1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29 static struct btf_type btf_void;
30
31 struct btf {
32 /* raw BTF data in native endianness */
33 void *raw_data;
34 /* raw BTF data in non-native endianness */
35 void *raw_data_swapped;
36 __u32 raw_size;
37 /* whether target endianness differs from the native one */
38 bool swapped_endian;
39
40 /*
41 * When BTF is loaded from an ELF or raw memory it is stored
42 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 * point inside that memory region to their respective parts of BTF
44 * representation:
45 *
46 * +--------------------------------+
47 * | Header | Types | Strings |
48 * +--------------------------------+
49 * ^ ^ ^
50 * | | |
51 * hdr | |
52 * types_data-+ |
53 * strs_data------------+
54 *
55 * If BTF data is later modified, e.g., due to types added or
56 * removed, BTF deduplication performed, etc, this contiguous
57 * representation is broken up into three independently allocated
58 * memory regions to be able to modify them independently.
59 * raw_data is nulled out at that point, but can be later allocated
60 * and cached again if user calls btf__raw_data(), at which point
61 * raw_data will contain a contiguous copy of header, types, and
62 * strings:
63 *
64 * +----------+ +---------+ +-----------+
65 * | Header | | Types | | Strings |
66 * +----------+ +---------+ +-----------+
67 * ^ ^ ^
68 * | | |
69 * hdr | |
70 * types_data----+ |
71 * strset__data(strs_set)-----+
72 *
73 * +----------+---------+-----------+
74 * | Header | Types | Strings |
75 * raw_data----->+----------+---------+-----------+
76 */
77 struct btf_header *hdr;
78
79 void *types_data;
80 size_t types_data_cap; /* used size stored in hdr->type_len */
81
82 /* type ID to `struct btf_type *` lookup index
83 * type_offs[0] corresponds to the first non-VOID type:
84 * - for base BTF it's type [1];
85 * - for split BTF it's the first non-base BTF type.
86 */
87 __u32 *type_offs;
88 size_t type_offs_cap;
89 /* number of types in this BTF instance:
90 * - doesn't include special [0] void type;
91 * - for split BTF counts number of types added on top of base BTF.
92 */
93 __u32 nr_types;
94 /* if not NULL, points to the base BTF on top of which the current
95 * split BTF is based
96 */
97 struct btf *base_btf;
98 /* BTF type ID of the first type in this BTF instance:
99 * - for base BTF it's equal to 1;
100 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 */
102 int start_id;
103 /* logical string offset of this BTF instance:
104 * - for base BTF it's equal to 0;
105 * - for split BTF it's equal to total size of base BTF's string section size.
106 */
107 int start_str_off;
108
109 /* only one of strs_data or strs_set can be non-NULL, depending on
110 * whether BTF is in a modifiable state (strs_set is used) or not
111 * (strs_data points inside raw_data)
112 */
113 void *strs_data;
114 /* a set of unique strings */
115 struct strset *strs_set;
116 /* whether strings are already deduplicated */
117 bool strs_deduped;
118
119 /* BTF object FD, if loaded into kernel */
120 int fd;
121
122 /* Pointer size (in bytes) for a target architecture of this BTF */
123 int ptr_sz;
124 };
125
ptr_to_u64(const void * ptr)126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 return (__u64) (unsigned long) ptr;
129 }
130
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 size_t new_cnt;
145 void *new_data;
146
147 if (cur_cnt + add_cnt <= *cap_cnt)
148 return *data + cur_cnt * elem_sz;
149
150 /* requested more than the set limit */
151 if (cur_cnt + add_cnt > max_cnt)
152 return NULL;
153
154 new_cnt = *cap_cnt;
155 new_cnt += new_cnt / 4; /* expand by 25% */
156 if (new_cnt < 16) /* but at least 16 elements */
157 new_cnt = 16;
158 if (new_cnt > max_cnt) /* but not exceeding a set limit */
159 new_cnt = max_cnt;
160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
161 new_cnt = cur_cnt + add_cnt;
162
163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 if (!new_data)
165 return NULL;
166
167 /* zero out newly allocated portion of memory */
168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170 *data = new_data;
171 *cap_cnt = new_cnt;
172 return new_data + cur_cnt * elem_sz;
173 }
174
175 /* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 void *p;
181
182 if (need_cnt <= *cap_cnt)
183 return 0;
184
185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 if (!p)
187 return -ENOMEM;
188
189 return 0;
190 }
191
btf_add_type_offs_mem(struct btf * btf,size_t add_cnt)192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 __u32 *p;
201
202 p = btf_add_type_offs_mem(btf, 1);
203 if (!p)
204 return -ENOMEM;
205
206 *p = type_off;
207 return 0;
208 }
209
btf_bswap_hdr(struct btf_header * h)210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 h->magic = bswap_16(h->magic);
213 h->hdr_len = bswap_32(h->hdr_len);
214 h->type_off = bswap_32(h->type_off);
215 h->type_len = bswap_32(h->type_len);
216 h->str_off = bswap_32(h->str_off);
217 h->str_len = bswap_32(h->str_len);
218 }
219
btf_parse_hdr(struct btf * btf)220 static int btf_parse_hdr(struct btf *btf)
221 {
222 struct btf_header *hdr = btf->hdr;
223 __u32 meta_left;
224
225 if (btf->raw_size < sizeof(struct btf_header)) {
226 pr_debug("BTF header not found\n");
227 return -EINVAL;
228 }
229
230 if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 btf->swapped_endian = true;
232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 bswap_32(hdr->hdr_len));
235 return -ENOTSUP;
236 }
237 btf_bswap_hdr(hdr);
238 } else if (hdr->magic != BTF_MAGIC) {
239 pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 return -EINVAL;
241 }
242
243 if (btf->raw_size < hdr->hdr_len) {
244 pr_debug("BTF header len %u larger than data size %u\n",
245 hdr->hdr_len, btf->raw_size);
246 return -EINVAL;
247 }
248
249 meta_left = btf->raw_size - hdr->hdr_len;
250 if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 return -EINVAL;
253 }
254
255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 return -EINVAL;
259 }
260
261 if (hdr->type_off % 4) {
262 pr_debug("BTF type section is not aligned to 4 bytes\n");
263 return -EINVAL;
264 }
265
266 return 0;
267 }
268
btf_parse_str_sec(struct btf * btf)269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 const struct btf_header *hdr = btf->hdr;
272 const char *start = btf->strs_data;
273 const char *end = start + btf->hdr->str_len;
274
275 if (btf->base_btf && hdr->str_len == 0)
276 return 0;
277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 pr_debug("Invalid BTF string section\n");
279 return -EINVAL;
280 }
281 if (!btf->base_btf && start[0]) {
282 pr_debug("Invalid BTF string section\n");
283 return -EINVAL;
284 }
285 return 0;
286 }
287
btf_type_size(const struct btf_type * t)288 static int btf_type_size(const struct btf_type *t)
289 {
290 const int base_size = sizeof(struct btf_type);
291 __u16 vlen = btf_vlen(t);
292
293 switch (btf_kind(t)) {
294 case BTF_KIND_FWD:
295 case BTF_KIND_CONST:
296 case BTF_KIND_VOLATILE:
297 case BTF_KIND_RESTRICT:
298 case BTF_KIND_PTR:
299 case BTF_KIND_TYPEDEF:
300 case BTF_KIND_FUNC:
301 case BTF_KIND_FLOAT:
302 case BTF_KIND_TYPE_TAG:
303 return base_size;
304 case BTF_KIND_INT:
305 return base_size + sizeof(__u32);
306 case BTF_KIND_ENUM:
307 return base_size + vlen * sizeof(struct btf_enum);
308 case BTF_KIND_ARRAY:
309 return base_size + sizeof(struct btf_array);
310 case BTF_KIND_STRUCT:
311 case BTF_KIND_UNION:
312 return base_size + vlen * sizeof(struct btf_member);
313 case BTF_KIND_FUNC_PROTO:
314 return base_size + vlen * sizeof(struct btf_param);
315 case BTF_KIND_VAR:
316 return base_size + sizeof(struct btf_var);
317 case BTF_KIND_DATASEC:
318 return base_size + vlen * sizeof(struct btf_var_secinfo);
319 case BTF_KIND_DECL_TAG:
320 return base_size + sizeof(struct btf_decl_tag);
321 default:
322 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
323 return -EINVAL;
324 }
325 }
326
btf_bswap_type_base(struct btf_type * t)327 static void btf_bswap_type_base(struct btf_type *t)
328 {
329 t->name_off = bswap_32(t->name_off);
330 t->info = bswap_32(t->info);
331 t->type = bswap_32(t->type);
332 }
333
btf_bswap_type_rest(struct btf_type * t)334 static int btf_bswap_type_rest(struct btf_type *t)
335 {
336 struct btf_var_secinfo *v;
337 struct btf_member *m;
338 struct btf_array *a;
339 struct btf_param *p;
340 struct btf_enum *e;
341 __u16 vlen = btf_vlen(t);
342 int i;
343
344 switch (btf_kind(t)) {
345 case BTF_KIND_FWD:
346 case BTF_KIND_CONST:
347 case BTF_KIND_VOLATILE:
348 case BTF_KIND_RESTRICT:
349 case BTF_KIND_PTR:
350 case BTF_KIND_TYPEDEF:
351 case BTF_KIND_FUNC:
352 case BTF_KIND_FLOAT:
353 case BTF_KIND_TYPE_TAG:
354 return 0;
355 case BTF_KIND_INT:
356 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
357 return 0;
358 case BTF_KIND_ENUM:
359 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
360 e->name_off = bswap_32(e->name_off);
361 e->val = bswap_32(e->val);
362 }
363 return 0;
364 case BTF_KIND_ARRAY:
365 a = btf_array(t);
366 a->type = bswap_32(a->type);
367 a->index_type = bswap_32(a->index_type);
368 a->nelems = bswap_32(a->nelems);
369 return 0;
370 case BTF_KIND_STRUCT:
371 case BTF_KIND_UNION:
372 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
373 m->name_off = bswap_32(m->name_off);
374 m->type = bswap_32(m->type);
375 m->offset = bswap_32(m->offset);
376 }
377 return 0;
378 case BTF_KIND_FUNC_PROTO:
379 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
380 p->name_off = bswap_32(p->name_off);
381 p->type = bswap_32(p->type);
382 }
383 return 0;
384 case BTF_KIND_VAR:
385 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
386 return 0;
387 case BTF_KIND_DATASEC:
388 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
389 v->type = bswap_32(v->type);
390 v->offset = bswap_32(v->offset);
391 v->size = bswap_32(v->size);
392 }
393 return 0;
394 case BTF_KIND_DECL_TAG:
395 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
396 return 0;
397 default:
398 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
399 return -EINVAL;
400 }
401 }
402
btf_parse_type_sec(struct btf * btf)403 static int btf_parse_type_sec(struct btf *btf)
404 {
405 struct btf_header *hdr = btf->hdr;
406 void *next_type = btf->types_data;
407 void *end_type = next_type + hdr->type_len;
408 int err, type_size;
409
410 while (next_type + sizeof(struct btf_type) <= end_type) {
411 if (btf->swapped_endian)
412 btf_bswap_type_base(next_type);
413
414 type_size = btf_type_size(next_type);
415 if (type_size < 0)
416 return type_size;
417 if (next_type + type_size > end_type) {
418 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
419 return -EINVAL;
420 }
421
422 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
423 return -EINVAL;
424
425 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
426 if (err)
427 return err;
428
429 next_type += type_size;
430 btf->nr_types++;
431 }
432
433 if (next_type != end_type) {
434 pr_warn("BTF types data is malformed\n");
435 return -EINVAL;
436 }
437
438 return 0;
439 }
440
btf__get_nr_types(const struct btf * btf)441 __u32 btf__get_nr_types(const struct btf *btf)
442 {
443 return btf->start_id + btf->nr_types - 1;
444 }
445
btf__type_cnt(const struct btf * btf)446 __u32 btf__type_cnt(const struct btf *btf)
447 {
448 return btf->start_id + btf->nr_types;
449 }
450
btf__base_btf(const struct btf * btf)451 const struct btf *btf__base_btf(const struct btf *btf)
452 {
453 return btf->base_btf;
454 }
455
456 /* internal helper returning non-const pointer to a type */
btf_type_by_id(const struct btf * btf,__u32 type_id)457 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
458 {
459 if (type_id == 0)
460 return &btf_void;
461 if (type_id < btf->start_id)
462 return btf_type_by_id(btf->base_btf, type_id);
463 return btf->types_data + btf->type_offs[type_id - btf->start_id];
464 }
465
btf__type_by_id(const struct btf * btf,__u32 type_id)466 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
467 {
468 if (type_id >= btf->start_id + btf->nr_types)
469 return errno = EINVAL, NULL;
470 return btf_type_by_id((struct btf *)btf, type_id);
471 }
472
determine_ptr_size(const struct btf * btf)473 static int determine_ptr_size(const struct btf *btf)
474 {
475 const struct btf_type *t;
476 const char *name;
477 int i, n;
478
479 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
480 return btf->base_btf->ptr_sz;
481
482 n = btf__type_cnt(btf);
483 for (i = 1; i < n; i++) {
484 t = btf__type_by_id(btf, i);
485 if (!btf_is_int(t))
486 continue;
487
488 name = btf__name_by_offset(btf, t->name_off);
489 if (!name)
490 continue;
491
492 if (strcmp(name, "long int") == 0 ||
493 strcmp(name, "long unsigned int") == 0) {
494 if (t->size != 4 && t->size != 8)
495 continue;
496 return t->size;
497 }
498 }
499
500 return -1;
501 }
502
btf_ptr_sz(const struct btf * btf)503 static size_t btf_ptr_sz(const struct btf *btf)
504 {
505 if (!btf->ptr_sz)
506 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
507 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
508 }
509
510 /* Return pointer size this BTF instance assumes. The size is heuristically
511 * determined by looking for 'long' or 'unsigned long' integer type and
512 * recording its size in bytes. If BTF type information doesn't have any such
513 * type, this function returns 0. In the latter case, native architecture's
514 * pointer size is assumed, so will be either 4 or 8, depending on
515 * architecture that libbpf was compiled for. It's possible to override
516 * guessed value by using btf__set_pointer_size() API.
517 */
btf__pointer_size(const struct btf * btf)518 size_t btf__pointer_size(const struct btf *btf)
519 {
520 if (!btf->ptr_sz)
521 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
522
523 if (btf->ptr_sz < 0)
524 /* not enough BTF type info to guess */
525 return 0;
526
527 return btf->ptr_sz;
528 }
529
530 /* Override or set pointer size in bytes. Only values of 4 and 8 are
531 * supported.
532 */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)533 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
534 {
535 if (ptr_sz != 4 && ptr_sz != 8)
536 return libbpf_err(-EINVAL);
537 btf->ptr_sz = ptr_sz;
538 return 0;
539 }
540
is_host_big_endian(void)541 static bool is_host_big_endian(void)
542 {
543 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
544 return false;
545 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
546 return true;
547 #else
548 # error "Unrecognized __BYTE_ORDER__"
549 #endif
550 }
551
btf__endianness(const struct btf * btf)552 enum btf_endianness btf__endianness(const struct btf *btf)
553 {
554 if (is_host_big_endian())
555 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
556 else
557 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
558 }
559
btf__set_endianness(struct btf * btf,enum btf_endianness endian)560 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
561 {
562 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
563 return libbpf_err(-EINVAL);
564
565 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
566 if (!btf->swapped_endian) {
567 free(btf->raw_data_swapped);
568 btf->raw_data_swapped = NULL;
569 }
570 return 0;
571 }
572
btf_type_is_void(const struct btf_type * t)573 static bool btf_type_is_void(const struct btf_type *t)
574 {
575 return t == &btf_void || btf_is_fwd(t);
576 }
577
btf_type_is_void_or_null(const struct btf_type * t)578 static bool btf_type_is_void_or_null(const struct btf_type *t)
579 {
580 return !t || btf_type_is_void(t);
581 }
582
583 #define MAX_RESOLVE_DEPTH 32
584
btf__resolve_size(const struct btf * btf,__u32 type_id)585 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
586 {
587 const struct btf_array *array;
588 const struct btf_type *t;
589 __u32 nelems = 1;
590 __s64 size = -1;
591 int i;
592
593 t = btf__type_by_id(btf, type_id);
594 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
595 switch (btf_kind(t)) {
596 case BTF_KIND_INT:
597 case BTF_KIND_STRUCT:
598 case BTF_KIND_UNION:
599 case BTF_KIND_ENUM:
600 case BTF_KIND_DATASEC:
601 case BTF_KIND_FLOAT:
602 size = t->size;
603 goto done;
604 case BTF_KIND_PTR:
605 size = btf_ptr_sz(btf);
606 goto done;
607 case BTF_KIND_TYPEDEF:
608 case BTF_KIND_VOLATILE:
609 case BTF_KIND_CONST:
610 case BTF_KIND_RESTRICT:
611 case BTF_KIND_VAR:
612 case BTF_KIND_DECL_TAG:
613 case BTF_KIND_TYPE_TAG:
614 type_id = t->type;
615 break;
616 case BTF_KIND_ARRAY:
617 array = btf_array(t);
618 if (nelems && array->nelems > UINT32_MAX / nelems)
619 return libbpf_err(-E2BIG);
620 nelems *= array->nelems;
621 type_id = array->type;
622 break;
623 default:
624 return libbpf_err(-EINVAL);
625 }
626
627 t = btf__type_by_id(btf, type_id);
628 }
629
630 done:
631 if (size < 0)
632 return libbpf_err(-EINVAL);
633 if (nelems && size > UINT32_MAX / nelems)
634 return libbpf_err(-E2BIG);
635
636 return nelems * size;
637 }
638
btf__align_of(const struct btf * btf,__u32 id)639 int btf__align_of(const struct btf *btf, __u32 id)
640 {
641 const struct btf_type *t = btf__type_by_id(btf, id);
642 __u16 kind = btf_kind(t);
643
644 switch (kind) {
645 case BTF_KIND_INT:
646 case BTF_KIND_ENUM:
647 case BTF_KIND_FLOAT:
648 return min(btf_ptr_sz(btf), (size_t)t->size);
649 case BTF_KIND_PTR:
650 return btf_ptr_sz(btf);
651 case BTF_KIND_TYPEDEF:
652 case BTF_KIND_VOLATILE:
653 case BTF_KIND_CONST:
654 case BTF_KIND_RESTRICT:
655 case BTF_KIND_TYPE_TAG:
656 return btf__align_of(btf, t->type);
657 case BTF_KIND_ARRAY:
658 return btf__align_of(btf, btf_array(t)->type);
659 case BTF_KIND_STRUCT:
660 case BTF_KIND_UNION: {
661 const struct btf_member *m = btf_members(t);
662 __u16 vlen = btf_vlen(t);
663 int i, max_align = 1, align;
664
665 for (i = 0; i < vlen; i++, m++) {
666 align = btf__align_of(btf, m->type);
667 if (align <= 0)
668 return libbpf_err(align);
669 max_align = max(max_align, align);
670 }
671
672 return max_align;
673 }
674 default:
675 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
676 return errno = EINVAL, 0;
677 }
678 }
679
btf__resolve_type(const struct btf * btf,__u32 type_id)680 int btf__resolve_type(const struct btf *btf, __u32 type_id)
681 {
682 const struct btf_type *t;
683 int depth = 0;
684
685 t = btf__type_by_id(btf, type_id);
686 while (depth < MAX_RESOLVE_DEPTH &&
687 !btf_type_is_void_or_null(t) &&
688 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
689 type_id = t->type;
690 t = btf__type_by_id(btf, type_id);
691 depth++;
692 }
693
694 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
695 return libbpf_err(-EINVAL);
696
697 return type_id;
698 }
699
btf__find_by_name(const struct btf * btf,const char * type_name)700 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
701 {
702 __u32 i, nr_types = btf__type_cnt(btf);
703
704 if (!strcmp(type_name, "void"))
705 return 0;
706
707 for (i = 1; i < nr_types; i++) {
708 const struct btf_type *t = btf__type_by_id(btf, i);
709 const char *name = btf__name_by_offset(btf, t->name_off);
710
711 if (name && !strcmp(type_name, name))
712 return i;
713 }
714
715 return libbpf_err(-ENOENT);
716 }
717
btf_find_by_name_kind(const struct btf * btf,int start_id,const char * type_name,__u32 kind)718 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
719 const char *type_name, __u32 kind)
720 {
721 __u32 i, nr_types = btf__type_cnt(btf);
722
723 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
724 return 0;
725
726 for (i = start_id; i < nr_types; i++) {
727 const struct btf_type *t = btf__type_by_id(btf, i);
728 const char *name;
729
730 if (btf_kind(t) != kind)
731 continue;
732 name = btf__name_by_offset(btf, t->name_off);
733 if (name && !strcmp(type_name, name))
734 return i;
735 }
736
737 return libbpf_err(-ENOENT);
738 }
739
btf__find_by_name_kind_own(const struct btf * btf,const char * type_name,__u32 kind)740 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
741 __u32 kind)
742 {
743 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
744 }
745
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)746 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
747 __u32 kind)
748 {
749 return btf_find_by_name_kind(btf, 1, type_name, kind);
750 }
751
btf_is_modifiable(const struct btf * btf)752 static bool btf_is_modifiable(const struct btf *btf)
753 {
754 return (void *)btf->hdr != btf->raw_data;
755 }
756
btf__free(struct btf * btf)757 void btf__free(struct btf *btf)
758 {
759 if (IS_ERR_OR_NULL(btf))
760 return;
761
762 if (btf->fd >= 0)
763 close(btf->fd);
764
765 if (btf_is_modifiable(btf)) {
766 /* if BTF was modified after loading, it will have a split
767 * in-memory representation for header, types, and strings
768 * sections, so we need to free all of them individually. It
769 * might still have a cached contiguous raw data present,
770 * which will be unconditionally freed below.
