codegen *p, bool enable )
289 {
290 p->current->saturate = enable;
291 }
292
brw_set_default_acc_write_control(struct brw_codegen * p,unsigned value)293 void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value)
294 {
295 p->current->acc_wr_control = value;
296 }
297
brw_set_default_swsb(struct brw_codegen * p,tgl_swsb value)298 void brw_set_default_swsb(struct brw_codegen *p, tgl_swsb value)
299 {
300 p->current->swsb = value;
301 }
302
brw_push_insn_state(struct brw_codegen * p)303 void brw_push_insn_state( struct brw_codegen *p )
304 {
305 assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]);
306 *(p->current + 1) = *p->current;
307 p->current++;
308 }
309
brw_pop_insn_state(struct brw_codegen * p)310 void brw_pop_insn_state( struct brw_codegen *p )
311 {
312 assert(p->current != p->stack);
313 p->current--;
314 }
315
316
317 /***********************************************************************
318 */
319 void
brw_init_codegen(const struct gen_device_info * devinfo,struct brw_codegen * p,void * mem_ctx)320 brw_init_codegen(const struct gen_device_info *devinfo,
321 struct brw_codegen *p, void *mem_ctx)
322 {
323 memset(p, 0, sizeof(*p));
324
325 p->devinfo = devinfo;
326 p->automatic_exec_sizes = true;
327 /*
328 * Set the initial instruction store array size to 1024, if found that
329 * isn't enough, then it will double the store size at brw_next_insn()
330 * until out of memory.
331 */
332 p->store_size = 1024;
333 p->store = rzalloc_array(mem_ctx, brw_inst, p->store_size);
334 p->nr_insn = 0;
335 p->current = p->stack;
336 memset(p->current, 0, sizeof(p->current[0]));
337
338 p->mem_ctx = mem_ctx;
339
340 /* Some defaults?
341 */
342 brw_set_default_exec_size(p, BRW_EXECUTE_8);
343 brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */
344 brw_set_default_saturate(p, 0);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346
347 /* Set up control flow stack */
348 p->if_stack_depth = 0;
349 p->if_stack_array_size = 16;
350 p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size);
351
352 p->loop_stack_depth = 0;
353 p->loop_stack_array_size = 16;
354 p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
355 p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
356 }
357
358
brw_get_program(struct brw_codegen * p,unsigned * sz)359 const unsigned *brw_get_program( struct brw_codegen *p,
360 unsigned *sz )
361 {
362 *sz = p->next_insn_offset;
363 return (const unsigned *)p->store;
364 }
365
366 const brw_shader_reloc *
brw_get_shader_relocs(struct brw_codegen * p,unsigned * num_relocs)367 brw_get_shader_relocs(struct brw_codegen *p, unsigned *num_relocs)
368 {
369 *num_relocs = p->num_relocs;
370 return p->relocs;
371 }
372
brw_try_override_assembly(struct brw_codegen * p,int start_offset,const char * identifier)373 bool brw_try_override_assembly(struct brw_codegen *p, int start_offset,
374 const char *identifier)
375 {
376 const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH");