771 */
772 free(btf->hdr);
773 free(btf->types_data);
774 strset__free(btf->strs_set);
775 }
776 free(btf->raw_data);
777 free(btf->raw_data_swapped);
778 free(btf->type_offs);
779 free(btf);
780 }
781
btf_new_empty(struct btf * base_btf)782 static struct btf *btf_new_empty(struct btf *base_btf)
783 {
784 struct btf *btf;
785
786 btf = calloc(1, sizeof(*btf));
787 if (!btf)
788 return ERR_PTR(-ENOMEM);
789
790 btf->nr_types = 0;
791 btf->start_id = 1;
792 btf->start_str_off = 0;
793 btf->fd = -1;
794 btf->ptr_sz = sizeof(void *);
795 btf->swapped_endian = false;
796
797 if (base_btf) {
798 btf->base_btf = base_btf;
799 btf->start_id = btf__type_cnt(base_btf);
800 btf->start_str_off = base_btf->hdr->str_len;
801 }
802
803 /* +1 for empty string at offset 0 */
804 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
805 btf->raw_data = calloc(1, btf->raw_size);
806 if (!btf->raw_data) {
807 free(btf);
808 return ERR_PTR(-ENOMEM);
809 }
810
811 btf->hdr = btf->raw_data;
812 btf->hdr->hdr_len = sizeof(struct btf_header);
813 btf->hdr->magic = BTF_MAGIC;
814 btf->hdr->version = BTF_VERSION;
815
816 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
817 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
818 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
819
820 return btf;
821 }
822
btf__new_empty(void)823 struct btf *btf__new_empty(void)
824 {
825 return libbpf_ptr(btf_new_empty(NULL));
826 }
827
btf__new_empty_split(struct btf * base_btf)828 struct btf *btf__new_empty_split(struct btf *base_btf)
829 {
830 return libbpf_ptr(btf_new_empty(base_btf));
831 }
832
btf_new(const void * data,__u32 size,struct btf * base_btf)833 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
834 {
835 struct btf *btf;
836 int err;
837
838 btf = calloc(1, sizeof(struct btf));
839 if (!btf)
840 return ERR_PTR(-ENOMEM);
841
842 btf->nr_types = 0;
843 btf->start_id = 1;
844 btf->start_str_off = 0;
845 btf->fd = -1;
846
847 if (base_btf) {
848 btf->base_btf = base_btf;
849 btf->start_id = btf__type_cnt(base_btf);
850 btf->start_str_off = base_btf->hdr->str_len;
851 }
852
853 btf->raw_data = malloc(size);
854 if (!btf->raw_data) {
855 err = -ENOMEM;
856 goto done;
857 }
858 memcpy(btf->raw_data, data, size);
859 btf->raw_size = size;
860
861 btf->hdr = btf->raw_data;
862 err = btf_parse_hdr(btf);
863 if (err)
864 goto done;
865
866 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
867 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
868
869 err = btf_parse_str_sec(btf);
870 err = err ?: btf_parse_type_sec(btf);
871 if (err)
872 goto done;
873
874 done:
875 if (err) {
876 btf__free(btf);
877 return ERR_PTR(err);
878 }
879
880 return btf;
881 }
882
btf__new(const void * data,__u32 size)883 struct btf *btf__new(const void *data, __u32 size)
884 {
885 return libbpf_ptr(btf_new(data, size, NULL));
886 }
887
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)888 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
889 struct btf_ext **btf_ext)
890 {
891 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
892 int err = 0, fd = -1, idx = 0;
893 struct btf *btf = NULL;
894 Elf_Scn *scn = NULL;
895 Elf *elf = NULL;
896 GElf_Ehdr ehdr;
897 size_t shstrndx;
898
899 if (elf_version(EV_CURRENT) == EV_NONE) {
900 pr_warn("failed to init libelf for %s\n", path);
901 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
902 }
903
904 fd = open(path, O_RDONLY | O_CLOEXEC);
905 if (fd < 0) {
906 err = -errno;
907 pr_warn("failed to open %s: %s\n", path, strerror(errno));
908 return ERR_PTR(err);
909 }
910
911 err = -LIBBPF_ERRNO__FORMAT;
912
913 elf = elf_begin(fd, ELF_C_READ, NULL);
914 if (!elf) {
915 pr_warn("failed to open %s as ELF file\n", path);
916 goto done;
917 }
918 if (!gelf_getehdr(elf, &ehdr)) {
919 pr_warn("failed to get EHDR from %s\n", path);
920 goto done;
921 }
922
923 if (elf_getshdrstrndx(elf, &shstrndx)) {
924 pr_warn("failed to get section names section index for %s\n",
925 path);
926 goto done;
927 }
928
929 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
930 pr_warn("failed to get e_shstrndx from %s\n", path);
931 goto done;
932 }
933
934 while ((scn = elf_nextscn(elf, scn)) != NULL) {
935 GElf_Shdr sh;
936 char *name;
937
938 idx++;
939 if (gelf_getshdr(scn, &sh) != &sh) {
940 pr_warn("failed to get section(%d) header from %s\n",
941 idx, path);
942 goto done;
943 }
944 name = elf_strptr(elf, shstrndx, sh.sh_name);
945 if (!name) {
946 pr_warn("failed to get section(%d) name from %s\n",
947 idx, path);
948 goto done;
949 }
950 if (strcmp(name, BTF_ELF_SEC) == 0) {
951 btf_data = elf_getdata(scn, 0);
952 if (!btf_data) {
953 pr_warn("failed to get section(%d, %s) data from %s\n",
954 idx, name, path);
955 goto done;
956 }
957 continue;
958 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
959 btf_ext_data = elf_getdata(scn, 0);
960 if (!btf_ext_data) {
961 pr_warn("failed to get section(%d, %s) data from %s\n",
962 idx, name, path);
963 goto done;
964 }
965 continue;
966 }
967 }
968
969 err = 0;
970
971 if (!btf_data) {
972 err = -ENOENT;
973 goto done;
974 }
975 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
976 err = libbpf_get_error(btf);
977 if (err)
978 goto done;
979
980 switch (gelf_getclass(elf)) {
981 case ELFCLASS32:
982 btf__set_pointer_size(btf, 4);
983 break;
984 case ELFCLASS64:
985 btf__set_pointer_size(btf, 8);
986 break;
987 default:
988 pr_warn("failed to get ELF class (bitness) for %s\n", path);
989 break;
990 }
991
992 if (btf_ext && btf_ext_data) {
993 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
994 err = libbpf_get_error(*btf_ext);
995 if (err)
996 goto done;
997 } else if (btf_ext) {
998 *btf_ext = NULL;
999 }
1000 done:
1001 if (elf)
1002 elf_end(elf);
1003 close(fd);
1004
1005 if (!err)
1006 return btf;
1007
1008 if (btf_ext)
1009 btf_ext__free(*btf_ext);
1010 btf__free(btf);
1011
1012 return ERR_PTR(err);
1013 }
1014
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)1015 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1016 {
1017 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1018 }
1019
btf__parse_elf_split(const char * path,struct btf * base_btf)1020 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1021 {
1022 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1023 }
1024
btf_parse_raw(const char * path,struct btf * base_btf)1025 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1026 {
1027 struct btf *btf = NULL;
1028 void *data = NULL;
1029 FILE *f = NULL;
1030 __u16 magic;
1031 int err = 0;
1032 long sz;
1033
1034 f = fopen(path, "rb");
1035 if (!f) {
1036 err = -errno;
1037 goto err_out;
1038 }
1039
1040 /* check BTF magic */
1041 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1042 err = -EIO;
1043 goto err_out;
1044 }
1045 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1046 /* definitely not a raw BTF */
1047 err = -EPROTO;
1048 goto err_out;
1049 }
1050
1051 /* get file size */
1052 if (fseek(f, 0, SEEK_END)) {
1053 err = -errno;
1054 goto err_out;
1055 }
1056 sz = ftell(f);
1057 if (sz < 0) {
1058 err = -errno;
1059 goto err_out;
1060 }
1061 /* rewind to the start */
1062 if (fseek(f, 0, SEEK_SET)) {
1063 err = -errno;
1064 goto err_out;
1065 }
1066
1067 /* pre-alloc memory and read all of BTF data */
1068 data = malloc(sz);
1069 if (!data) {
1070 err = -ENOMEM;
1071 goto err_out;
1072 }
1073 if (fread(data, 1, sz, f) < sz) {
1074 err = -EIO;
1075 goto err_out;
1076 }
1077
1078 /* finally parse BTF data */
1079 btf = btf_new(data, sz, base_btf);
1080
1081 err_out:
1082 free(data);
1083 if (f)
1084 fclose(f);
1085 return err ? ERR_PTR(err) : btf;
1086 }
1087
btf__parse_raw(const char * path)1088 struct btf *btf__parse_raw(const char *path)
1089 {
1090 return libbpf_ptr(btf_parse_raw(path, NULL));
1091 }
1092
btf__parse_raw_split(const char * path,struct btf * base_btf)1093 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1094 {
1095 return libbpf_ptr(btf_parse_raw(path, base_btf));
1096 }
1097
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1098 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1099 {
1100 struct btf *btf;
1101 int err;
1102
1103 if (btf_ext)
1104 *btf_ext = NULL;
1105
1106 btf = btf_parse_raw(path, base_btf);
1107 err = libbpf_get_error(btf);
1108 if (!err)
1109 return btf;
1110 if (err != -EPROTO)
1111 return ERR_PTR(err);
1112 return btf_parse_elf(path, base_btf, btf_ext);
1113 }
1114
btf__parse(const char * path,struct btf_ext ** btf_ext)1115 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1116 {
1117 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1118 }
1119
btf__parse_split(const char * path,struct btf * base_btf)1120 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1121 {
1122 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1123 }
1124
1125 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1126
btf_load_into_kernel(struct btf * btf,char * log_buf,size_t log_sz,__u32 log_level)1127 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1128 {
1129 LIBBPF_OPTS(bpf_btf_load_opts, opts);
1130 __u32 buf_sz = 0, raw_size;
1131 char *buf = NULL, *tmp;
1132 void *raw_data;
1133 int err = 0;
1134
1135 if (btf->fd >= 0)
1136 return libbpf_err(-EEXIST);
1137 if (log_sz && !log_buf)
1138 return libbpf_err(-EINVAL);
1139
1140 /* cache native raw data representation */
1141 raw_data = btf_get_raw_data(btf, &raw_size, false);
1142 if (!raw_data) {
1143 err = -ENOMEM;
1144 goto done;
1145 }
1146 btf->raw_size = raw_size;
1147 btf->raw_data = raw_data;
1148
1149 retry_load:
1150 /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1151 * initially. Only if BTF loading fails, we bump log_level to 1 and
1152 * retry, using either auto-allocated or custom log_buf. This way
1153 * non-NULL custom log_buf provides a buffer just in case, but hopes
1154 * for successful load and no need for log_buf.
1155 */
1156 if (log_level) {
1157 /* if caller didn't provide custom log_buf, we'll keep
1158 * allocating our own progressively bigger buffers for BTF
1159 * verification log
1160 */
1161 if (!log_buf) {
1162 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1163 tmp = realloc(buf, buf_sz);
1164 if (!tmp) {
1165 err = -ENOMEM;
1166 goto done;
1167 }
1168 buf = tmp;
1169 buf[0] = '\0';
1170 }
1171
1172 opts.log_buf = log_buf ? log_buf : buf;
1173 opts.log_size = log_buf ? log_sz : buf_sz;
1174 opts.log_level = log_level;
1175 }
1176
1177 btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1178 if (btf->fd < 0) {
1179 /* time to turn on verbose mode and try again */
1180 if (log_level == 0) {
1181 log_level = 1;
1182 goto retry_load;
1183 }
1184 /* only retry if caller didn't provide custom log_buf, but
1185 * make sure we can never overflow buf_sz
1186 */
1187 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1188 goto retry_load;
1189
1190 err = -errno;
1191 pr_warn("BTF loading error: %d\n", err);
1192 /* don't print out contents of custom log_buf */
1193 if (!log_buf && buf[0])
1194 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1195 }
1196
1197 done:
1198 free(buf);
1199 return libbpf_err(err);
1200 }
1201
btf__load_into_kernel(struct btf * btf)1202 int btf__load_into_kernel(struct btf *btf)
1203 {
1204 return btf_load_into_kernel(btf, NULL, 0, 0);
1205 }
1206
1207 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1208
btf__fd(const struct btf * btf)1209 int btf__fd(const struct btf *btf)
1210 {
1211 return btf->fd;
1212 }
1213
btf__set_fd(struct btf * btf,int fd)1214 void btf__set_fd(struct btf *btf, int fd)
1215 {
1216 btf->fd = fd;
1217 }
1218
btf_strs_data(const struct btf * btf)1219 static const void *btf_strs_data(const struct btf *btf)
1220 {
1221 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1222 }
1223
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1224 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1225 {
1226 struct btf_header *hdr = btf->hdr;
1227 struct btf_type *t;
1228 void *data, *p;
1229 __u32 data_sz;
1230 int i;
1231
1232 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1233 if (data) {
1234 *size = btf->raw_size;
1235 return data;
1236 }
1237
1238 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1239 data = calloc(1, data_sz);
1240 if (!data)
1241 return NULL;
1242 p = data;
1243
1244 memcpy(p, hdr, hdr->hdr_len);
1245 if (swap_endian)
1246 btf_bswap_hdr(p);
1247 p += hdr->hdr_len;
1248
1249 memcpy(p, btf->types_data, hdr->type_len);
1250 if (swap_endian) {
1251 for (i = 0; i < btf->nr_types; i++) {
1252 t = p + btf->type_offs[i];
1253 /* btf_bswap_type_rest() relies on native t->info, so
1254 * we swap base type info after we swapped all the
1255 * additional information
1256 */
1257 if (btf_bswap_type_rest(t))
1258 goto err_out;
1259 btf_bswap_type_base(t);
1260 }
1261 }
1262 p += hdr->type_len;
1263
1264 memcpy(p, btf_strs_data(btf), hdr->str_len);
1265 p += hdr->str_len;
1266
1267 *size = data_sz;
1268 return data;
1269 err_out:
1270 free(data);
1271 return NULL;
1272 }
1273
btf__raw_data(const struct btf * btf_ro,__u32 * size)1274 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1275 {
1276 struct btf *btf = (struct btf *)btf_ro;
1277 __u32 data_sz;
1278 void *data;
1279
1280 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1281 if (!data)
1282 return errno = ENOMEM, NULL;
1283
1284 btf->raw_size = data_sz;
1285 if (btf->swapped_endian)
1286 btf->raw_data_swapped = data;
1287 else
1288 btf->raw_data = data;
1289 *size = data_sz;
1290 return data;
1291 }
1292
1293 __attribute__((alias("btf__raw_data")))
1294 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1295
btf__str_by_offset(const struct btf * btf,__u32 offset)1296 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1297 {
1298 if (offset < btf->start_str_off)
1299 return btf__str_by_offset(btf->base_btf, offset);
1300 else if (offset - btf->start_str_off < btf->hdr->str_len)
1301 return btf_strs_data(btf) + (offset - btf->start_str_off);
1302 else
1303 return errno = EINVAL, NULL;
1304 }
1305
btf__name_by_offset(const struct btf * btf,__u32 offset)1306 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1307 {
1308 return btf__str_by_offset(btf, offset);
1309 }
1310
btf_get_from_fd(int btf_fd,struct btf * base_btf)1311 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1312 {
1313 struct bpf_btf_info btf_info;
1314 __u32 len = sizeof(btf_info);
1315 __u32 last_size;
1316 struct btf *btf;
1317 void *ptr;
1318 int err;
1319
1320 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1321 * let's start with a sane default - 4KiB here - and resize it only if
1322 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1323 */
1324 last_size = 4096;
1325 ptr = malloc(last_size);
1326 if (!ptr)
1327 return ERR_PTR(-ENOMEM);
1328
1329 memset(&btf_info, 0, sizeof(btf_info));
1330 btf_info.btf = ptr_to_u64(ptr);
1331 btf_info.btf_size = last_size;
1332 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1333
1334 if (!err && btf_info.btf_size > last_size) {
1335 void *temp_ptr;
1336
1337 last_size = btf_info.btf_size;
1338 temp_ptr = realloc(ptr, last_size);
1339 if (!temp_ptr) {
1340 btf = ERR_PTR(-ENOMEM);
1341 goto exit_free;
1342 }
1343 ptr = temp_ptr;
1344
1345 len = sizeof(btf_info);
1346 memset(&btf_info, 0, sizeof(btf_info));
1347 btf_info.btf = ptr_to_u64(ptr);
1348 btf_info.btf_size = last_size;
1349
1350 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351 }
1352
1353 if (err || btf_info.btf_size > last_size) {
1354 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1355 goto exit_free;
1356 }
1357
1358 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1359
1360 exit_free:
1361 free(ptr);
1362 return btf;
1363 }
1364
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1365 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1366 {
1367 struct btf *btf;
1368 int btf_fd;
1369
1370 btf_fd = bpf_btf_get_fd_by_id(id);
1371 if (btf_fd < 0)
1372 return libbpf_err_ptr(-errno);
1373
1374 btf = btf_get_from_fd(btf_fd, base_btf);
1375 close(btf_fd);
1376
1377 return libbpf_ptr(btf);
1378 }
1379
btf__load_from_kernel_by_id(__u32 id)1380 struct btf *btf__load_from_kernel_by_id(__u32 id)
1381 {
1382 return btf__load_from_kernel_by_id_split(id, NULL);
1383 }
1384
btf__get_from_id(__u32 id,struct btf ** btf)1385 int btf__get_from_id(__u32 id, struct btf **btf)
1386 {
1387 struct btf *res;
1388 int err;
1389
1390 *btf = NULL;
1391 res = btf__load_from_kernel_by_id(id);
1392 err = libbpf_get_error(res);
1393
1394 if (err)
1395 return libbpf_err(err);
1396
1397 *btf = res;
1398 return 0;
1399 }
1400
btf__get_map_kv_tids(const struct btf * btf,const char * map_name,__u32 expected_key_size,__u32 expected_value_size,__u32 * key_type_id,__u32 * value_type_id)1401 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1402 __u32 expected_key_size, __u32 expected_value_size,
1403 __u32 *key_type_id, __u32 *value_type_id)
1404 {
1405 const struct btf_type *container_type;
1406 const struct btf_member *key, *value;
1407 const size_t max_name = 256;
1408 char container_name[max_name];
1409 __s64 key_size, value_size;
1410 __s32 container_id;
1411
1412 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1413 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1414 map_name, map_name);
1415 return libbpf_err(-EINVAL);
1416 }
1417
1418 container_id = btf__find_by_name(btf, container_name);
1419 if (container_id < 0) {
1420 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1421 map_name, container_name);
1422 return libbpf_err(container_id);
1423 }
1424
1425 container_type = btf__type_by_id(btf, container_id);
1426 if (!container_type) {
1427 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1428 map_name, container_id);
1429 return libbpf_err(-EINVAL);
1430 }
1431
1432 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1433 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1434 map_name, container_name);
1435 return libbpf_err(-EINVAL);
1436 }
1437
1438 key = btf_members(container_type);
1439 value = key + 1;
1440
1441 key_size = btf__resolve_size(btf, key->type);
1442 if (key_size < 0) {
1443 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1444 return libbpf_err(key_size);
1445 }
1446
1447 if (expected_key_size != key_size) {
1448 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1449 map_name, (__u32)key_size, expected_key_size);
1450 return libbpf_err(-EINVAL);
1451 }
1452
1453 value_size = btf__resolve_size(btf, value->type);
1454 if (value_size < 0) {
1455 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1456 return libbpf_err(value_size);
1457 }
1458
1459 if (expected_value_size != value_size) {
1460 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1461 map_name, (__u32)value_size, expected_value_size);
1462 return libbpf_err(-EINVAL);
1463 }
1464
1465 *key_type_id = key->type;
1466 *value_type_id = value->type;
1467
1468 return 0;
1469 }
1470
btf_invalidate_raw_data(struct btf * btf)1471 static void btf_invalidate_raw_data(struct btf *btf)
1472 {
1473 if (btf->raw_data) {
1474 free(btf->raw_data);
1475 btf->raw_data = NULL;
1476 }
1477 if (btf->raw_data_swapped) {
1478 free(btf->raw_data_swapped);
1479 btf->raw_data_swapped = NULL;
1480 }
1481 }
1482
1483 /* Ensure BTF is ready to be modified (by splitting into a three memory
1484 * regions for header, types, and strings). Also invalidate cached
1485 * raw_data, if any.
1486 */
btf_ensure_modifiable(struct btf * btf)1487 static int btf_ensure_modifiable(struct btf *btf)
1488 {
1489 void *hdr, *types;
1490 struct strset *set = NULL;
1491 int err = -ENOMEM;
1492
1493 if (btf_is_modifiable(btf)) {
1494 /* any BTF modification invalidates raw_data */
1495 btf_invalidate_raw_data(btf);
1496 return 0;
1497 }
1498
1499 /* split raw data into three memory regions */
1500 hdr = malloc(btf->hdr->hdr_len);
1501 types = malloc(btf->hdr->type_len);
1502 if (!hdr || !types)
1503 goto err_out;
1504
1505 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1506 memcpy(types, btf->types_data, btf->hdr->type_len);
1507
1508 /* build lookup index for all strings */
1509 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1510 if (IS_ERR(set)) {
1511 err = PTR_ERR(set);
1512 goto err_out;
1513 }
1514
1515 /* only when everything was successful, update internal state */
1516 btf->hdr = hdr;
1517 btf->types_data = types;
1518 btf->types_data_cap = btf->hdr->type_len;
1519 btf->strs_data = NULL;
1520 btf->strs_set = set;
1521 /* if BTF was created from scratch, all strings are guaranteed to be
1522 * unique and deduplicated
1523 */
1524 if (btf->hdr->str_len == 0)
1525 btf->strs_deduped = true;
1526 if (!btf->base_btf && btf->hdr->str_len == 1)
1527 btf->strs_deduped = true;
1528
1529 /* invalidate raw_data representation */
1530 btf_invalidate_raw_data(btf);
1531
1532 return 0;
1533
1534 err_out:
1535 strset__free(set);
1536 free(hdr);
1537 free(types);
1538 return err;
1539 }
1540
1541 /* Find an offset in BTF string section that corresponds to a given string *s*.
1542 * Returns:
1543 * - >0 offset into string section, if string is found;
1544 * - -ENOENT, if string is not in the string section;
1545 * - <0, on any other error.
1546 */
btf__find_str(struct btf * btf,const char * s)1547 int btf__find_str(struct btf *btf, const char *s)
1548 {
1549 int off;
1550
1551 if (btf->base_btf) {
1552 off = btf__find_str(btf->base_btf, s);
1553 if (off != -ENOENT)
1554 return off;
1555 }
1556
1557 /* BTF needs to be in a modifiable state to build string lookup index */
1558 if (btf_ensure_modifiable(btf))
1559 return libbpf_err(-ENOMEM);
1560
1561 off = strset__find_str(btf->strs_set, s);
1562 if (off < 0)
1563 return libbpf_err(off);
1564
1565 return btf->start_str_off + off;
1566 }
1567
1568 /* Add a string s to the BTF string section.
1569 * Returns:
1570 * - > 0 offset into string section, on success;
1571 * - < 0, on error.
1572 */
btf__add_str(struct btf * btf,const char * s)1573 int btf__add_str(struct btf *btf, const char *s)
1574 {
1575 int off;
1576
1577 if (btf->base_btf) {
1578 off = btf__find_str(btf->base_btf, s);
1579 if (off != -ENOENT)
1580 return off;
1581 }
1582
1583 if (btf_ensure_modifiable(btf))
1584 return libbpf_err(-ENOMEM);
1585
1586 off = strset__add_str(btf->strs_set, s);
1587 if (off < 0)
1588 return libbpf_err(off);
1589
1590 btf->hdr->str_len = strset__data_size(btf->strs_set);
1591
1592 return btf->start_str_off + off;
1593 }
1594
btf_add_type_mem(struct btf * btf,size_t add_sz)1595 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1596 {
1597 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1598 btf->hdr->type_len, UINT_MAX, add_sz);
1599 }
1600
btf_type_inc_vlen(struct btf_type * t)1601 static void btf_type_inc_vlen(struct btf_type *t)
1602 {
1603 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1604 }
1605
btf_commit_type(struct btf * btf,int data_sz)1606 static int btf_commit_type(struct btf *btf, int data_sz)
1607 {
1608 int err;
1609
1610 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1611 if (err)
1612 return libbpf_err(err);
1613
1614 btf->hdr->type_len += data_sz;
1615 btf->hdr->str_off += data_sz;
1616 btf->nr_types++;
1617 return btf->start_id + btf->nr_types - 1;
1618 }
1619
1620 struct btf_pipe {
1621 const struct btf *src;
1622 struct btf *dst;
1623 struct hashmap *str_off_map; /* map string offsets from src to dst */
1624 };
1625
btf_rewrite_str(__u32 * str_off,void * ctx)1626 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1627 {
1628 struct btf_pipe *p = ctx;
1629 void *mapped_off;
1630 int off, err;
1631
1632 if (!*str_off) /* nothing to do for empty strings */
1633 return 0;
1634
1635 if (p->str_off_map &&
1636 hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) {
1637 *str_off = (__u32)(long)mapped_off;
1638 return 0;
1639 }
1640
1641 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1642 if (off < 0)
1643 return off;
1644
1645 /* Remember string mapping from src to dst. It avoids
1646 * performing expensive string comparisons.
1647 */
1648 if (p->str_off_map) {
1649 err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off);
1650 if (err)
1651 return err;
1652 }
1653
1654 *str_off = off;
1655 return 0;
1656 }
1657
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1658 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1659 {
1660 struct btf_pipe p = { .src = src_btf, .dst = btf };
1661 struct btf_type *t;
1662 int sz, err;
1663
1664 sz = btf_type_size(src_type);
1665 if (sz < 0)
1666 return libbpf_err(sz);
1667
1668 /* deconstruct BTF, if necessary, and invalidate raw_data */
1669 if (btf_ensure_modifiable(btf))
1670 return libbpf_err(-ENOMEM);
1671
1672 t = btf_add_type_mem(btf, sz);
1673 if (!t)
1674 return libbpf_err(-ENOMEM);
1675
1676 memcpy(t, src_type, sz);
1677
1678 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1679 if (err)
1680 return libbpf_err(err);
1681
1682 return btf_commit_type(btf, sz);
1683 }
1684
btf_rewrite_type_ids(__u32 * type_id,void * ctx)1685 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1686 {
1687 struct btf *btf = ctx;
1688
1689 if (!*type_id) /* nothing to do for VOID references */
1690 return 0;
1691
1692 /* we haven't updated btf's type count yet, so
1693 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1694 * add to all newly added BTF types
1695 */
1696 *type_id += btf->start_id + btf->nr_types - 1;
1697 return 0;
1698 }
1699
1700 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx);
1701 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx);
1702
btf__add_btf(struct btf * btf,const struct btf * src_btf)1703 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1704 {
1705 struct btf_pipe p = { .src = src_btf, .dst = btf };
1706 int data_sz, sz, cnt, i, err, old_strs_len;
1707 __u32 *off;
1708 void *t;
1709
1710 /* appending split BTF isn't supported yet */
1711 if (src_btf->base_btf)
1712 return libbpf_err(-ENOTSUP);
1713
1714 /* deconstruct BTF, if necessary, and invalidate raw_data */
1715 if (btf_ensure_modifiable(btf))
1716 return libbpf_err(-ENOMEM);
1717
1718 /* remember original strings section size if we have to roll back
1719 * partial strings section changes
1720 */
1721 old_strs_len = btf->hdr->str_len;
1722
1723 data_sz = src_btf->hdr->type_len;
1724 cnt = btf__type_cnt(src_btf) - 1;
1725
1726 /* pre-allocate enough memory for new types */
1727 t = btf_add_type_mem(btf, data_sz);
1728 if (!t)
1729 return libbpf_err(-ENOMEM);
1730
1731 /* pre-allocate enough memory for type offset index for new types */
1732 off = btf_add_type_offs_mem(btf, cnt);
1733 if (!off)
1734 return libbpf_err(-ENOMEM);
1735
1736 /* Map the string offsets from src_btf to the offsets from btf to improve performance */
1737 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1738 if (IS_ERR(p.str_off_map))
1739 return libbpf_err(-ENOMEM);
1740
1741 /* bulk copy types data for all types from src_btf */
1742 memcpy(t, src_btf->types_data, data_sz);
1743
1744 for (i = 0; i < cnt; i++) {
1745 sz = btf_type_size(t);
1746 if (sz < 0) {
1747 /* unlikely, has to be corrupted src_btf */
1748 err = sz;
1749 goto err_out;
1750 }
1751
1752 /* fill out type ID to type offset mapping for lookups by type ID */
1753 *off = t - btf->types_data;
1754
1755 /* add, dedup, and remap strings referenced by this BTF type */
1756 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1757 if (err)
1758 goto err_out;
1759
1760 /* remap all type IDs referenced from this BTF type */
1761 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1762 if (err)
1763 goto err_out;
1764
1765 /* go to next type data and type offset index entry */
1766 t += sz;
1767 off++;
1768 }
1769
1770 /* Up until now any of the copied type data was effectively invisible,
1771 * so if we exited early before this point due to error, BTF would be
1772 * effectively unmodified. There would be extra internal memory
1773 * pre-allocated, but it would not be available for querying. But now
1774 * that we've copied and rewritten all the data successfully, we can
1775 * update type count and various internal offsets and sizes to
1776 * "commit" the changes and made them visible to the outside world.
1777 */
1778 btf->hdr->type_len += data_sz;
1779 btf->hdr->str_off += data_sz;
1780 btf->nr_types += cnt;
1781
1782 hashmap__free(p.str_off_map);
1783
1784 /* return type ID of the first added BTF type */
1785 return btf->start_id + btf->nr_types - cnt;
1786 err_out:
1787 /* zero out preallocated memory as if it was just allocated with
1788 * libbpf_add_mem()
1789 */
1790 memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1791 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1792
1793 /* and now restore original strings section size; types data size
1794 * wasn't modified, so doesn't need restoring, see big comment above */
1795 btf->hdr->str_len = old_strs_len;
1796
1797 hashmap__free(p.str_off_map);
1798
1799 return libbpf_err(err);
1800 }
1801
1802 /*
1803 * Append new BTF_KIND_INT type with:
1804 * - *name* - non-empty, non-NULL type name;
1805 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1806 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1807 * Returns:
1808 * - >0, type ID of newly added BTF type;
1809 * - <0, on error.
1810 */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1811 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1812 {
1813 struct btf_type *t;
1814 int sz, name_off;
1815
1816 /* non-empty name */
1817 if (!name || !name[0])
1818 return libbpf_err(-EINVAL);
1819 /* byte_sz must be power of 2 */
1820 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1821 return libbpf_err(-EINVAL);
1822 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1823 return libbpf_err(-EINVAL);
1824
1825 /* deconstruct BTF, if necessary, and invalidate raw_data */
1826 if (btf_ensure_modifiable(btf))
1827 return libbpf_err(-ENOMEM);
1828
1829 sz = sizeof(struct btf_type) + sizeof(int);
1830 t = btf_add_type_mem(btf, sz);
1831 if (!t)
1832 return libbpf_err(-ENOMEM);
1833
1834 /* if something goes wrong later, we might end up with an extra string,
1835 * but that shouldn't be a problem, because BTF can't be constructed
1836 * completely anyway and will most probably be just discarded
1837 */
1838 name_off = btf__add_str(btf, name);
1839 if (name_off < 0)
1840 return name_off;
1841
1842 t->name_off = name_off;
1843 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1844 t->size = byte_sz;
1845 /* set INT info, we don't allow setting legacy bit offset/size */
1846 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1847
1848 return btf_commit_type(btf, sz);
1849 }
1850
1851 /*
1852 * Append new BTF_KIND_FLOAT type with:
1853 * - *name* - non-empty, non-NULL type name;
1854 * - *sz* - size of the type, in bytes;
1855 * Returns:
1856 * - >0, type ID of newly added BTF type;
1857 * - <0, on error.
1858 */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)1859 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1860 {
1861 struct btf_type *t;
1862 int sz, name_off;
1863
1864 /* non-empty name */
1865 if (!name || !name[0])
1866 return libbpf_err(-EINVAL);
1867
1868 /* byte_sz must be one of the explicitly allowed values */
1869 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1870 byte_sz != 16)
1871 return libbpf_err(-EINVAL);
1872
1873 if (btf_ensure_modifiable(btf))
1874 return libbpf_err(-ENOMEM);
1875
1876 sz = sizeof(struct btf_type);
1877 t = btf_add_type_mem(btf, sz);
1878 if (!t)
1879 return libbpf_err(-ENOMEM);
1880
1881 name_off = btf__add_str(btf, name);
1882 if (name_off < 0)
1883 return name_off;
1884
1885 t->name_off = name_off;
1886 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1887 t->size = byte_sz;
1888
1889 return btf_commit_type(btf, sz);
1890 }
1891
1892 /* it's completely legal to append BTF types with type IDs pointing forward to
1893 * types that haven't been appended yet, so we only make sure that id looks
1894 * sane, we can't guarantee that ID will always be valid
1895 */
validate_type_id(int id)1896 static int validate_type_id(int id)
1897 {
1898 if (id < 0 || id > BTF_MAX_NR_TYPES)
1899 return -EINVAL;
1900 return 0;
1901 }
1902
1903 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1904 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1905 {
1906 struct btf_type *t;
1907 int sz, name_off = 0;
1908
1909 if (validate_type_id(ref_type_id))
1910 return libbpf_err(-EINVAL);
1911
1912 if (btf_ensure_modifiable(btf))
1913 return libbpf_err(-ENOMEM);
1914
1915 sz = sizeof(struct btf_type);
1916 t = btf_add_type_mem(btf, sz);
1917 if (!t)
1918 return libbpf_err(-ENOMEM);
1919
1920 if (name && name[0]) {
1921 name_off = btf__add_str(btf, name);
1922 if (name_off < 0)
1923 return name_off;
1924 }
1925
1926 t->name_off = name_off;
1927 t->info = btf_type_info(kind, 0, 0);
1928 t->type = ref_type_id;
1929
1930 return btf_commit_type(btf, sz);
1931 }
1932
1933 /*
1934 * Append new BTF_KIND_PTR type with:
1935 * - *ref_type_id* - referenced type ID, it might not exist yet;
1936 * Returns:
1937 * - >0, type ID of newly added BTF type;
1938 * - <0, on error.