377 if (!read_path) {
378 return false;
379 }
380
381 char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier);
382
383 int fd = open(name, O_RDONLY);
384 ralloc_free(name);
385
386 if (fd == -1) {
387 return false;
388 }
389
390 struct stat sb;
391 if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
392 close(fd);
393 return false;
394 }
395
396 p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_inst);
397 p->nr_insn += sb.st_size / sizeof(brw_inst);
398
399 p->next_insn_offset = start_offset + sb.st_size;
400 p->store_size = (start_offset + sb.st_size) / sizeof(brw_inst);
401 p->store = (brw_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset);
402 assert(p->store);
403
404 ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size);
405 close(fd);
406 if (ret != sb.st_size) {
407 return false;
408 }
409
410 ASSERTED bool valid =
411 brw_validate_instructions(p->devinfo, p->store,
412 start_offset, p->next_insn_offset,
413 NULL);
414 assert(valid);
415
416 return true;
417 }
418
419 const struct brw_label *
brw_find_label(const struct brw_label * root,int offset)420 brw_find_label(const struct brw_label *root, int offset)
421 {
422 const struct brw_label *curr = root;
423
424 if (curr != NULL)
425 {
426 do {
427 if (curr->offset == offset)
428 return curr;
429
430 curr = curr->next;
431 } while (curr != NULL);
432 }
433
434 return curr;
435 }
436
437 void
brw_create_label(struct brw_label ** labels,int offset,void * mem_ctx)438 brw_create_label(struct brw_label **labels, int offset, void *mem_ctx)
439 {
440 if (*labels != NULL) {
441 struct brw_label *curr = *labels;
442 struct brw_label *prev;
443
444 do {
445 prev = curr;
446
447 if (curr->offset == offset)
448 return;
449
450 curr = curr->next;
451 } while (curr != NULL);
452
453 curr = ralloc(mem_ctx, struct brw_label);
454 curr->offset = offset;
455 curr->number = prev->number + 1;
456 curr->next = NULL;
457 prev->next = curr;
458 } else {
459 struct brw_label *root = ralloc(mem_ctx, struct brw_label);
460 root->number = 0;
461 root->offset = offset;
462 root->next = NULL;
463 *labels = root;
464 }
465 }
466
467 const struct brw_label *
brw_label_assembly(const struct gen_device_info * devinfo,const void * assembly,int start,int end,void * mem_ctx)468 brw_label_assembly(const struct gen_device_info *devinfo,
469 const void *assembly, int start, int end, void *mem_ctx)
470 {
471 struct brw_label *root_label = NULL;
472
473 int to_bytes_scale = sizeof(brw_inst) / brw_jump_scale(devinfo);
474
475 for (int offset = start; offset < end;) {
476 const brw_inst *inst = (const brw_inst *) ((const char *) assembly + offset);
477 brw_inst uncompacted;
478
479 bool is_compact = brw_inst_cmpt_control(devinfo, inst);
480
481 if (is_compact) {
482 brw_compact_inst *compacted = (brw_compact_inst *)inst;
483 brw_uncompact_instruction(devinfo, &uncompacted, compacted);
484 inst = &uncompacted;
485 }
486