1939 */
btf__add_ptr(struct btf * btf,int ref_type_id)1940 int btf__add_ptr(struct btf *btf, int ref_type_id)
1941 {
1942 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1943 }
1944
1945 /*
1946 * Append new BTF_KIND_ARRAY type with:
1947 * - *index_type_id* - type ID of the type describing array index;
1948 * - *elem_type_id* - type ID of the type describing array element;
1949 * - *nr_elems* - the size of the array;
1950 * Returns:
1951 * - >0, type ID of newly added BTF type;
1952 * - <0, on error.
1953 */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1954 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1955 {
1956 struct btf_type *t;
1957 struct btf_array *a;
1958 int sz;
1959
1960 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1961 return libbpf_err(-EINVAL);
1962
1963 if (btf_ensure_modifiable(btf))
1964 return libbpf_err(-ENOMEM);
1965
1966 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1967 t = btf_add_type_mem(btf, sz);
1968 if (!t)
1969 return libbpf_err(-ENOMEM);
1970
1971 t->name_off = 0;
1972 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1973 t->size = 0;
1974
1975 a = btf_array(t);
1976 a->type = elem_type_id;
1977 a->index_type = index_type_id;
1978 a->nelems = nr_elems;
1979
1980 return btf_commit_type(btf, sz);
1981 }
1982
1983 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1984 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1985 {
1986 struct btf_type *t;
1987 int sz, name_off = 0;
1988
1989 if (btf_ensure_modifiable(btf))
1990 return libbpf_err(-ENOMEM);
1991
1992 sz = sizeof(struct btf_type);
1993 t = btf_add_type_mem(btf, sz);
1994 if (!t)
1995 return libbpf_err(-ENOMEM);
1996
1997 if (name && name[0]) {
1998 name_off = btf__add_str(btf, name);
1999 if (name_off < 0)
2000 return name_off;
2001 }
2002
2003 /* start out with vlen=0 and no kflag; this will be adjusted when
2004 * adding each member
2005 */
2006 t->name_off = name_off;
2007 t->info = btf_type_info(kind, 0, 0);
2008 t->size = bytes_sz;
2009
2010 return btf_commit_type(btf, sz);
2011 }
2012
2013 /*
2014 * Append new BTF_KIND_STRUCT type with:
2015 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
2016 * - *byte_sz* - size of the struct, in bytes;
2017 *
2018 * Struct initially has no fields in it. Fields can be added by
2019 * btf__add_field() right after btf__add_struct() succeeds.
2020 *
2021 * Returns:
2022 * - >0, type ID of newly added BTF type;
2023 * - <0, on error.
2024 */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)2025 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2026 {
2027 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2028 }
2029
2030 /*
2031 * Append new BTF_KIND_UNION type with:
2032 * - *name* - name of the union, can be NULL or empty for anonymous union;
2033 * - *byte_sz* - size of the union, in bytes;
2034 *
2035 * Union initially has no fields in it. Fields can be added by
2036 * btf__add_field() right after btf__add_union() succeeds. All fields
2037 * should have *bit_offset* of 0.
2038 *
2039 * Returns:
2040 * - >0, type ID of newly added BTF type;
2041 * - <0, on error.
2042 */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)2043 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2044 {
2045 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2046 }
2047
btf_last_type(struct btf * btf)2048 static struct btf_type *btf_last_type(struct btf *btf)
2049 {
2050 return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2051 }
2052
2053 /*
2054 * Append new field for the current STRUCT/UNION type with:
2055 * - *name* - name of the field, can be NULL or empty for anonymous field;
2056 * - *type_id* - type ID for the type describing field type;
2057 * - *bit_offset* - bit offset of the start of the field within struct/union;
2058 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2059 * Returns:
2060 * - 0, on success;
2061 * - <0, on error.
2062 */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)2063 int btf__add_field(struct btf *btf, const char *name, int type_id,
2064 __u32 bit_offset, __u32 bit_size)
2065 {
2066 struct btf_type *t;
2067 struct btf_member *m;
2068 bool is_bitfield;
2069 int sz, name_off = 0;
2070
2071 /* last type should be union/struct */
2072 if (btf->nr_types == 0)
2073 return libbpf_err(-EINVAL);
2074 t = btf_last_type(btf);
2075 if (!btf_is_composite(t))
2076 return libbpf_err(-EINVAL);
2077
2078 if (validate_type_id(type_id))
2079 return libbpf_err(-EINVAL);
2080 /* best-effort bit field offset/size enforcement */
2081 is_bitfield = bit_size || (bit_offset % 8 != 0);
2082 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2083 return libbpf_err(-EINVAL);
2084
2085 /* only offset 0 is allowed for unions */
2086 if (btf_is_union(t) && bit_offset)
2087 return libbpf_err(-EINVAL);
2088
2089 /* decompose and invalidate raw data */
2090 if (btf_ensure_modifiable(btf))
2091 return libbpf_err(-ENOMEM);
2092
2093 sz = sizeof(struct btf_member);
2094 m = btf_add_type_mem(btf, sz);
2095 if (!m)
2096 return libbpf_err(-ENOMEM);
2097
2098 if (name && name[0]) {
2099 name_off = btf__add_str(btf, name);
2100 if (name_off < 0)
2101 return name_off;
2102 }
2103
2104 m->name_off = name_off;
2105 m->type = type_id;
2106 m->offset = bit_offset | (bit_size << 24);
2107
2108 /* btf_add_type_mem can invalidate t pointer */
2109 t = btf_last_type(btf);
2110 /* update parent type's vlen and kflag */
2111 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2112
2113 btf->hdr->type_len += sz;
2114 btf->hdr->str_off += sz;
2115 return 0;
2116 }
2117
2118 /*
2119 * Append new BTF_KIND_ENUM type with:
2120 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2121 * - *byte_sz* - size of the enum, in bytes.
2122 *
2123 * Enum initially has no enum values in it (and corresponds to enum forward
2124 * declaration). Enumerator values can be added by btf__add_enum_value()
2125 * immediately after btf__add_enum() succeeds.
2126 *
2127 * Returns:
2128 * - >0, type ID of newly added BTF type;
2129 * - <0, on error.
2130 */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2131 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2132 {
2133 struct btf_type *t;
2134 int sz, name_off = 0;
2135
2136 /* byte_sz must be power of 2 */
2137 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2138 return libbpf_err(-EINVAL);
2139
2140 if (btf_ensure_modifiable(btf))
2141 return libbpf_err(-ENOMEM);
2142
2143 sz = sizeof(struct btf_type);
2144 t = btf_add_type_mem(btf, sz);
2145 if (!t)
2146 return libbpf_err(-ENOMEM);
2147
2148 if (name && name[0]) {
2149 name_off = btf__add_str(btf, name);
2150 if (name_off < 0)
2151 return name_off;
2152 }
2153
2154 /* start out with vlen=0; it will be adjusted when adding enum values */
2155 t->name_off = name_off;
2156 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2157 t->size = byte_sz;
2158
2159 return btf_commit_type(btf, sz);
2160 }
2161
2162 /*
2163 * Append new enum value for the current ENUM type with:
2164 * - *name* - name of the enumerator value, can't be NULL or empty;
2165 * - *value* - integer value corresponding to enum value *name*;
2166 * Returns:
2167 * - 0, on success;
2168 * - <0, on error.
2169 */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2170 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2171 {
2172 struct btf_type *t;
2173 struct btf_enum *v;
2174 int sz, name_off;
2175
2176 /* last type should be BTF_KIND_ENUM */
2177 if (btf->nr_types == 0)
2178 return libbpf_err(-EINVAL);
2179 t = btf_last_type(btf);
2180 if (!btf_is_enum(t))
2181 return libbpf_err(-EINVAL);
2182
2183 /* non-empty name */
2184 if (!name || !name[0])
2185 return libbpf_err(-EINVAL);
2186 if (value < INT_MIN || value > UINT_MAX)
2187 return libbpf_err(-E2BIG);
2188
2189 /* decompose and invalidate raw data */
2190 if (btf_ensure_modifiable(btf))
2191 return libbpf_err(-ENOMEM);
2192
2193 sz = sizeof(struct btf_enum);
2194 v = btf_add_type_mem(btf, sz);
2195 if (!v)
2196 return libbpf_err(-ENOMEM);
2197
2198 name_off = btf__add_str(btf, name);
2199 if (name_off < 0)
2200 return name_off;
2201
2202 v->name_off = name_off;
2203 v->val = value;
2204
2205 /* update parent type's vlen */
2206 t = btf_last_type(btf);
2207 btf_type_inc_vlen(t);
2208
2209 btf->hdr->type_len += sz;
2210 btf->hdr->str_off += sz;
2211 return 0;
2212 }
2213
2214 /*
2215 * Append new BTF_KIND_FWD type with:
2216 * - *name*, non-empty/non-NULL name;
2217 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2218 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2219 * Returns:
2220 * - >0, type ID of newly added BTF type;
2221 * - <0, on error.
2222 */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2223 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2224 {
2225 if (!name || !name[0])
2226 return libbpf_err(-EINVAL);
2227
2228 switch (fwd_kind) {
2229 case BTF_FWD_STRUCT:
2230 case BTF_FWD_UNION: {
2231 struct btf_type *t;
2232 int id;
2233
2234 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2235 if (id <= 0)
2236 return id;
2237 t = btf_type_by_id(btf, id);
2238 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2239 return id;
2240 }
2241 case BTF_FWD_ENUM:
2242 /* enum forward in BTF currently is just an enum with no enum
2243 * values; we also assume a standard 4-byte size for it
2244 */
2245 return btf__add_enum(btf, name, sizeof(int));
2246 default:
2247 return libbpf_err(-EINVAL);
2248 }
2249 }
2250
2251 /*
2252 * Append new BTF_KING_TYPEDEF type with:
2253 * - *name*, non-empty/non-NULL name;
2254 * - *ref_type_id* - referenced type ID, it might not exist yet;
2255 * Returns:
2256 * - >0, type ID of newly added BTF type;
2257 * - <0, on error.
2258 */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2259 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2260 {
2261 if (!name || !name[0])
2262 return libbpf_err(-EINVAL);
2263
2264 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2265 }
2266
2267 /*
2268 * Append new BTF_KIND_VOLATILE type with:
2269 * - *ref_type_id* - referenced type ID, it might not exist yet;
2270 * Returns:
2271 * - >0, type ID of newly added BTF type;
2272 * - <0, on error.
2273 */
btf__add_volatile(struct btf * btf,int ref_type_id)2274 int btf__add_volatile(struct btf *btf, int ref_type_id)
2275 {
2276 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2277 }
2278
2279 /*
2280 * Append new BTF_KIND_CONST type with:
2281 * - *ref_type_id* - referenced type ID, it might not exist yet;
2282 * Returns:
2283 * - >0, type ID of newly added BTF type;
2284 * - <0, on error.
2285 */
btf__add_const(struct btf * btf,int ref_type_id)2286 int btf__add_const(struct btf *btf, int ref_type_id)
2287 {
2288 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2289 }
2290
2291 /*
2292 * Append new BTF_KIND_RESTRICT type with:
2293 * - *ref_type_id* - referenced type ID, it might not exist yet;
2294 * Returns:
2295 * - >0, type ID of newly added BTF type;
2296 * - <0, on error.
2297 */
btf__add_restrict(struct btf * btf,int ref_type_id)2298 int btf__add_restrict(struct btf *btf, int ref_type_id)
2299 {
2300 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2301 }
2302
2303 /*
2304 * Append new BTF_KIND_TYPE_TAG type with:
2305 * - *value*, non-empty/non-NULL tag value;
2306 * - *ref_type_id* - referenced type ID, it might not exist yet;
2307 * Returns:
2308 * - >0, type ID of newly added BTF type;
2309 * - <0, on error.
2310 */
btf__add_type_tag(struct btf * btf,const char * value,int ref_type_id)2311 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2312 {
2313 if (!value|| !value[0])
2314 return libbpf_err(-EINVAL);
2315
2316 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2317 }
2318
2319 /*
2320 * Append new BTF_KIND_FUNC type with:
2321 * - *name*, non-empty/non-NULL name;
2322 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2323 * Returns:
2324 * - >0, type ID of newly added BTF type;
2325 * - <0, on error.
2326 */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2327 int btf__add_func(struct btf *btf, const char *name,
2328 enum btf_func_linkage linkage, int proto_type_id)
2329 {
2330 int id;
2331
2332 if (!name || !name[0])
2333 return libbpf_err(-EINVAL);
2334 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2335 linkage != BTF_FUNC_EXTERN)
2336 return libbpf_err(-EINVAL);
2337
2338 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2339 if (id > 0) {
2340 struct btf_type *t = btf_type_by_id(btf, id);
2341
2342 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2343 }
2344 return libbpf_err(id);
2345 }
2346
2347 /*
2348 * Append new BTF_KIND_FUNC_PROTO with:
2349 * - *ret_type_id* - type ID for return result of a function.
2350 *
2351 * Function prototype initially has no arguments, but they can be added by
2352 * btf__add_func_param() one by one, immediately after
2353 * btf__add_func_proto() succeeded.
2354 *
2355 * Returns:
2356 * - >0, type ID of newly added BTF type;
2357 * - <0, on error.
2358 */
btf__add_func_proto(struct btf * btf,int ret_type_id)2359 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2360 {
2361 struct btf_type *t;
2362 int sz;
2363
2364 if (validate_type_id(ret_type_id))
2365 return libbpf_err(-EINVAL);
2366
2367 if (btf_ensure_modifiable(btf))
2368 return libbpf_err(-ENOMEM);
2369
2370 sz = sizeof(struct btf_type);
2371 t = btf_add_type_mem(btf, sz);
2372 if (!t)
2373 return libbpf_err(-ENOMEM);
2374
2375 /* start out with vlen=0; this will be adjusted when adding enum
2376 * values, if necessary
2377 */
2378 t->name_off = 0;
2379 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2380 t->type = ret_type_id;
2381
2382 return btf_commit_type(btf, sz);
2383 }
2384
2385 /*
2386 * Append new function parameter for current FUNC_PROTO type with:
2387 * - *name* - parameter name, can be NULL or empty;
2388 * - *type_id* - type ID describing the type of the parameter.
2389 * Returns:
2390 * - 0, on success;
2391 * - <0, on error.
2392 */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2393 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2394 {
2395 struct btf_type *t;
2396 struct btf_param *p;
2397 int sz, name_off = 0;
2398
2399 if (validate_type_id(type_id))
2400 return libbpf_err(-EINVAL);
2401
2402 /* last type should be BTF_KIND_FUNC_PROTO */
2403 if (btf->nr_types == 0)
2404 return libbpf_err(-EINVAL);
2405 t = btf_last_type(btf);
2406 if (!btf_is_func_proto(t))
2407 return libbpf_err(-EINVAL);
2408
2409 /* decompose and invalidate raw data */
2410 if (btf_ensure_modifiable(btf))
2411 return libbpf_err(-ENOMEM);
2412
2413 sz = sizeof(struct btf_param);
2414 p = btf_add_type_mem(btf, sz);
2415 if (!p)
2416 return libbpf_err(-ENOMEM);
2417
2418 if (name && name[0]) {
2419 name_off = btf__add_str(btf, name);
2420 if (name_off < 0)
2421 return name_off;
2422 }
2423
2424 p->name_off = name_off;
2425 p->type = type_id;
2426
2427 /* update parent type's vlen */
2428 t = btf_last_type(btf);
2429 btf_type_inc_vlen(t);
2430
2431 btf->hdr->type_len += sz;
2432 btf->hdr->str_off += sz;
2433 return 0;
2434 }
2435
2436 /*
2437 * Append new BTF_KIND_VAR type with:
2438 * - *name* - non-empty/non-NULL name;
2439 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2440 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2441 * - *type_id* - type ID of the type describing the type of the variable.
2442 * Returns:
2443 * - >0, type ID of newly added BTF type;
2444 * - <0, on error.
2445 */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2446 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2447 {
2448 struct btf_type *t;
2449 struct btf_var *v;
2450 int sz, name_off;
2451
2452 /* non-empty name */
2453 if (!name || !name[0])
2454 return libbpf_err(-EINVAL);
2455 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2456 linkage != BTF_VAR_GLOBAL_EXTERN)
2457 return libbpf_err(-EINVAL);
2458 if (validate_type_id(type_id))
2459 return libbpf_err(-EINVAL);
2460
2461 /* deconstruct BTF, if necessary, and invalidate raw_data */
2462 if (btf_ensure_modifiable(btf))
2463 return libbpf_err(-ENOMEM);
2464
2465 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2466 t = btf_add_type_mem(btf, sz);
2467 if (!t)
2468 return libbpf_err(-ENOMEM);
2469
2470 name_off = btf__add_str(btf, name);
2471 if (name_off < 0)
2472 return name_off;
2473
2474 t->name_off = name_off;
2475 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2476 t->type = type_id;
2477
2478 v = btf_var(t);
2479 v->linkage = linkage;
2480
2481 return btf_commit_type(btf, sz);
2482 }
2483
2484 /*
2485 * Append new BTF_KIND_DATASEC type with:
2486 * - *name* - non-empty/non-NULL name;
2487 * - *byte_sz* - data section size, in bytes.
2488 *
2489 * Data section is initially empty. Variables info can be added with
2490 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2491 *
2492 * Returns:
2493 * - >0, type ID of newly added BTF type;
2494 * - <0, on error.
2495 */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2496 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2497 {
2498 struct btf_type *t;
2499 int sz, name_off;
2500
2501 /* non-empty name */
2502 if (!name || !name[0])
2503 return libbpf_err(-EINVAL);
2504
2505 if (btf_ensure_modifiable(btf))
2506 return libbpf_err(-ENOMEM);
2507
2508 sz = sizeof(struct btf_type);
2509 t = btf_add_type_mem(btf, sz);
2510 if (!t)
2511 return libbpf_err(-ENOMEM);
2512
2513 name_off = btf__add_str(btf, name);
2514 if (name_off < 0)
2515 return name_off;
2516
2517 /* start with vlen=0, which will be update as var_secinfos are added */
2518 t->name_off = name_off;
2519 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2520 t->size = byte_sz;
2521
2522 return btf_commit_type(btf, sz);
2523 }
2524
2525 /*
2526 * Append new data section variable information entry for current DATASEC type:
2527 * - *var_type_id* - type ID, describing type of the variable;
2528 * - *offset* - variable offset within data section, in bytes;
2529 * - *byte_sz* - variable size, in bytes.
2530 *
2531 * Returns:
2532 * - 0, on success;
2533 * - <0, on error.