487 if (brw_has_uip(devinfo, brw_inst_opcode(devinfo, inst))) {
488 /* Instructions that have UIP also have JIP. */
489 brw_create_label(&root_label,
490 offset + brw_inst_uip(devinfo, inst) * to_bytes_scale, mem_ctx);
491 brw_create_label(&root_label,
492 offset + brw_inst_jip(devinfo, inst) * to_bytes_scale, mem_ctx);
493 } else if (brw_has_jip(devinfo, brw_inst_opcode(devinfo, inst))) {
494 int jip;
495 if (devinfo->gen >= 7) {
496 jip = brw_inst_jip(devinfo, inst);
497 } else {
498 jip = brw_inst_gen6_jump_count(devinfo, inst);
499 }
500
501 brw_create_label(&root_label, offset + jip * to_bytes_scale, mem_ctx);
502 }
503
504 if (is_compact) {
505 offset += sizeof(brw_compact_inst);
506 } else {
507 offset += sizeof(brw_inst);
508 }
509 }
510
511 return root_label;
512 }
513
514 void
brw_disassemble_with_labels(const struct gen_device_info * devinfo,const void * assembly,int start,int end,FILE * out)515 brw_disassemble_with_labels(const struct gen_device_info *devinfo,
516 const void *assembly, int start, int end, FILE *out)
517 {
518 void *mem_ctx = ralloc_context(NULL);
519 const struct brw_label *root_label =
520 brw_label_assembly(devinfo, assembly, start, end, mem_ctx);
521
522 brw_disassemble(devinfo, assembly, start, end, root_label, out);
523
524 ralloc_free(mem_ctx);
525 }
526
527 void
brw_disassemble(const struct gen_device_info * devinfo,const void * assembly,int start,int end,const struct brw_label * root_label,FILE * out)528 brw_disassemble(const struct gen_device_info *devinfo,
529 const void *assembly, int start, int end,
530 const struct brw_label *root_label, FILE *out)
531 {
532 bool dump_hex = (INTEL_DEBUG & DEBUG_HEX) != 0;
533
534 for (int offset = start; offset < end;) {
535 const brw_inst *insn = (const brw_inst *)((char *)assembly + offset);
536 brw_inst uncompacted;
537
538 if (root_label != NULL) {
539 const struct brw_label *label = brw_find_label(root_label, offset);
540 if (label != NULL) {
541 fprintf(out, "\nLABEL%d:\n", label->number);
542 }
543 }
544
545 bool compacted = brw_inst_cmpt_control(devinfo, insn);
546 if (0)
547 fprintf(out, "0x%08x: ", offset);
548
549 if (compacted) {
550 brw_compact_inst *compacted = (brw_compact_inst *)insn;
551 if (dump_hex) {
552 unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
553 const unsigned int blank_spaces = 24;
554 for (int i = 0 ; i < 8; i = i + 4) {
555 fprintf(out, "%02x %02x %02x %02x ",
556 insn_ptr[i],
557 insn_ptr[i + 1],
558 insn_ptr[i + 2],
559 insn_ptr[i + 3]);
560 }
561 /* Make compacted instructions hex value output vertically aligned
562 * with uncompacted instructions hex value
563 */
564 fprintf(out, "%*c", blank_spaces, ' ');
565 }
566
567 brw_uncompact_instruction(devinfo, &uncompacted, compacted);
568 insn = &uncompacted;
569 if (dump_hex) {
570 unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
571 for (int i = 0 ; i < 16; i = i + 4) {
572 fprintf(out, "%02x %02x %02x %02x ",
573 insn_ptr[i],
574 insn_ptr[i + 1],
575 insn_ptr[i + 2],
576 insn_ptr[i + 3]);
577 }
578 }
579 }
580
581 brw_disassemble_inst(out, devinfo, insn, compacted, offset, root_label);
582
583 if (compacted) {
584 offset += sizeof(brw_compact_inst);
585 } else {
586 offset += sizeof(brw_inst);
587 }
588 }
589 }
590
591 static const struct opcode_desc opcode_descs[] = {
592 /* IR, HW, name, nsrc, ndst, gens */
593 { BRW_OPCODE_ILLEGAL, 0, "illegal", 0, 0, GEN_ALL },
594 { BRW_OPCODE_SYNC, 1, "sync", 1, 0, GEN_GE(GEN12) },
595 { BRW_OPCODE_MOV, 1, "mov", 1, 1, GEN_LT(GEN12) },
596 { BRW_OPCODE_MOV, 97, "mov", 1, 1, GEN_GE(GEN12) },
597 { BRW_OPCODE_SEL, 2, "sel", 2, 1, GEN_LT(GEN12) },
598 { BRW_OPCODE_SEL, 98, "sel", 2, 1, GEN_GE(GEN12) },
599 { BRW_OPCODE_MOVI, 3, "movi", 2, 1, GEN_GE(GEN45) & GEN_LT(GEN12) },
600 { BRW_OPCODE_MOVI, 99, "movi", 2, 1, GEN_GE(GEN12) },
601 { BRW_OPCODE_NOT, 4, "not", 1, 1, GEN_LT(GEN12) },
602 { BRW_OPCODE_NOT, 100, "not", 1, 1, GEN_GE(GEN12) },
603 { BRW_OPCODE_AND, 5, "and", 2, 1, GEN_LT(GEN12) },
604 { BRW_OPCODE_AND, 101, "and", 2, 1, GEN_GE(GEN12) },
605 { BRW_OPCODE_OR, 6, "or", 2, 1, GEN_LT(GEN12) },
606 { BRW_OPCODE_OR, 102, "or", 2, 1, GEN_GE(GEN12) },
607 { BRW_OPCODE_XOR, 7, "xor", 2, 1, GEN_LT(GEN12) },
608 { BRW_OPCODE_XOR, 103, "xor", 2, 1, GEN_GE(GEN12) },
609 { BRW_OPCODE_SHR, 8, "shr", 2, 1, GEN_LT(GEN12) },
610 { BRW_OPCODE_SHR, 104, "shr", 2, 1, GEN_GE(GEN12) },
611 { BRW_OPCODE_SHL, 9, "shl", 2, 1, GEN_LT(GEN12) },
612 { BRW_OPCODE_SHL, 105, "shl", 2, 1, GEN_GE(GEN12) },
613 { BRW_OPCODE_DIM, 10, "dim", 1, 1, GEN75 },
614 { BRW_OPCODE_SMOV, 10, "smov", 0, 0, GEN_GE(GEN8) & GEN_LT(GEN12) },
615 { BRW_OPCODE_SMOV, 106, "smov", 0, 0, GEN_GE(GEN12) },
616 { BRW_OPCODE_ASR, 12, "asr", 2, 1, GEN_LT(GEN12) },
617 { BRW_OPCODE_ASR, 108, "asr", 2, 1, GEN_GE(GEN12) },
618 { BRW_OPCODE_ROR, 14, "ror", 2, 1, GEN11 },
619 { BRW_OPCODE_ROR, 110, "ror", 2, 1, GEN_GE(GEN12) },
620 { BRW_OPCODE_ROL, 15, "rol", 2, 1, GEN11 },
621 { BRW_OPCODE_ROL, 111, "rol", 2, 1, GEN_GE(GEN12) },
622 { BRW_OPCODE_CMP, 16, "cmp", 2, 1, GEN_LT(GEN12) },
623 { BRW_OPCODE_CMP, 112, "cmp", 2, 1, GEN_GE(GEN12) },
624 { BRW_OPCODE_CMPN, 17, "cmpn", 2, 1, GEN_LT(GEN12) },
625 { BRW_OPCODE_CMPN, 113, "cmpn", 2, 1, GEN_GE(GEN12) },
626 { BRW_OPCODE_CSEL, 18, "csel", 3, 1, GEN_GE(GEN8) & GEN_LT(GEN12) },
627 { BRW_OPCODE_CSEL, 114, "csel", 3, 1, GEN_GE(GEN12) },
628 { BRW_OPCODE_F32TO16, 19, "f32to16", 1, 1, GEN7 | GEN75 },
629 { BRW_OPCODE_F16TO32, 20, "f16to32", 1, 1, GEN7 | GEN75 },
630 { BRW_OPCODE_BFREV, 23, "bfrev", 1, 1, GEN_GE(GEN7) & GEN_LT(GEN12) },
631 { BRW_OPCODE_BFREV, 119, "bfrev", 1, 1, GEN_GE(GEN12) },
632 { BRW_OPCODE_BFE, 24, "bfe", 3, 1, GEN_GE(GEN7) & GEN_LT(GEN12) },
633 { BRW_OPCODE_BFE, 120, "bfe", 3, 1, GEN_GE(GEN12) },
634 { BRW_OPCODE_BFI1, 25, "bfi1", 2, 1, GEN_GE(GEN7) & GEN_LT(GEN12) },
635 { BRW_OPCODE_BFI1, 121, "bfi1", 2, 1, GEN_GE(GEN12) },
636 { BRW_OPCODE_BFI2, 26, "bfi2", 3, 1, GEN_GE(GEN7) & GEN_LT(GEN12) },