2534 */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2535 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2536 {
2537 struct btf_type *t;
2538 struct btf_var_secinfo *v;
2539 int sz;
2540
2541 /* last type should be BTF_KIND_DATASEC */
2542 if (btf->nr_types == 0)
2543 return libbpf_err(-EINVAL);
2544 t = btf_last_type(btf);
2545 if (!btf_is_datasec(t))
2546 return libbpf_err(-EINVAL);
2547
2548 if (validate_type_id(var_type_id))
2549 return libbpf_err(-EINVAL);
2550
2551 /* decompose and invalidate raw data */
2552 if (btf_ensure_modifiable(btf))
2553 return libbpf_err(-ENOMEM);
2554
2555 sz = sizeof(struct btf_var_secinfo);
2556 v = btf_add_type_mem(btf, sz);
2557 if (!v)
2558 return libbpf_err(-ENOMEM);
2559
2560 v->type = var_type_id;
2561 v->offset = offset;
2562 v->size = byte_sz;
2563
2564 /* update parent type's vlen */
2565 t = btf_last_type(btf);
2566 btf_type_inc_vlen(t);
2567
2568 btf->hdr->type_len += sz;
2569 btf->hdr->str_off += sz;
2570 return 0;
2571 }
2572
2573 /*
2574 * Append new BTF_KIND_DECL_TAG type with:
2575 * - *value* - non-empty/non-NULL string;
2576 * - *ref_type_id* - referenced type ID, it might not exist yet;
2577 * - *component_idx* - -1 for tagging reference type, otherwise struct/union
2578 * member or function argument index;
2579 * Returns:
2580 * - >0, type ID of newly added BTF type;
2581 * - <0, on error.
2582 */
btf__add_decl_tag(struct btf * btf,const char * value,int ref_type_id,int component_idx)2583 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2584 int component_idx)
2585 {
2586 struct btf_type *t;
2587 int sz, value_off;
2588
2589 if (!value || !value[0] || component_idx < -1)
2590 return libbpf_err(-EINVAL);
2591
2592 if (validate_type_id(ref_type_id))
2593 return libbpf_err(-EINVAL);
2594
2595 if (btf_ensure_modifiable(btf))
2596 return libbpf_err(-ENOMEM);
2597
2598 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2599 t = btf_add_type_mem(btf, sz);
2600 if (!t)
2601 return libbpf_err(-ENOMEM);
2602
2603 value_off = btf__add_str(btf, value);
2604 if (value_off < 0)
2605 return value_off;
2606
2607 t->name_off = value_off;
2608 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2609 t->type = ref_type_id;
2610 btf_decl_tag(t)->component_idx = component_idx;
2611
2612 return btf_commit_type(btf, sz);
2613 }
2614
2615 struct btf_ext_sec_setup_param {
2616 __u32 off;
2617 __u32 len;
2618 __u32 min_rec_size;
2619 struct btf_ext_info *ext_info;
2620 const char *desc;
2621 };
2622
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2623 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2624 struct btf_ext_sec_setup_param *ext_sec)
2625 {
2626 const struct btf_ext_info_sec *sinfo;
2627 struct btf_ext_info *ext_info;
2628 __u32 info_left, record_size;
2629 /* The start of the info sec (including the __u32 record_size). */
2630 void *info;
2631
2632 if (ext_sec->len == 0)
2633 return 0;
2634
2635 if (ext_sec->off & 0x03) {
2636 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2637 ext_sec->desc);
2638 return -EINVAL;
2639 }
2640
2641 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2642 info_left = ext_sec->len;
2643
2644 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2645 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2646 ext_sec->desc, ext_sec->off, ext_sec->len);
2647 return -EINVAL;
2648 }
2649
2650 /* At least a record size */
2651 if (info_left < sizeof(__u32)) {
2652 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2653 return -EINVAL;
2654 }
2655
2656 /* The record size needs to meet the minimum standard */
2657 record_size = *(__u32 *)info;
2658 if (record_size < ext_sec->min_rec_size ||
2659 record_size & 0x03) {
2660 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2661 ext_sec->desc, record_size);
2662 return -EINVAL;
2663 }
2664
2665 sinfo = info + sizeof(__u32);
2666 info_left -= sizeof(__u32);
2667
2668 /* If no records, return failure now so .BTF.ext won't be used. */
2669 if (!info_left) {
2670 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2671 return -EINVAL;
2672 }
2673
2674 while (info_left) {
2675 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2676 __u64 total_record_size;
2677 __u32 num_records;
2678
2679 if (info_left < sec_hdrlen) {
2680 pr_debug("%s section header is not found in .BTF.ext\n",
2681 ext_sec->desc);
2682 return -EINVAL;
2683 }
2684
2685 num_records = sinfo->num_info;
2686 if (num_records == 0) {
2687 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2688 ext_sec->desc);
2689 return -EINVAL;
2690 }
2691
2692 total_record_size = sec_hdrlen +
2693 (__u64)num_records * record_size;
2694 if (info_left < total_record_size) {
2695 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2696 ext_sec->desc);
2697 return -EINVAL;
2698 }
2699
2700 info_left -= total_record_size;
2701 sinfo = (void *)sinfo + total_record_size;
2702 }
2703
2704 ext_info = ext_sec->ext_info;
2705 ext_info->len = ext_sec->len - sizeof(__u32);
2706 ext_info->rec_size = record_size;
2707 ext_info->info = info + sizeof(__u32);
2708
2709 return 0;
2710 }
2711
btf_ext_setup_func_info(struct btf_ext * btf_ext)2712 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2713 {
2714 struct btf_ext_sec_setup_param param = {
2715 .off = btf_ext->hdr->func_info_off,
2716 .len = btf_ext->hdr->func_info_len,
2717 .min_rec_size = sizeof(struct bpf_func_info_min),
2718 .ext_info = &btf_ext->func_info,
2719 .desc = "func_info"
2720 };
2721
2722 return btf_ext_setup_info(btf_ext, ¶m);
2723 }
2724
btf_ext_setup_line_info(struct btf_ext * btf_ext)2725 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2726 {
2727 struct btf_ext_sec_setup_param param = {
2728 .off = btf_ext->hdr->line_info_off,
2729 .len = btf_ext->hdr->line_info_len,
2730 .min_rec_size = sizeof(struct bpf_line_info_min),
2731 .ext_info = &btf_ext->line_info,
2732 .desc = "line_info",
2733 };
2734
2735 return btf_ext_setup_info(btf_ext, ¶m);
2736 }
2737
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2738 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2739 {
2740 struct btf_ext_sec_setup_param param = {
2741 .off = btf_ext->hdr->core_relo_off,
2742 .len = btf_ext->hdr->core_relo_len,
2743 .min_rec_size = sizeof(struct bpf_core_relo),
2744 .ext_info = &btf_ext->core_relo_info,
2745 .desc = "core_relo",
2746 };
2747
2748 return btf_ext_setup_info(btf_ext, ¶m);
2749 }
2750
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2751 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2752 {
2753 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2754
2755 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2756 data_size < hdr->hdr_len) {
2757 pr_debug("BTF.ext header not found");
2758 return -EINVAL;
2759 }
2760
2761 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2762 pr_warn("BTF.ext in non-native endianness is not supported\n");
2763 return -ENOTSUP;
2764 } else if (hdr->magic != BTF_MAGIC) {
2765 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2766 return -EINVAL;
2767 }
2768
2769 if (hdr->version != BTF_VERSION) {
2770 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2771 return -ENOTSUP;
2772 }
2773
2774 if (hdr->flags) {
2775 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2776 return -ENOTSUP;
2777 }
2778
2779 if (data_size == hdr->hdr_len) {
2780 pr_debug("BTF.ext has no data\n");
2781 return -EINVAL;
2782 }
2783
2784 return 0;
2785 }
2786
btf_ext__free(struct btf_ext * btf_ext)2787 void btf_ext__free(struct btf_ext *btf_ext)
2788 {
2789 if (IS_ERR_OR_NULL(btf_ext))
2790 return;
2791 free(btf_ext->data);
2792 free(btf_ext);
2793 }
2794
btf_ext__new(const __u8 * data,__u32 size)2795 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2796 {
2797 struct btf_ext *btf_ext;
2798 int err;
2799
2800 btf_ext = calloc(1, sizeof(struct btf_ext));
2801 if (!btf_ext)
2802 return libbpf_err_ptr(-ENOMEM);
2803
2804 btf_ext->data_size = size;
2805 btf_ext->data = malloc(size);
2806 if (!btf_ext->data) {
2807 err = -ENOMEM;
2808 goto done;
2809 }
2810 memcpy(btf_ext->data, data, size);
2811
2812 err = btf_ext_parse_hdr(btf_ext->data, size);
2813 if (err)
2814 goto done;
2815
2816 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2817 err = -EINVAL;
2818 goto done;
2819 }
2820
2821 err = btf_ext_setup_func_info(btf_ext);
2822 if (err)
2823 goto done;
2824
2825 err = btf_ext_setup_line_info(btf_ext);
2826 if (err)
2827 goto done;
2828
2829 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2830 err = -EINVAL;
2831 goto done;
2832 }
2833
2834 err = btf_ext_setup_core_relos(btf_ext);
2835 if (err)
2836 goto done;
2837
2838 done:
2839 if (err) {
2840 btf_ext__free(btf_ext);
2841 return libbpf_err_ptr(err);
2842 }
2843
2844 return btf_ext;
2845 }
2846
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2847 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2848 {
2849 *size = btf_ext->data_size;
2850 return btf_ext->data;
2851 }
2852
btf_ext_reloc_info(const struct btf * btf,const struct btf_ext_info * ext_info,const char * sec_name,__u32 insns_cnt,void ** info,__u32 * cnt)2853 static int btf_ext_reloc_info(const struct btf *btf,
2854 const struct btf_ext_info *ext_info,
2855 const char *sec_name, __u32 insns_cnt,
2856 void **info, __u32 *cnt)
2857 {
2858 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2859 __u32 i, record_size, existing_len, records_len;
2860 struct btf_ext_info_sec *sinfo;
2861 const char *info_sec_name;
2862 __u64 remain_len;
2863 void *data;
2864
2865 record_size = ext_info->rec_size;
2866 sinfo = ext_info->info;
2867 remain_len = ext_info->len;
2868 while (remain_len > 0) {
2869 records_len = sinfo->num_info * record_size;
2870 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2871 if (strcmp(info_sec_name, sec_name)) {
2872 remain_len -= sec_hdrlen + records_len;
2873 sinfo = (void *)sinfo + sec_hdrlen + records_len;
2874 continue;
2875 }
2876
2877 existing_len = (*cnt) * record_size;
2878 data = realloc(*info, existing_len + records_len);
2879 if (!data)
2880 return libbpf_err(-ENOMEM);
2881
2882 memcpy(data + existing_len, sinfo->data, records_len);
2883 /* adjust insn_off only, the rest data will be passed
2884 * to the kernel.
2885 */
2886 for (i = 0; i < sinfo->num_info; i++) {
2887 __u32 *insn_off;
2888
2889 insn_off = data + existing_len + (i * record_size);
2890 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2891 }
2892 *info = data;
2893 *cnt += sinfo->num_info;
2894 return 0;
2895 }
2896
2897 return libbpf_err(-ENOENT);
2898 }
2899
btf_ext__reloc_func_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** func_info,__u32 * cnt)2900 int btf_ext__reloc_func_info(const struct btf *btf,
2901 const struct btf_ext *btf_ext,
2902 const char *sec_name, __u32 insns_cnt,
2903 void **func_info, __u32 *cnt)
2904 {
2905 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2906 insns_cnt, func_info, cnt);
2907 }
2908
btf_ext__reloc_line_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** line_info,__u32 * cnt)2909 int btf_ext__reloc_line_info(const struct btf *btf,
2910 const struct btf_ext *btf_ext,
2911 const char *sec_name, __u32 insns_cnt,
2912 void **line_info, __u32 *cnt)
2913 {
2914 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2915 insns_cnt, line_info, cnt);
2916 }
2917
btf_ext__func_info_rec_size(const struct btf_ext * btf_ext)2918 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2919 {
2920 return btf_ext->func_info.rec_size;
2921 }
2922
btf_ext__line_info_rec_size(const struct btf_ext * btf_ext)2923 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2924 {
2925 return btf_ext->line_info.rec_size;
2926 }
2927
2928 struct btf_dedup;
2929
2930 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2931 static void btf_dedup_free(struct btf_dedup *d);
2932 static int btf_dedup_prep(struct btf_dedup *d);
2933 static int btf_dedup_strings(struct btf_dedup *d);
2934 static int btf_dedup_prim_types(struct btf_dedup *d);
2935 static int btf_dedup_struct_types(struct btf_dedup *d);
2936 static int btf_dedup_ref_types(struct btf_dedup *d);
2937 static int btf_dedup_compact_types(struct btf_dedup *d);
2938 static int btf_dedup_remap_types(struct btf_dedup *d);
2939
2940 /*
2941 * Deduplicate BTF types and strings.
2942 *
2943 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2944 * section with all BTF type descriptors and string data. It overwrites that
2945 * memory in-place with deduplicated types and strings without any loss of
2946 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2947 * is provided, all the strings referenced from .BTF.ext section are honored
2948 * and updated to point to the right offsets after deduplication.
2949 *
2950 * If function returns with error, type/string data might be garbled and should
2951 * be discarded.
2952 *
2953 * More verbose and detailed description of both problem btf_dedup is solving,
2954 * as well as solution could be found at:
2955 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2956 *
2957 * Problem description and justification
2958 * =====================================
2959 *
2960 * BTF type information is typically emitted either as a result of conversion
2961 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2962 * unit contains information about a subset of all the types that are used
2963 * in an application. These subsets are frequently overlapping and contain a lot
2964 * of duplicated information when later concatenated together into a single
2965 * binary. This algorithm ensures that each unique type is represented by single
2966 * BTF type descriptor, greatly reducing resulting size of BTF data.
2967 *
2968 * Compilation unit isolation and subsequent duplication of data is not the only
2969 * problem. The same type hierarchy (e.g., struct and all the type that struct
2970 * references) in different compilation units can be represented in BTF to
2971 * various degrees of completeness (or, rather, incompleteness) due to
2972 * struct/union forward declarations.
2973 *
2974 * Let's take a look at an example, that we'll use to better understand the
2975 * problem (and solution). Suppose we have two compilation units, each using
2976 * same `struct S`, but each of them having incomplete type information about
2977 * struct's fields:
2978 *
2979 * // CU #1:
2980 * struct S;
2981 * struct A {
2982 * int a;
2983 * struct A* self;
2984 * struct S* parent;
2985 * };
2986 * struct B;
2987 * struct S {
2988 * struct A* a_ptr;
2989 * struct B* b_ptr;
2990 * };
2991 *
2992 * // CU #2:
2993 * struct S;
2994 * struct A;
2995 * struct B {
2996 * int b;
2997 * struct B* self;
2998 * struct S* parent;
2999 * };
3000 * struct S {
3001 * struct A* a_ptr;
3002 * struct B* b_ptr;
3003 * };
3004 *
3005 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3006 * more), but will know the complete type information about `struct A`. While
3007 * for CU #2, it will know full type information about `struct B`, but will
3008 * only know about forward declaration of `struct A` (in BTF terms, it will
3009 * have `BTF_KIND_FWD` type descriptor with name `B`).
3010 *
3011 * This compilation unit isolation means that it's possible that there is no
3012 * single CU with complete type information describing structs `S`, `A`, and
3013 * `B`. Also, we might get tons of duplicated and redundant type information.
3014 *
3015 * Additional complication we need to keep in mind comes from the fact that
3016 * types, in general, can form graphs containing cycles, not just DAGs.
3017 *
3018 * While algorithm does deduplication, it also merges and resolves type
3019 * information (unless disabled throught `struct btf_opts`), whenever possible.
3020 * E.g., in the example above with two compilation units having partial type
3021 * information for structs `A` and `B`, the output of algorithm will emit
3022 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3023 * (as well as type information for `int` and pointers), as if they were defined
3024 * in a single compilation unit as:
3025 *
3026 * struct A {
3027 * int a;
3028 * struct A* self;
3029 * struct S* parent;
3030 * };
3031 * struct B {
3032 * int b;
3033 * struct B* self;
3034 * struct S* parent;
3035 * };
3036 * struct S {
3037 * struct A* a_ptr;
3038 * struct B* b_ptr;
3039 * };
3040 *
3041 * Algorithm summary
3042 * =================
3043 *
3044 * Algorithm completes its work in 6 separate passes:
3045 *
3046 * 1. Strings deduplication.
3047 * 2. Primitive types deduplication (int, enum, fwd).
3048 * 3. Struct/union types deduplication.
3049 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3050 * protos, and const/volatile/restrict modifiers).
3051 * 5. Types compaction.
3052 * 6. Types remapping.
3053 *
3054 * Algorithm determines canonical type descriptor, which is a single
3055 * representative type for each truly unique type. This canonical type is the
3056 * one that will go into final deduplicated BTF type information. For
3057 * struct/unions, it is also the type that algorithm will merge additional type
3058 * information into (while resolving FWDs), as it discovers it from data in
3059 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3060 * that type is canonical, or to some other type, if that type is equivalent
3061 * and was chosen as canonical representative. This mapping is stored in
3062 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3063 * FWD type got resolved to.
3064 *
3065 * To facilitate fast discovery of canonical types, we also maintain canonical
3066 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3067 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3068 * that match that signature. With sufficiently good choice of type signature
3069 * hashing function, we can limit number of canonical types for each unique type
3070 * signature to a very small number, allowing to find canonical type for any
3071 * duplicated type very quickly.
3072 *
3073 * Struct/union deduplication is the most critical part and algorithm for
3074 * deduplicating structs/unions is described in greater details in comments for
3075 * `btf_dedup_is_equiv` function.