637 { BRW_OPCODE_BFI2, 122, "bfi2", 3, 1, GEN_GE(GEN12) },
638 { BRW_OPCODE_JMPI, 32, "jmpi", 0, 0, GEN_ALL },
639 { BRW_OPCODE_BRD, 33, "brd", 0, 0, GEN_GE(GEN7) },
640 { BRW_OPCODE_IF, 34, "if", 0, 0, GEN_ALL },
641 { BRW_OPCODE_IFF, 35, "iff", 0, 0, GEN_LE(GEN5) },
642 { BRW_OPCODE_BRC, 35, "brc", 0, 0, GEN_GE(GEN7) },
643 { BRW_OPCODE_ELSE, 36, "else", 0, 0, GEN_ALL },
644 { BRW_OPCODE_ENDIF, 37, "endif", 0, 0, GEN_ALL },
645 { BRW_OPCODE_DO, 38, "do", 0, 0, GEN_LE(GEN5) },
646 { BRW_OPCODE_CASE, 38, "case", 0, 0, GEN6 },
647 { BRW_OPCODE_WHILE, 39, "while", 0, 0, GEN_ALL },
648 { BRW_OPCODE_BREAK, 40, "break", 0, 0, GEN_ALL },
649 { BRW_OPCODE_CONTINUE, 41, "cont", 0, 0, GEN_ALL },
650 { BRW_OPCODE_HALT, 42, "halt", 0, 0, GEN_ALL },
651 { BRW_OPCODE_CALLA, 43, "calla", 0, 0, GEN_GE(GEN75) },
652 { BRW_OPCODE_MSAVE, 44, "msave", 0, 0, GEN_LE(GEN5) },
653 { BRW_OPCODE_CALL, 44, "call", 0, 0, GEN_GE(GEN6) },
654 { BRW_OPCODE_MREST, 45, "mrest", 0, 0, GEN_LE(GEN5) },
655 { BRW_OPCODE_RET, 45, "ret", 0, 0, GEN_GE(GEN6) },
656 { BRW_OPCODE_PUSH, 46, "push", 0, 0, GEN_LE(GEN5) },
657 { BRW_OPCODE_FORK, 46, "fork", 0, 0, GEN6 },
658 { BRW_OPCODE_GOTO, 46, "goto", 0, 0, GEN_GE(GEN8) },
659 { BRW_OPCODE_POP, 47, "pop", 2, 0, GEN_LE(GEN5) },
660 { BRW_OPCODE_WAIT, 48, "wait", 0, 1, GEN_LT(GEN12) },
661 { BRW_OPCODE_SEND, 49, "send", 1, 1, GEN_LT(GEN12) },
662 { BRW_OPCODE_SENDC, 50, "sendc", 1, 1, GEN_LT(GEN12) },
663 { BRW_OPCODE_SEND, 49, "send", 2, 1, GEN_GE(GEN12) },
664 { BRW_OPCODE_SENDC, 50, "sendc", 2, 1, GEN_GE(GEN12) },
665 { BRW_OPCODE_SENDS, 51, "sends", 2, 1, GEN_GE(GEN9) & GEN_LT(GEN12) },
666 { BRW_OPCODE_SENDSC, 52, "sendsc", 2, 1, GEN_GE(GEN9) & GEN_LT(GEN12) },
667 { BRW_OPCODE_MATH, 56, "math", 2, 1, GEN_GE(GEN6) },
668 { BRW_OPCODE_ADD, 64, "add", 2, 1, GEN_ALL },
669 { BRW_OPCODE_MUL, 65, "mul", 2, 1, GEN_ALL },
670 { BRW_OPCODE_AVG, 66, "avg", 2, 1, GEN_ALL },
671 { BRW_OPCODE_FRC, 67, "frc", 1, 1, GEN_ALL },
672 { BRW_OPCODE_RNDU, 68, "rndu", 1, 1, GEN_ALL },
673 { BRW_OPCODE_RNDD, 69, "rndd", 1, 1, GEN_ALL },
674 { BRW_OPCODE_RNDE, 70, "rnde", 1, 1, GEN_ALL },
675 { BRW_OPCODE_RNDZ, 71, "rndz", 1, 1, GEN_ALL },
676 { BRW_OPCODE_MAC, 72, "mac", 2, 1, GEN_ALL },
677 { BRW_OPCODE_MACH, 73, "mach", 2, 1, GEN_ALL },
678 { BRW_OPCODE_LZD, 74, "lzd", 1, 1, GEN_ALL },
679 { BRW_OPCODE_FBH, 75, "fbh", 1, 1, GEN_GE(GEN7) },
680 { BRW_OPCODE_FBL, 76, "fbl", 1, 1, GEN_GE(GEN7) },
681 { BRW_OPCODE_CBIT, 77, "cbit", 1, 1, GEN_GE(GEN7) },
682 { BRW_OPCODE_ADDC, 78, "addc", 2, 1, GEN_GE(GEN7) },
683 { BRW_OPCODE_SUBB, 79, "subb", 2, 1, GEN_GE(GEN7) },
684 { BRW_OPCODE_SAD2, 80, "sad2", 2, 1, GEN_ALL },
685 { BRW_OPCODE_SADA2, 81, "sada2", 2, 1, GEN_ALL },
686 { BRW_OPCODE_DP4, 84, "dp4", 2, 1, GEN_LT(GEN11) },
687 { BRW_OPCODE_DPH, 85, "dph", 2, 1, GEN_LT(GEN11) },
688 { BRW_OPCODE_DP3, 86, "dp3", 2, 1, GEN_LT(GEN11) },
689 { BRW_OPCODE_DP2, 87, "dp2", 2, 1, GEN_LT(GEN11) },