3076 */
3077
3078 DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0)
btf__dedup_v0_6_0(struct btf * btf,const struct btf_dedup_opts * opts)3079 int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts)
3080 {
3081 struct btf_dedup *d;
3082 int err;
3083
3084 if (!OPTS_VALID(opts, btf_dedup_opts))
3085 return libbpf_err(-EINVAL);
3086
3087 d = btf_dedup_new(btf, opts);
3088 if (IS_ERR(d)) {
3089 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3090 return libbpf_err(-EINVAL);
3091 }
3092
3093 if (btf_ensure_modifiable(btf)) {
3094 err = -ENOMEM;
3095 goto done;
3096 }
3097
3098 err = btf_dedup_prep(d);
3099 if (err) {
3100 pr_debug("btf_dedup_prep failed:%d\n", err);
3101 goto done;
3102 }
3103 err = btf_dedup_strings(d);
3104 if (err < 0) {
3105 pr_debug("btf_dedup_strings failed:%d\n", err);
3106 goto done;
3107 }
3108 err = btf_dedup_prim_types(d);
3109 if (err < 0) {
3110 pr_debug("btf_dedup_prim_types failed:%d\n", err);
3111 goto done;
3112 }
3113 err = btf_dedup_struct_types(d);
3114 if (err < 0) {
3115 pr_debug("btf_dedup_struct_types failed:%d\n", err);
3116 goto done;
3117 }
3118 err = btf_dedup_ref_types(d);
3119 if (err < 0) {
3120 pr_debug("btf_dedup_ref_types failed:%d\n", err);
3121 goto done;
3122 }
3123 err = btf_dedup_compact_types(d);
3124 if (err < 0) {
3125 pr_debug("btf_dedup_compact_types failed:%d\n", err);
3126 goto done;
3127 }
3128 err = btf_dedup_remap_types(d);
3129 if (err < 0) {
3130 pr_debug("btf_dedup_remap_types failed:%d\n", err);
3131 goto done;
3132 }
3133
3134 done:
3135 btf_dedup_free(d);
3136 return libbpf_err(err);
3137 }
3138
3139 COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2)
btf__dedup_deprecated(struct btf * btf,struct btf_ext * btf_ext,const void * unused_opts)3140 int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts)
3141 {
3142 LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext);
3143
3144 if (unused_opts) {
3145 pr_warn("please use new version of btf__dedup() that supports options\n");
3146 return libbpf_err(-ENOTSUP);
3147 }
3148
3149 return btf__dedup(btf, &opts);
3150 }
3151
3152 #define BTF_UNPROCESSED_ID ((__u32)-1)
3153 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3154
3155 struct btf_dedup {
3156 /* .BTF section to be deduped in-place */
3157 struct btf *btf;
3158 /*
3159 * Optional .BTF.ext section. When provided, any strings referenced
3160 * from it will be taken into account when deduping strings
3161 */
3162 struct btf_ext *btf_ext;
3163 /*
3164 * This is a map from any type's signature hash to a list of possible
3165 * canonical representative type candidates. Hash collisions are
3166 * ignored, so even types of various kinds can share same list of
3167 * candidates, which is fine because we rely on subsequent
3168 * btf_xxx_equal() checks to authoritatively verify type equality.
3169 */
3170 struct hashmap *dedup_table;
3171 /* Canonical types map */
3172 __u32 *map;
3173 /* Hypothetical mapping, used during type graph equivalence checks */
3174 __u32 *hypot_map;
3175 __u32 *hypot_list;
3176 size_t hypot_cnt;
3177 size_t hypot_cap;
3178 /* Whether hypothetical mapping, if successful, would need to adjust
3179 * already canonicalized types (due to a new forward declaration to
3180 * concrete type resolution). In such case, during split BTF dedup
3181 * candidate type would still be considered as different, because base
3182 * BTF is considered to be immutable.
3183 */
3184 bool hypot_adjust_canon;
3185 /* Various option modifying behavior of algorithm */
3186 struct btf_dedup_opts opts;
3187 /* temporary strings deduplication state */
3188 struct strset *strs_set;
3189 };
3190
hash_combine(long h,long value)3191 static long hash_combine(long h, long value)
3192 {
3193 return h * 31 + value;
3194 }
3195
3196 #define for_each_dedup_cand(d, node, hash) \
3197 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3198
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3199 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3200 {
3201 return hashmap__append(d->dedup_table,
3202 (void *)hash, (void *)(long)type_id);
3203 }
3204
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3205 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3206 __u32 from_id, __u32 to_id)
3207 {
3208 if (d->hypot_cnt == d->hypot_cap) {
3209 __u32 *new_list;
3210
3211 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3212 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3213 if (!new_list)
3214 return -ENOMEM;
3215 d->hypot_list = new_list;
3216 }
3217 d->hypot_list[d->hypot_cnt++] = from_id;
3218 d->hypot_map[from_id] = to_id;
3219 return 0;
3220 }
3221
btf_dedup_clear_hypot_map(struct btf_dedup * d)3222 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3223 {
3224 int i;
3225
3226 for (i = 0; i < d->hypot_cnt; i++)
3227 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3228 d->hypot_cnt = 0;
3229 d->hypot_adjust_canon = false;
3230 }
3231
btf_dedup_free(struct btf_dedup * d)3232 static void btf_dedup_free(struct btf_dedup *d)
3233 {
3234 hashmap__free(d->dedup_table);
3235 d->dedup_table = NULL;
3236
3237 free(d->map);
3238 d->map = NULL;
3239
3240 free(d->hypot_map);
3241 d->hypot_map = NULL;
3242
3243 free(d->hypot_list);
3244 d->hypot_list = NULL;
3245
3246 free(d);
3247 }
3248
btf_dedup_identity_hash_fn(const void * key,void * ctx)3249 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3250 {
3251 return (size_t)key;
3252 }
3253
btf_dedup_collision_hash_fn(const void * key,void * ctx)3254 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3255 {
3256 return 0;
3257 }
3258
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)3259 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3260 {
3261 return k1 == k2;
3262 }
3263
btf_dedup_new(struct btf * btf,const struct btf_dedup_opts * opts)3264 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3265 {
3266 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3267 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3268 int i, err = 0, type_cnt;
3269
3270 if (!d)
3271 return ERR_PTR(-ENOMEM);
3272
3273 if (OPTS_GET(opts, force_collisions, false))
3274 hash_fn = btf_dedup_collision_hash_fn;
3275
3276 d->btf = btf;
3277 d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3278
3279 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3280 if (IS_ERR(d->dedup_table)) {
3281 err = PTR_ERR(d->dedup_table);
3282 d->dedup_table = NULL;
3283 goto done;
3284 }
3285
3286 type_cnt = btf__type_cnt(btf);
3287 d->map = malloc(sizeof(__u32) * type_cnt);
3288 if (!d->map) {
3289 err = -ENOMEM;
3290 goto done;
3291 }
3292 /* special BTF "void" type is made canonical immediately */
3293 d->map[0] = 0;
3294 for (i = 1; i < type_cnt; i++) {
3295 struct btf_type *t = btf_type_by_id(d->btf, i);
3296
3297 /* VAR and DATASEC are never deduped and are self-canonical */
3298 if (btf_is_var(t) || btf_is_datasec(t))
3299 d->map[i] = i;
3300 else
3301 d->map[i] = BTF_UNPROCESSED_ID;
3302 }
3303
3304 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3305 if (!d->hypot_map) {
3306 err = -ENOMEM;
3307 goto done;
3308 }
3309 for (i = 0; i < type_cnt; i++)
3310 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3311
3312 done:
3313 if (err) {
3314 btf_dedup_free(d);
3315 return ERR_PTR(err);
3316 }
3317
3318 return d;
3319 }
3320
3321 /*
3322 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3323 * string and pass pointer to it to a provided callback `fn`.
3324 */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3325 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3326 {
3327 int i, r;
3328
3329 for (i = 0; i < d->btf->nr_types; i++) {
3330 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3331
3332 r = btf_type_visit_str_offs(t, fn, ctx);
3333 if (r)
3334 return r;
3335 }
3336
3337 if (!d->btf_ext)
3338 return 0;
3339
3340 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3341 if (r)
3342 return r;
3343
3344 return 0;
3345 }
3346
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3347 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3348 {
3349 struct btf_dedup *d = ctx;
3350 __u32 str_off = *str_off_ptr;
3351 const char *s;
3352 int off, err;
3353
3354 /* don't touch empty string or string in main BTF */
3355 if (str_off == 0 || str_off < d->btf->start_str_off)
3356 return 0;
3357
3358 s = btf__str_by_offset(d->btf, str_off);
3359 if (d->btf->base_btf) {
3360 err = btf__find_str(d->btf->base_btf, s);
3361 if (err >= 0) {
3362 *str_off_ptr = err;
3363 return 0;
3364 }
3365 if (err != -ENOENT)
3366 return err;
3367 }
3368
3369 off = strset__add_str(d->strs_set, s);
3370 if (off < 0)
3371 return off;
3372
3373 *str_off_ptr = d->btf->start_str_off + off;
3374 return 0;
3375 }
3376
3377 /*
3378 * Dedup string and filter out those that are not referenced from either .BTF
3379 * or .BTF.ext (if provided) sections.
3380 *
3381 * This is done by building index of all strings in BTF's string section,
3382 * then iterating over all entities that can reference strings (e.g., type
3383 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3384 * strings as used. After that all used strings are deduped and compacted into
3385 * sequential blob of memory and new offsets are calculated. Then all the string
3386 * references are iterated again and rewritten using new offsets.
3387 */
btf_dedup_strings(struct btf_dedup * d)3388 static int btf_dedup_strings(struct btf_dedup *d)
3389 {
3390 int err;
3391
3392 if (d->btf->strs_deduped)
3393 return 0;
3394
3395 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3396 if (IS_ERR(d->strs_set)) {
3397 err = PTR_ERR(d->strs_set);
3398 goto err_out;
3399 }
3400
3401 if (!d->btf->base_btf) {
3402 /* insert empty string; we won't be looking it up during strings
3403 * dedup, but it's good to have it for generic BTF string lookups
3404 */
3405 err = strset__add_str(d->strs_set, "");
3406 if (err < 0)
3407 goto err_out;
3408 }
3409
3410 /* remap string offsets */
3411 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3412 if (err)
3413 goto err_out;
3414
3415 /* replace BTF string data and hash with deduped ones */
3416 strset__free(d->btf->strs_set);
3417 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3418 d->btf->strs_set = d->strs_set;
3419 d->strs_set = NULL;
3420 d->btf->strs_deduped = true;
3421 return 0;
3422
3423 err_out:
3424 strset__free(d->strs_set);
3425 d->strs_set = NULL;
3426
3427 return err;
3428 }
3429
btf_hash_common(struct btf_type * t)3430 static long btf_hash_common(struct btf_type *t)
3431 {
3432 long h;
3433
3434 h = hash_combine(0, t->name_off);
3435 h = hash_combine(h, t->info);
3436 h = hash_combine(h, t->size);
3437 return h;
3438 }
3439
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3440 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3441 {
3442 return t1->name_off == t2->name_off &&
3443 t1->info == t2->info &&
3444 t1->size == t2->size;
3445 }
3446
3447 /* Calculate type signature hash of INT or TAG. */
btf_hash_int_decl_tag(struct btf_type * t)3448 static long btf_hash_int_decl_tag(struct btf_type *t)
3449 {
3450 __u32 info = *(__u32 *)(t + 1);
3451 long h;
3452
3453 h = btf_hash_common(t);
3454 h = hash_combine(h, info);
3455 return h;
3456 }
3457
3458 /* Check structural equality of two INTs or TAGs. */
btf_equal_int_tag(struct btf_type * t1,struct btf_type * t2)3459 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3460 {
3461 __u32 info1, info2;
3462
3463 if (!btf_equal_common(t1, t2))
3464 return false;
3465 info1 = *(__u32 *)(t1 + 1);
3466 info2 = *(__u32 *)(t2 + 1);
3467 return info1 == info2;
3468 }
3469
3470 /* Calculate type signature hash of ENUM. */
btf_hash_enum(struct btf_type * t)3471 static long btf_hash_enum(struct btf_type *t)
3472 {
3473 long h;
3474
3475 /* don't hash vlen and enum members to support enum fwd resolving */
3476 h = hash_combine(0, t->name_off);
3477 h = hash_combine(h, t->info & ~0xffff);
3478 h = hash_combine(h, t->size);
3479 return h;
3480 }
3481
3482 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3483 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3484 {
3485 const struct btf_enum *m1, *m2;
3486 __u16 vlen;
3487 int i;
3488
3489 if (!btf_equal_common(t1, t2))
3490 return false;
3491
3492 vlen = btf_vlen(t1);
3493 m1 = btf_enum(t1);
3494 m2 = btf_enum(t2);
3495 for (i = 0; i < vlen; i++) {
3496 if (m1->name_off != m2->name_off || m1->val != m2->val)
3497 return false;
3498 m1++;
3499 m2++;
3500 }
3501 return true;
3502 }
3503
btf_is_enum_fwd(struct btf_type * t)3504 static inline bool btf_is_enum_fwd(struct btf_type *t)
3505 {
3506 return btf_is_enum(t) && btf_vlen(t) == 0;
3507 }
3508
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3509 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3510 {
3511 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3512 return btf_equal_enum(t1, t2);
3513 /* ignore vlen when comparing */
3514 return t1->name_off == t2->name_off &&
3515 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3516 t1->size == t2->size;
3517 }
3518
3519 /*
3520 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3521 * as referenced type IDs equivalence is established separately during type
3522 * graph equivalence check algorithm.
3523 */
btf_hash_struct(struct btf_type * t)3524 static long btf_hash_struct(struct btf_type *t)
3525 {
3526 const struct btf_member *member = btf_members(t);
3527 __u32 vlen = btf_vlen(t);
3528 long h = btf_hash_common(t);
3529 int i;
3530
3531 for (i = 0; i < vlen; i++) {
3532 h = hash_combine(h, member->name_off);
3533 h = hash_combine(h, member->offset);
3534 /* no hashing of referenced type ID, it can be unresolved yet */
3535 member++;
3536 }
3537 return h;
3538 }
3539
3540 /*
3541 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3542 * type IDs. This check is performed during type graph equivalence check and
3543 * referenced types equivalence is checked separately.
3544 */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3545 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3546 {
3547 const struct btf_member *m1, *m2;
3548 __u16 vlen;
3549 int i;
3550
3551 if (!btf_equal_common(t1, t2))
3552 return false;
3553
3554 vlen = btf_vlen(t1);
3555 m1 = btf_members(t1);
3556 m2 = btf_members(t2);
3557 for (i = 0; i < vlen; i++) {
3558 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3559 return false;
3560 m1++;
3561 m2++;
3562 }
3563 return true;
3564 }
3565
3566 /*
3567 * Calculate type signature hash of ARRAY, including referenced type IDs,
3568 * under assumption that they were already resolved to canonical type IDs and
3569 * are not going to change.
3570 */
btf_hash_array(struct btf_type * t)3571 static long btf_hash_array(struct btf_type *t)
3572 {
3573 const struct btf_array *info = btf_array(t);
3574 long h = btf_hash_common(t);
3575
3576 h = hash_combine(h, info->type);
3577 h = hash_combine(h, info->index_type);
3578 h = hash_combine(h, info->nelems);
3579 return h;
3580 }
3581
3582 /*
3583 * Check exact equality of two ARRAYs, taking into account referenced
3584 * type IDs, under assumption that they were already resolved to canonical
3585 * type IDs and are not going to change.
3586 * This function is called during reference types deduplication to compare
3587 * ARRAY to potential canonical representative.
3588 */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3589 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3590 {
3591 const struct btf_array *info1, *info2;
3592
3593 if (!btf_equal_common(t1, t2))
3594 return false;
3595
3596 info1 = btf_array(t1);
3597 info2 = btf_array(t2);
3598 return info1->type == info2->type &&
3599 info1->index_type == info2->index_type &&
3600 info1->nelems == info2->nelems;
3601 }
3602
3603 /*
3604 * Check structural compatibility of two ARRAYs, ignoring referenced type
3605 * IDs. This check is performed during type graph equivalence check and
3606 * referenced types equivalence is checked separately.
3607 */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3608 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3609 {
3610 if (!btf_equal_common(t1, t2))
3611 return false;
3612
3613 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3614 }
3615
3616 /*
3617 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3618 * under assumption that they were already resolved to canonical type IDs and
3619 * are not going to change.
3620 */
btf_hash_fnproto(struct btf_type * t)3621 static long btf_hash_fnproto(struct btf_type *t)
3622 {
3623 const struct btf_param *member = btf_params(t);
3624 __u16 vlen = btf_vlen(t);
3625 long h = btf_hash_common(t);
3626 int i;
3627
3628 for (i = 0; i < vlen; i++) {
3629 h = hash_combine(h, member->name_off);
3630 h = hash_combine(h, member->type);
3631 member++;
3632 }
3633 return h;
3634 }
3635
3636 /*
3637 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3638 * type IDs, under assumption that they were already resolved to canonical
3639 * type IDs and are not going to change.
3640 * This function is called during reference types deduplication to compare
3641 * FUNC_PROTO to potential canonical representative.
3642 */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3643 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3644 {
3645 const struct btf_param *m1, *m2;
3646 __u16 vlen;
3647 int i;
3648
3649 if (!btf_equal_common(t1, t2))
3650 return false;
3651
3652 vlen = btf_vlen(t1);
3653 m1 = btf_params(t1);
3654 m2 = btf_params(t2);
3655 for (i = 0; i < vlen; i++) {
3656 if (m1->name_off != m2->name_off || m1->type != m2->type)
3657 return false;
3658 m1++;
3659 m2++;
3660 }
3661 return true;
3662 }
3663
3664 /*
3665 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3666 * IDs. This check is performed during type graph equivalence check and
3667 * referenced types equivalence is checked separately.
3668 */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3669 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3670 {
3671 const struct btf_param *m1, *m2;
3672 __u16 vlen;
3673 int i;
3674
3675 /* skip return type ID */
3676 if (t1->name_off != t2->name_off || t1->info != t2->info)
3677 return false;
3678
3679 vlen = btf_vlen(t1);
3680 m1 = btf_params(t1);
3681 m2 = btf_params(t2);
3682 for (i = 0; i < vlen; i++) {
3683 if (m1->name_off != m2->name_off)
3684 return false;
3685 m1++;
3686 m2++;
3687 }
3688 return true;
3689 }
3690
3691 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3692 * types and initializing the rest of the state (canonical type mapping) for
3693 * the fixed base BTF part.