690 { BRW_OPCODE_LINE, 89, "line", 2, 1, GEN_LE(GEN10) },
691 { BRW_OPCODE_PLN, 90, "pln", 2, 1, GEN_GE(GEN45) & GEN_LE(GEN10) },
692 { BRW_OPCODE_MAD, 91, "mad", 3, 1, GEN_GE(GEN6) },
693 { BRW_OPCODE_LRP, 92, "lrp", 3, 1, GEN_GE(GEN6) & GEN_LE(GEN10) },
694 { BRW_OPCODE_MADM, 93, "madm", 3, 1, GEN_GE(GEN8) },
695 { BRW_OPCODE_NENOP, 125, "nenop", 0, 0, GEN45 },
696 { BRW_OPCODE_NOP, 126, "nop", 0, 0, GEN_LT(GEN12) },
697 { BRW_OPCODE_NOP, 96, "nop", 0, 0, GEN_GE(GEN12) }
698 };
699
700 /**
701 * Look up the opcode_descs[] entry with \p key member matching \p k which is
702 * supported by the device specified by \p devinfo, or NULL if there is no
703 * matching entry.
704 *
705 * This is implemented by using an index data structure (storage for which is
706 * provided by the caller as \p index_gen and \p index_descs) in order to
707 * provide efficient constant-time look-up.
708 */
709 static const opcode_desc *
lookup_opcode_desc(gen * index_gen,const opcode_desc ** index_descs,unsigned index_size,unsigned opcode_desc::* key,const gen_device_info * devinfo,unsigned k)710 lookup_opcode_desc(gen *index_gen,
711 const opcode_desc **index_descs,
712 unsigned index_size,
713 unsigned opcode_desc::*key,
714 const gen_device_info *devinfo,
715 unsigned k)
716 {
717 if (*index_gen != gen_from_devinfo(devinfo)) {
718 *index_gen = gen_from_devinfo(devinfo);
719
720 for (unsigned l = 0; l < index_size; l++)
721 index_descs[l] = NULL;
722
723 for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) {
724 if (opcode_descs[i].gens & *index_gen) {
725 const unsigned l = opcode_descs[i].*key;
726 assert(l < index_size && !index_descs[l]);
727 index_descs[l] = &opcode_descs[i];
728 }
729 }
730 }
731
732 if (k < index_size)
733 return index_descs[k];
734 else
735 return NULL;
736 }
737
738 /**
739 * Return the matching opcode_desc for the specified IR opcode and hardware
740 * generation, or NULL if the opcode is not supported by the device.
741 */
742 const struct opcode_desc *
brw_opcode_desc(const struct gen_device_info * devinfo,enum opcode opcode)743 brw_opcode_desc(const struct gen_device_info *devinfo, enum opcode opcode)
744 {
745 static __thread gen index_gen = {};
746 static __thread const opcode_desc *index_descs[NUM_BRW_OPCODES];
747 return lookup_opcode_desc(&index_gen, index_descs, ARRAY_SIZE(index_descs),
748 &opcode_desc::ir, devinfo, opcode);
749 }
750
751 /**
752 * Return the matching opcode_desc for the specified HW opcode and hardware
753 * generation, or NULL if the opcode is not supported by the device.
754 */
755 const struct opcode_desc *
brw_opcode_desc_from_hw(const struct gen_device_info * devinfo,unsigned hw)756 brw_opcode_desc_from_hw(const struct gen_device_info *devinfo, unsigned hw)
757 {
758 static __thread gen index_gen = {};
759 static __thread const opcode_desc *index_descs[128];
760 return lookup_opcode_desc(&index_gen, index_descs, ARRAY_SIZE(index_descs),
761 &opcode_desc::hw, devinfo, hw);
762 }
763