3694 */
btf_dedup_prep(struct btf_dedup * d)3695 static int btf_dedup_prep(struct btf_dedup *d)
3696 {
3697 struct btf_type *t;
3698 int type_id;
3699 long h;
3700
3701 if (!d->btf->base_btf)
3702 return 0;
3703
3704 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3705 t = btf_type_by_id(d->btf, type_id);
3706
3707 /* all base BTF types are self-canonical by definition */
3708 d->map[type_id] = type_id;
3709
3710 switch (btf_kind(t)) {
3711 case BTF_KIND_VAR:
3712 case BTF_KIND_DATASEC:
3713 /* VAR and DATASEC are never hash/deduplicated */
3714 continue;
3715 case BTF_KIND_CONST:
3716 case BTF_KIND_VOLATILE:
3717 case BTF_KIND_RESTRICT:
3718 case BTF_KIND_PTR:
3719 case BTF_KIND_FWD:
3720 case BTF_KIND_TYPEDEF:
3721 case BTF_KIND_FUNC:
3722 case BTF_KIND_FLOAT:
3723 case BTF_KIND_TYPE_TAG:
3724 h = btf_hash_common(t);
3725 break;
3726 case BTF_KIND_INT:
3727 case BTF_KIND_DECL_TAG:
3728 h = btf_hash_int_decl_tag(t);
3729 break;
3730 case BTF_KIND_ENUM:
3731 h = btf_hash_enum(t);
3732 break;
3733 case BTF_KIND_STRUCT:
3734 case BTF_KIND_UNION:
3735 h = btf_hash_struct(t);
3736 break;
3737 case BTF_KIND_ARRAY:
3738 h = btf_hash_array(t);
3739 break;
3740 case BTF_KIND_FUNC_PROTO:
3741 h = btf_hash_fnproto(t);
3742 break;
3743 default:
3744 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3745 return -EINVAL;
3746 }
3747 if (btf_dedup_table_add(d, h, type_id))
3748 return -ENOMEM;
3749 }
3750
3751 return 0;
3752 }
3753
3754 /*
3755 * Deduplicate primitive types, that can't reference other types, by calculating
3756 * their type signature hash and comparing them with any possible canonical
3757 * candidate. If no canonical candidate matches, type itself is marked as
3758 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3759 */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3760 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3761 {
3762 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3763 struct hashmap_entry *hash_entry;
3764 struct btf_type *cand;
3765 /* if we don't find equivalent type, then we are canonical */
3766 __u32 new_id = type_id;
3767 __u32 cand_id;
3768 long h;
3769
3770 switch (btf_kind(t)) {
3771 case BTF_KIND_CONST:
3772 case BTF_KIND_VOLATILE:
3773 case BTF_KIND_RESTRICT:
3774 case BTF_KIND_PTR:
3775 case BTF_KIND_TYPEDEF:
3776 case BTF_KIND_ARRAY:
3777 case BTF_KIND_STRUCT:
3778 case BTF_KIND_UNION:
3779 case BTF_KIND_FUNC:
3780 case BTF_KIND_FUNC_PROTO:
3781 case BTF_KIND_VAR:
3782 case BTF_KIND_DATASEC:
3783 case BTF_KIND_DECL_TAG:
3784 case BTF_KIND_TYPE_TAG:
3785 return 0;
3786
3787 case BTF_KIND_INT:
3788 h = btf_hash_int_decl_tag(t);
3789 for_each_dedup_cand(d, hash_entry, h) {
3790 cand_id = (__u32)(long)hash_entry->value;
3791 cand = btf_type_by_id(d->btf, cand_id);
3792 if (btf_equal_int_tag(t, cand)) {
3793 new_id = cand_id;
3794 break;
3795 }
3796 }
3797 break;
3798
3799 case BTF_KIND_ENUM:
3800 h = btf_hash_enum(t);
3801 for_each_dedup_cand(d, hash_entry, h) {
3802 cand_id = (__u32)(long)hash_entry->value;
3803 cand = btf_type_by_id(d->btf, cand_id);
3804 if (btf_equal_enum(t, cand)) {
3805 new_id = cand_id;
3806 break;
3807 }
3808 if (btf_compat_enum(t, cand)) {
3809 if (btf_is_enum_fwd(t)) {
3810 /* resolve fwd to full enum */
3811 new_id = cand_id;
3812 break;
3813 }
3814 /* resolve canonical enum fwd to full enum */
3815 d->map[cand_id] = type_id;
3816 }
3817 }
3818 break;
3819
3820 case BTF_KIND_FWD:
3821 case BTF_KIND_FLOAT:
3822 h = btf_hash_common(t);
3823 for_each_dedup_cand(d, hash_entry, h) {
3824 cand_id = (__u32)(long)hash_entry->value;
3825 cand = btf_type_by_id(d->btf, cand_id);
3826 if (btf_equal_common(t, cand)) {
3827 new_id = cand_id;
3828 break;
3829 }
3830 }
3831 break;
3832
3833 default:
3834 return -EINVAL;
3835 }
3836
3837 d->map[type_id] = new_id;
3838 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3839 return -ENOMEM;
3840
3841 return 0;
3842 }
3843
btf_dedup_prim_types(struct btf_dedup * d)3844 static int btf_dedup_prim_types(struct btf_dedup *d)
3845 {
3846 int i, err;
3847
3848 for (i = 0; i < d->btf->nr_types; i++) {
3849 err = btf_dedup_prim_type(d, d->btf->start_id + i);
3850 if (err)
3851 return err;
3852 }
3853 return 0;
3854 }
3855
3856 /*
3857 * Check whether type is already mapped into canonical one (could be to itself).
3858 */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3859 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3860 {
3861 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3862 }
3863
3864 /*
3865 * Resolve type ID into its canonical type ID, if any; otherwise return original
3866 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3867 * STRUCT/UNION link and resolve it into canonical type ID as well.
3868 */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3869 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3870 {
3871 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3872 type_id = d->map[type_id];
3873 return type_id;
3874 }
3875
3876 /*
3877 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3878 * type ID.
3879 */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3880 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3881 {
3882 __u32 orig_type_id = type_id;
3883
3884 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3885 return type_id;
3886
3887 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3888 type_id = d->map[type_id];
3889
3890 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3891 return type_id;
3892
3893 return orig_type_id;
3894 }
3895
3896
btf_fwd_kind(struct btf_type * t)3897 static inline __u16 btf_fwd_kind(struct btf_type *t)
3898 {
3899 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3900 }
3901
3902 /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)3903 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3904 {
3905 struct btf_type *t1, *t2;
3906
3907 t1 = btf_type_by_id(d->btf, id1);
3908 t2 = btf_type_by_id(d->btf, id2);
3909 if (!btf_is_array(t1) || !btf_is_array(t2))
3910 return 0;
3911
3912 return btf_equal_array(t1, t2);
3913 }
3914
3915 /* Check if given two types are identical STRUCT/UNION definitions */
btf_dedup_identical_structs(struct btf_dedup * d,__u32 id1,__u32 id2)3916 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3917 {
3918 const struct btf_member *m1, *m2;
3919 struct btf_type *t1, *t2;
3920 int n, i;
3921
3922 t1 = btf_type_by_id(d->btf, id1);
3923 t2 = btf_type_by_id(d->btf, id2);
3924
3925 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3926 return false;
3927
3928 if (!btf_shallow_equal_struct(t1, t2))
3929 return false;
3930
3931 m1 = btf_members(t1);
3932 m2 = btf_members(t2);
3933 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3934 if (m1->type != m2->type)
3935 return false;
3936 }
3937 return true;
3938 }
3939
3940 /*
3941 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3942 * call it "candidate graph" in this description for brevity) to a type graph
3943 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3944 * here, though keep in mind that not all types in canonical graph are
3945 * necessarily canonical representatives themselves, some of them might be
3946 * duplicates or its uniqueness might not have been established yet).
3947 * Returns:
3948 * - >0, if type graphs are equivalent;
3949 * - 0, if not equivalent;
3950 * - <0, on error.
3951 *
3952 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3953 * equivalence of BTF types at each step. If at any point BTF types in candidate
3954 * and canonical graphs are not compatible structurally, whole graphs are
3955 * incompatible. If types are structurally equivalent (i.e., all information
3956 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3957 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3958 * If a type references other types, then those referenced types are checked
3959 * for equivalence recursively.
3960 *
3961 * During DFS traversal, if we find that for current `canon_id` type we
3962 * already have some mapping in hypothetical map, we check for two possible
3963 * situations:
3964 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3965 * happen when type graphs have cycles. In this case we assume those two
3966 * types are equivalent.
3967 * - `canon_id` is mapped to different type. This is contradiction in our
3968 * hypothetical mapping, because same graph in canonical graph corresponds
3969 * to two different types in candidate graph, which for equivalent type
3970 * graphs shouldn't happen. This condition terminates equivalence check
3971 * with negative result.
3972 *
3973 * If type graphs traversal exhausts types to check and find no contradiction,
3974 * then type graphs are equivalent.
3975 *
3976 * When checking types for equivalence, there is one special case: FWD types.
3977 * If FWD type resolution is allowed and one of the types (either from canonical
3978 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3979 * flag) and their names match, hypothetical mapping is updated to point from
3980 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3981 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3982 *
3983 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3984 * if there are two exactly named (or anonymous) structs/unions that are
3985 * compatible structurally, one of which has FWD field, while other is concrete
3986 * STRUCT/UNION, but according to C sources they are different structs/unions
3987 * that are referencing different types with the same name. This is extremely
3988 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3989 * this logic is causing problems.
3990 *
3991 * Doing FWD resolution means that both candidate and/or canonical graphs can
3992 * consists of portions of the graph that come from multiple compilation units.
3993 * This is due to the fact that types within single compilation unit are always
3994 * deduplicated and FWDs are already resolved, if referenced struct/union
3995 * definiton is available. So, if we had unresolved FWD and found corresponding
3996 * STRUCT/UNION, they will be from different compilation units. This
3997 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3998 * type graph will likely have at least two different BTF types that describe
3999 * same type (e.g., most probably there will be two different BTF types for the
4000 * same 'int' primitive type) and could even have "overlapping" parts of type
4001 * graph that describe same subset of types.
4002 *
4003 * This in turn means that our assumption that each type in canonical graph
4004 * must correspond to exactly one type in candidate graph might not hold
4005 * anymore and will make it harder to detect contradictions using hypothetical
4006 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4007 * resolution only in canonical graph. FWDs in candidate graphs are never
4008 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4009 * that can occur:
4010 * - Both types in canonical and candidate graphs are FWDs. If they are
4011 * structurally equivalent, then they can either be both resolved to the
4012 * same STRUCT/UNION or not resolved at all. In both cases they are
4013 * equivalent and there is no need to resolve FWD on candidate side.
4014 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4015 * so nothing to resolve as well, algorithm will check equivalence anyway.
4016 * - Type in canonical graph is FWD, while type in candidate is concrete
4017 * STRUCT/UNION. In this case candidate graph comes from single compilation
4018 * unit, so there is exactly one BTF type for each unique C type. After
4019 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
4020 * in canonical graph mapping to single BTF type in candidate graph, but
4021 * because hypothetical mapping maps from canonical to candidate types, it's
4022 * alright, and we still maintain the property of having single `canon_id`
4023 * mapping to single `cand_id` (there could be two different `canon_id`
4024 * mapped to the same `cand_id`, but it's not contradictory).
4025 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4026 * graph is FWD. In this case we are just going to check compatibility of
4027 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4028 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4029 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4030 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4031 * canonical graph.
4032 */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)4033 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4034 __u32 canon_id)
4035 {
4036 struct btf_type *cand_type;
4037 struct btf_type *canon_type;
4038 __u32 hypot_type_id;
4039 __u16 cand_kind;
4040 __u16 canon_kind;
4041 int i, eq;
4042
4043 /* if both resolve to the same canonical, they must be equivalent */
4044 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4045 return 1;
4046
4047 canon_id = resolve_fwd_id(d, canon_id);
4048
4049 hypot_type_id = d->hypot_map[canon_id];
4050 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4051 if (hypot_type_id == cand_id)
4052 return 1;
4053 /* In some cases compiler will generate different DWARF types
4054 * for *identical* array type definitions and use them for
4055 * different fields within the *same* struct. This breaks type
4056 * equivalence check, which makes an assumption that candidate
4057 * types sub-graph has a consistent and deduped-by-compiler
4058 * types within a single CU. So work around that by explicitly
4059 * allowing identical array types here.
4060 */
4061 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4062 return 1;
4063 /* It turns out that similar situation can happen with
4064 * struct/union sometimes, sigh... Handle the case where
4065 * structs/unions are exactly the same, down to the referenced
4066 * type IDs. Anything more complicated (e.g., if referenced
4067 * types are different, but equivalent) is *way more*
4068 * complicated and requires a many-to-many equivalence mapping.
4069 */
4070 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4071 return 1;
4072 return 0;
4073 }
4074
4075 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4076 return -ENOMEM;
4077
4078 cand_type = btf_type_by_id(d->btf, cand_id);
4079 canon_type = btf_type_by_id(d->btf, canon_id);
4080 cand_kind = btf_kind(cand_type);
4081 canon_kind = btf_kind(canon_type);
4082
4083 if (cand_type->name_off != canon_type->name_off)
4084 return 0;
4085
4086 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4087 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4088 && cand_kind != canon_kind) {
4089 __u16 real_kind;
4090 __u16 fwd_kind;
4091
4092 if (cand_kind == BTF_KIND_FWD) {
4093 real_kind = canon_kind;
4094 fwd_kind = btf_fwd_kind(cand_type);
4095 } else {
4096 real_kind = cand_kind;
4097 fwd_kind = btf_fwd_kind(canon_type);
4098 /* we'd need to resolve base FWD to STRUCT/UNION */
4099 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4100 d->hypot_adjust_canon = true;
4101 }
4102 return fwd_kind == real_kind;
4103 }
4104
4105 if (cand_kind != canon_kind)
4106 return 0;
4107
4108 switch (cand_kind) {
4109 case BTF_KIND_INT:
4110 return btf_equal_int_tag(cand_type, canon_type);
4111
4112 case BTF_KIND_ENUM:
4113 return btf_compat_enum(cand_type, canon_type);
4114
4115 case BTF_KIND_FWD:
4116 case BTF_KIND_FLOAT:
4117 return btf_equal_common(cand_type, canon_type);
4118
4119 case BTF_KIND_CONST:
4120 case BTF_KIND_VOLATILE:
4121 case BTF_KIND_RESTRICT:
4122 case BTF_KIND_PTR:
4123 case BTF_KIND_TYPEDEF:
4124 case BTF_KIND_FUNC:
4125 case BTF_KIND_TYPE_TAG:
4126 if (cand_type->info != canon_type->info)
4127 return 0;
4128 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4129
4130 case BTF_KIND_ARRAY: {
4131 const struct btf_array *cand_arr, *canon_arr;
4132
4133 if (!btf_compat_array(cand_type, canon_type))
4134 return 0;
4135 cand_arr = btf_array(cand_type);
4136 canon_arr = btf_array(canon_type);
4137 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4138 if (eq <= 0)
4139 return eq;
4140 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4141 }
4142
4143 case BTF_KIND_STRUCT:
4144 case BTF_KIND_UNION: {
4145 const struct btf_member *cand_m, *canon_m;
4146 __u16 vlen;
4147
4148 if (!btf_shallow_equal_struct(cand_type, canon_type))
4149 return 0;
4150 vlen = btf_vlen(cand_type);
4151 cand_m = btf_members(cand_type);
4152 canon_m = btf_members(canon_type);
4153 for (i = 0; i < vlen; i++) {
4154 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4155 if (eq <= 0)
4156 return eq;
4157 cand_m++;
4158 canon_m++;
4159 }
4160
4161 return 1;
4162 }
4163
4164 case BTF_KIND_FUNC_PROTO: {
4165 const struct btf_param *cand_p, *canon_p;
4166 __u16 vlen;
4167
4168 if (!btf_compat_fnproto(cand_type, canon_type))
4169 return 0;
4170 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4171 if (eq <= 0)
4172 return eq;
4173 vlen = btf_vlen(cand_type);
4174 cand_p = btf_params(cand_type);
4175 canon_p = btf_params(canon_type);
4176 for (i = 0; i < vlen; i++) {
4177 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4178 if (eq <= 0)
4179 return eq;
4180 cand_p++;
4181 canon_p++;
4182 }
4183 return 1;
4184 }
4185
4186 default:
4187 return -EINVAL;
4188 }
4189 return 0;
4190 }
4191
4192 /*
4193 * Use hypothetical mapping, produced by successful type graph equivalence
4194 * check, to augment existing struct/union canonical mapping, where possible.
4195 *
4196 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4197 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4198 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4199 * we are recording the mapping anyway. As opposed to carefulness required
4200 * for struct/union correspondence mapping (described below), for FWD resolution
4201 * it's not important, as by the time that FWD type (reference type) will be
4202 * deduplicated all structs/unions will be deduped already anyway.
4203 *
4204 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4205 * not required for correctness. It needs to be done carefully to ensure that
4206 * struct/union from candidate's type graph is not mapped into corresponding
4207 * struct/union from canonical type graph that itself hasn't been resolved into
4208 * canonical representative. The only guarantee we have is that canonical
4209 * struct/union was determined as canonical and that won't change. But any
4210 * types referenced through that struct/union fields could have been not yet
4211 * resolved, so in case like that it's too early to establish any kind of
4212 * correspondence between structs/unions.
4213 *
4214 * No canonical correspondence is derived for primitive types (they are already
4215 * deduplicated completely already anyway) or reference types (they rely on
4216 * stability of struct/union canonical relationship for equivalence checks).
4217 */
btf_dedup_merge_hypot_map(struct btf_dedup * d)4218 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4219 {
4220 __u32 canon_type_id, targ_type_id;
4221 __u16 t_kind, c_kind;
4222 __u32 t_id, c_id;
4223 int i;
4224
4225 for (i = 0; i < d->hypot_cnt; i++) {
4226 canon_type_id = d->hypot_list[i];
4227 targ_type_id = d->hypot_map[canon_type_id];
4228 t_id = resolve_type_id(d, targ_type_id);
4229 c_id = resolve_type_id(d, canon_type_id);
4230 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4231 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4232 /*
4233 * Resolve FWD into STRUCT/UNION.
4234 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4235 * mapped to canonical representative (as opposed to
4236 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4237 * eventually that struct is going to be mapped and all resolved
4238 * FWDs will automatically resolve to correct canonical
4239 * representative. This will happen before ref type deduping,
4240 * which critically depends on stability of these mapping. This
4241 * stability is not a requirement for STRUCT/UNION equivalence
4242 * checks, though.
4243 */
4244
4245 /* if it's the split BTF case, we still need to point base FWD
4246 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4247 * will be resolved against base FWD. If we don't point base
4248 * canonical FWD to the resolved STRUCT/UNION, then all the
4249 * FWDs in split BTF won't be correctly resolved to a proper
4250 * STRUCT/UNION.
4251 */
4252 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4253 d->map[c_id] = t_id;
4254
4255 /* if graph equivalence determined that we'd need to adjust
4256 * base canonical types, then we need to only point base FWDs
4257 * to STRUCTs/UNIONs and do no more modifications. For all
4258 * other purposes the type graphs were not equivalent.
4259 */
4260 if (d->hypot_adjust_canon)
4261 continue;
4262
4263 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4264 d->map[t_id] = c_id;
4265
4266 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4267 c_kind != BTF_KIND_FWD &&
4268 is_type_mapped(d, c_id) &&
4269 !is_type_mapped(d, t_id)) {
4270 /*
4271 * as a perf optimization, we can map struct/union
4272 * that's part of type graph we just verified for
4273 * equivalence. We can do that for struct/union that has
4274 * canonical representative only, though.
4275 */
4276 d->map[t_id] = c_id;
4277 }
4278 }
4279 }
4280
4281 /*
4282 * Deduplicate struct/union types.
4283 *
4284 * For each struct/union type its type signature hash is calculated, taking
4285 * into account type's name, size, number, order and names of fields, but
4286 * ignoring type ID's referenced from fields, because they might not be deduped
4287 * completely until after reference types deduplication phase. This type hash
4288 * is used to iterate over all potential canonical types, sharing same hash.
4289 * For each canonical candidate we check whether type graphs that they form
4290 * (through referenced types in fields and so on) are equivalent using algorithm
4291 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4292 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4293 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4294 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4295 * potentially map other structs/unions to their canonical representatives,
4296 * if such relationship hasn't yet been established. This speeds up algorithm
4297 * by eliminating some of the duplicate work.
4298 *
4299 * If no matching canonical representative was found, struct/union is marked
4300 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4301 * for further look ups.
4302 */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4303 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4304 {
4305 struct btf_type *cand_type, *t;
4306 struct hashmap_entry *hash_entry;
4307 /* if we don't find equivalent type, then we are canonical */
4308 __u32 new_id = type_id;
4309 __u16 kind;
4310 long h;
4311
4312 /* already deduped or is in process of deduping (loop detected) */
4313 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4314 return 0;
4315
4316 t = btf_type_by_id(d->btf, type_id);
4317 kind = btf_kind(t);
4318
4319 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4320 return 0;
4321
4322 h = btf_hash_struct(t);
4323 for_each_dedup_cand(d, hash_entry, h) {
4324 __u32 cand_id = (__u32)(long)hash_entry->value;
4325 int eq;
4326
4327 /*
4328 * Even though btf_dedup_is_equiv() checks for
4329 * btf_shallow_equal_struct() internally when checking two
4330 * structs (unions) for equivalence, we need to guard here
4331 * from picking matching FWD type as a dedup candidate.
4332 * This can happen due to hash collision. In such case just
4333 * relying on btf_dedup_is_equiv() would lead to potentially
4334 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4335 * FWD and compatible STRUCT/UNION are considered equivalent.
4336 */
4337 cand_type = btf_type_by_id(d->btf, cand_id);
4338 if (!btf_shallow_equal_struct(t, cand_type))
4339 continue;
4340
4341 btf_dedup_clear_hypot_map(d);
4342 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4343 if (eq < 0)
4344 return eq;
4345 if (!eq)
4346 continue;
4347 btf_dedup_merge_hypot_map(d);
4348 if (d->hypot_adjust_canon) /* not really equivalent */
4349 continue;
4350 new_id = cand_id;
4351 break;
4352 }
4353
4354 d->map[type_id] = new_id;
4355 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4356 return -ENOMEM;
4357
4358 return 0;
4359 }
4360
btf_dedup_struct_types(struct btf_dedup * d)4361 static int btf_dedup_struct_types(struct btf_dedup *d)
4362 {
4363 int i, err;
4364
4365 for (i = 0; i < d->btf->nr_types; i++) {
4366 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4367 if (err)
4368 return err;
4369 }
4370 return 0;
4371 }
4372
4373 /*
4374 * Deduplicate reference type.
4375 *
4376 * Once all primitive and struct/union types got deduplicated, we can easily
4377 * deduplicate all other (reference) BTF types. This is done in two steps:
4378 *
4379 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4380 * resolution can be done either immediately for primitive or struct/union types
4381 * (because they were deduped in previous two phases) or recursively for
4382 * reference types. Recursion will always terminate at either primitive or
4383 * struct/union type, at which point we can "unwind" chain of reference types
4384 * one by one. There is no danger of encountering cycles because in C type
4385 * system the only way to form type cycle is through struct/union, so any chain
4386 * of reference types, even those taking part in a type cycle, will inevitably
4387 * reach struct/union at some point.
4388 *
4389 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4390 * becomes "stable", in the sense that no further deduplication will cause
4391 * any changes to it. With that, it's now possible to calculate type's signature
4392 * hash (this time taking into account referenced type IDs) and loop over all
4393 * potential canonical representatives. If no match was found, current type
4394 * will become canonical representative of itself and will be added into
4395 * btf_dedup->dedup_table as another possible canonical representative.
4396 */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4397 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4398 {
4399 struct hashmap_entry *hash_entry;
4400 __u32 new_id = type_id, cand_id;
4401 struct btf_type *t, *cand;
4402 /* if we don't find equivalent type, then we are representative type */
4403 int ref_type_id;
4404 long h;
4405
4406 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4407 return -ELOOP;
4408 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4409 return resolve_type_id(d, type_id);
4410
4411 t = btf_type_by_id(d->btf, type_id);
4412 d->map[type_id] = BTF_IN_PROGRESS_ID;
4413
4414 switch (btf_kind(t)) {
4415 case BTF_KIND_CONST:
4416 case BTF_KIND_VOLATILE:
4417 case BTF_KIND_RESTRICT:
4418 case BTF_KIND_PTR:
4419 case BTF_KIND_TYPEDEF:
4420 case BTF_KIND_FUNC:
4421 case BTF_KIND_TYPE_TAG:
4422 ref_type_id = btf_dedup_ref_type(d, t->type);
4423 if (ref_type_id < 0)
4424 return ref_type_id;
4425 t->type = ref_type_id;
4426
4427 h = btf_hash_common(t);
4428 for_each_dedup_cand(d, hash_entry, h) {
4429 cand_id = (__u32)(long)hash_entry->value;
4430 cand = btf_type_by_id(d->btf, cand_id);
4431 if (btf_equal_common(t, cand)) {
4432 new_id = cand_id;
4433 break;
4434 }
4435 }
4436 break;
4437
4438 case BTF_KIND_DECL_TAG:
4439 ref_type_id = btf_dedup_ref_type(d, t->type);
4440 if (ref_type_id < 0)
4441 return ref_type_id;
4442 t->type = ref_type_id;
4443
4444 h = btf_hash_int_decl_tag(t);
4445 for_each_dedup_cand(d, hash_entry, h) {
4446 cand_id = (__u32)(long)hash_entry->value;
4447 cand = btf_type_by_id(d->btf, cand_id);
4448 if (btf_equal_int_tag(t, cand)) {
4449 new_id = cand_id;
4450 break;
4451 }
4452 }
4453 break;
4454
4455 case BTF_KIND_ARRAY: {
4456 struct btf_array *info = btf_array(t);
4457
4458 ref_type_id = btf_dedup_ref_type(d, info->type);
4459 if (ref_type_id < 0)
4460 return ref_type_id;
4461 info->type = ref_type_id;
4462
4463 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4464 if (ref_type_id < 0)
4465 return ref_type_id;
4466 info->index_type = ref_type_id;
4467
4468 h = btf_hash_array(t);
4469 for_each_dedup_cand(d, hash_entry, h) {
4470 cand_id = (__u32)(long)hash_entry->value;
4471 cand = btf_type_by_id(d->btf, cand_id);
4472 if (btf_equal_array(t, cand)) {
4473 new_id = cand_id;
4474 break;
4475 }
4476 }
4477 break;
4478 }
4479
4480 case BTF_KIND_FUNC_PROTO: {
4481 struct btf_param *param;
4482 __u16 vlen;
4483 int i;
4484
4485 ref_type_id = btf_dedup_ref_type(d, t->type);
4486 if (ref_type_id < 0)
4487 return ref_type_id;
4488 t->type = ref_type_id;
4489
4490 vlen = btf_vlen(t);
4491 param = btf_params(t);
4492 for (i = 0; i < vlen; i++) {
4493 ref_type_id = btf_dedup_ref_type(d, param->type);
4494 if (ref_type_id < 0)
4495 return ref_type_id;
4496 param->type = ref_type_id;
4497 param++;
4498 }
4499
4500 h = btf_hash_fnproto(t);
4501 for_each_dedup_cand(d, hash_entry, h) {
4502 cand_id = (__u32)(long)hash_entry->value;
4503 cand = btf_type_by_id(d->btf, cand_id);
4504 if (btf_equal_fnproto(t, cand)) {
4505 new_id = cand_id;
4506 break;
4507 }
4508 }
4509 break;
4510 }
4511
4512 default:
4513 return -EINVAL;
4514 }
4515
4516 d->map[type_id] = new_id;
4517 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4518 return -ENOMEM;
4519
4520 return new_id;
4521 }
4522
btf_dedup_ref_types(struct btf_dedup * d)4523 static int btf_dedup_ref_types(struct btf_dedup *d)
4524 {
4525 int i, err;
4526
4527 for (i = 0; i < d->btf->nr_types; i++) {
4528 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4529 if (err < 0)
4530 return err;
4531 }
4532 /* we won't need d->dedup_table anymore */
4533 hashmap__free(d->dedup_table);
4534 d->dedup_table = NULL;
4535 return 0;
4536 }
4537
4538 /*
4539 * Compact types.
4540 *
4541 * After we established for each type its corresponding canonical representative
4542 * type, we now can eliminate types that are not canonical and leave only
4543 * canonical ones layed out sequentially in memory by copying them over
4544 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4545 * a map from original type ID to a new compacted type ID, which will be used
4546 * during next phase to "fix up" type IDs, referenced from struct/union and
4547 * reference types.
4548 */
btf_dedup_compact_types(struct btf_dedup * d)4549 static int btf_dedup_compact_types(struct btf_dedup *d)
4550 {
4551 __u32 *new_offs;
4552 __u32 next_type_id = d->btf->start_id;
4553 const struct btf_type *t;
4554 void *p;
4555 int i, id, len;
4556
4557 /* we are going to reuse hypot_map to store compaction remapping */
4558 d->hypot_map[0] = 0;
4559 /* base BTF types are not renumbered */
4560 for (id = 1; id < d->btf->start_id; id++)
4561 d->hypot_map[id] = id;
4562 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4563 d->hypot_map[id] = BTF_UNPROCESSED_ID;
4564
4565 p = d->btf->types_data;
4566
4567 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4568 if (d->map[id] != id)
4569 continue;
4570
4571 t = btf__type_by_id(d->btf, id);
4572 len = btf_type_size(t);
4573 if (len < 0)
4574 return len;
4575
4576 memmove(p, t, len);
4577 d->hypot_map[id] = next_type_id;
4578 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4579 p += len;
4580 next_type_id++;
4581 }
4582
4583 /* shrink struct btf's internal types index and update btf_header */
4584 d->btf->nr_types = next_type_id - d->btf->start_id;
4585 d->btf->type_offs_cap = d->btf->nr_types;
4586 d->btf->hdr->type_len = p - d->btf->types_data;
4587 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4588 sizeof(*new_offs));
4589 if (d->btf->type_offs_cap && !new_offs)
4590 return -ENOMEM;
4591 d->btf->type_offs = new_offs;
4592 d->btf->hdr->str_off = d->btf->hdr->type_len;
4593 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4594 return 0;
4595 }
4596
4597 /*
4598 * Figure out final (deduplicated and compacted) type ID for provided original
4599 * `type_id` by first resolving it into corresponding canonical type ID and
4600 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4601 * which is populated during compaction phase.
4602 */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)4603 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4604 {
4605 struct btf_dedup *d = ctx;
4606 __u32 resolved_type_id, new_type_id;
4607
4608 resolved_type_id = resolve_type_id(d, *type_id);
4609 new_type_id = d->hypot_map[resolved_type_id];
4610 if (new_type_id > BTF_MAX_NR_TYPES)
4611 return -EINVAL;
4612
4613 *type_id = new_type_id;
4614 return 0;
4615 }
4616
4617 /*
4618 * Remap referenced type IDs into deduped type IDs.
4619 *
4620 * After BTF types are deduplicated and compacted, their final type IDs may
4621 * differ from original ones. The map from original to a corresponding
4622 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4623 * compaction phase. During remapping phase we are rewriting all type IDs
4624 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4625 * their final deduped type IDs.
4626 */
btf_dedup_remap_types(struct btf_dedup * d)4627 static int btf_dedup_remap_types(struct btf_dedup *d)
4628 {
4629 int i, r;
4630
4631 for (i = 0; i < d->btf->nr_types; i++) {
4632 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4633
4634 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4635 if (r)
4636 return r;
4637 }
4638
4639 if (!d->btf_ext)
4640 return 0;
4641
4642 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4643 if (r)
4644 return r;
4645
4646 return 0;
4647 }
4648
4649 /*
4650 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4651 * data out of it to use for target BTF.
4652 */
btf__load_vmlinux_btf(void)4653 struct btf *btf__load_vmlinux_btf(void)
4654 {
4655 struct {
4656 const char *path_fmt;
4657 bool raw_btf;
4658 } locations[] = {
4659 /* try canonical vmlinux BTF through sysfs first */
4660 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4661 /* fall back to trying to find vmlinux ELF on disk otherwise */
4662 { "/boot/vmlinux-%1$s" },
4663 { "/lib/modules/%1$s/vmlinux-%1$s" },
4664 { "/lib/modules/%1$s/build/vmlinux" },
4665 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4666 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4667 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4668 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4669 };
4670 char path[PATH_MAX + 1];
4671 struct utsname buf;
4672 struct btf *btf;
4673 int i, err;
4674
4675 uname(&buf);
4676
4677 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4678 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4679
4680 if (access(path, R_OK))
4681 continue;
4682
4683 if (locations[i].raw_btf)
4684 btf = btf__parse_raw(path);
4685 else
4686 btf = btf__parse_elf(path, NULL);
4687 err = libbpf_get_error(btf);
4688 pr_debug("loading kernel BTF '%s': %d\n", path, err);
4689 if (err)
4690 continue;
4691
4692 return btf;
4693 }
4694
4695 pr_warn("failed to find valid kernel BTF\n");
4696 return libbpf_err_ptr(-ESRCH);
4697 }
4698
4699 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4700
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)4701 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4702 {
4703 char path[80];
4704
4705 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4706 return btf__parse_split(path, vmlinux_btf);
4707 }
4708
btf_type_visit_type_ids(struct btf_type * t,type_id_visit_fn visit,void * ctx)4709 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4710 {
4711 int i, n, err;
4712
4713 switch (btf_kind(t)) {
4714 case BTF_KIND_INT:
4715 case BTF_KIND_FLOAT:
4716 case BTF_KIND_ENUM:
4717 return 0;
4718
4719 case BTF_KIND_FWD:
4720 case BTF_KIND_CONST:
4721 case BTF_KIND_VOLATILE:
4722 case BTF_KIND_RESTRICT:
4723 case BTF_KIND_PTR:
4724 case BTF_KIND_TYPEDEF:
4725 case BTF_KIND_FUNC:
4726 case BTF_KIND_VAR:
4727 case BTF_KIND_DECL_TAG:
4728 case BTF_KIND_TYPE_TAG:
4729 return visit(&t->type, ctx);
4730
4731 case BTF_KIND_ARRAY: {
4732 struct btf_array *a = btf_array(t);
4733
4734 err = visit(&a->type, ctx);
4735 err = err ?: visit(&a->index_type, ctx);
4736 return err;
4737 }
4738
4739 case BTF_KIND_STRUCT:
4740 case BTF_KIND_UNION: {
4741 struct btf_member *m = btf_members(t);
4742
4743 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4744 err = visit(&m->type, ctx);
4745 if (err)
4746 return err;
4747 }
4748 return 0;
4749 }
4750
4751 case BTF_KIND_FUNC_PROTO: {
4752 struct btf_param *m = btf_params(t);
4753
4754 err = visit(&t->type, ctx);
4755 if (err)
4756 return err;
4757 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4758 err = visit(&m->type, ctx);
4759 if (err)
4760 return err;
4761 }
4762 return 0;
4763 }
4764
4765 case BTF_KIND_DATASEC: {
4766 struct btf_var_secinfo *m = btf_var_secinfos(t);
4767
4768 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4769 err = visit(&m->type, ctx);
4770 if (err)
4771 return err;
4772 }
4773 return 0;
4774 }
4775
4776 default:
4777 return -EINVAL;
4778 }
4779 }
4780
btf_type_visit_str_offs(struct btf_type * t,str_off_visit_fn visit,void * ctx)4781 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4782 {
4783 int i, n, err;
4784
4785 err = visit(&t->name_off, ctx);
4786 if (err)
4787 return err;
4788
4789 switch (btf_kind(t)) {
4790 case BTF_KIND_STRUCT:
4791 case BTF_KIND_UNION: {
4792 struct btf_member *m = btf_members(t);
4793
4794 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4795 err = visit(&m->name_off, ctx);
4796 if (err)
4797 return err;
4798 }
4799 break;
4800 }
4801 case BTF_KIND_ENUM: {
4802 struct btf_enum *m = btf_enum(t);
4803
4804 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4805 err = visit(&m->name_off, ctx);
4806 if (err)
4807 return err;
4808 }
4809 break;
4810 }
4811 case BTF_KIND_FUNC_PROTO: {
4812 struct btf_param *m = btf_params(t);
4813
4814 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4815 err = visit(&m->name_off, ctx);
4816 if (err)
4817 return err;
4818 }
4819 break;
4820 }
4821 default:
4822 break;
4823 }
4824
4825 return 0;
4826 }
4827
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)4828 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4829 {
4830 const struct btf_ext_info *seg;
4831 struct btf_ext_info_sec *sec;
4832 int i, err;
4833
4834 seg = &btf_ext->func_info;
4835 for_each_btf_ext_sec(seg, sec) {
4836 struct bpf_func_info_min *rec;
4837
4838 for_each_btf_ext_rec(seg, sec, i, rec) {
4839 err = visit(&rec->type_id, ctx);
4840 if (err < 0)
4841 return err;
4842 }
4843 }
4844
4845 seg = &btf_ext->core_relo_info;
4846 for_each_btf_ext_sec(seg, sec) {
4847 struct bpf_core_relo *rec;
4848
4849 for_each_btf_ext_rec(seg, sec, i, rec) {
4850 err = visit(&rec->type_id, ctx);
4851 if (err < 0)
4852 return err;
4853 }
4854 }
4855
4856 return 0;
4857 }
4858
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)4859 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4860 {
4861 const struct btf_ext_info *seg;
4862 struct btf_ext_info_sec *sec;
4863 int i, err;
4864
4865 seg = &btf_ext->func_info;
4866 for_each_btf_ext_sec(seg, sec) {
4867 err = visit(&sec->sec_name_off, ctx);
4868 if (err)
4869 return err;
4870 }
4871
4872 seg = &btf_ext->line_info;
4873 for_each_btf_ext_sec(seg, sec) {
4874 struct bpf_line_info_min *rec;
4875
4876 err = visit(&sec->sec_name_off, ctx);
4877 if (err)
4878 return err;
4879
4880 for_each_btf_ext_rec(seg, sec, i, rec) {
4881 err = visit(&rec->file_name_off, ctx);
4882 if (err)
4883 return err;
4884 err = visit(&rec->line_off, ctx);
4885 if (err)
4886 return err;
4887 }
4888 }
4889
4890 seg = &btf_ext->core_relo_info;
4891 for_each_btf_ext_sec(seg, sec) {
4892 struct bpf_core_relo *rec;
4893
4894 err = visit(&sec->sec_name_off, ctx);
4895 if (err)
4896 return err;
4897
4898 for_each_btf_ext_rec(seg, sec, i, rec) {
4899 err = visit(&rec->access_str_off, ctx);
4900 if (err)
4901 return err;
4902 }
4903 }
4904
4905 return 0;
4906 }
4907