1 /*
2 * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "net/dcsctp/tx/retransmission_queue.h"
11
12 #include <algorithm>
13 #include <cstdint>
14 #include <functional>
15 #include <iterator>
16 #include <map>
17 #include <set>
18 #include <string>
19 #include <utility>
20 #include <vector>
21
22 #include "absl/algorithm/container.h"
23 #include "absl/strings/string_view.h"
24 #include "absl/types/optional.h"
25 #include "api/array_view.h"
26 #include "net/dcsctp/common/math.h"
27 #include "net/dcsctp/common/sequence_numbers.h"
28 #include "net/dcsctp/common/str_join.h"
29 #include "net/dcsctp/packet/chunk/data_chunk.h"
30 #include "net/dcsctp/packet/chunk/forward_tsn_chunk.h"
31 #include "net/dcsctp/packet/chunk/forward_tsn_common.h"
32 #include "net/dcsctp/packet/chunk/idata_chunk.h"
33 #include "net/dcsctp/packet/chunk/iforward_tsn_chunk.h"
34 #include "net/dcsctp/packet/chunk/sack_chunk.h"
35 #include "net/dcsctp/packet/data.h"
36 #include "net/dcsctp/public/dcsctp_options.h"
37 #include "net/dcsctp/public/types.h"
38 #include "net/dcsctp/timer/timer.h"
39 #include "net/dcsctp/tx/outstanding_data.h"
40 #include "net/dcsctp/tx/send_queue.h"
41 #include "rtc_base/checks.h"
42 #include "rtc_base/logging.h"
43 #include "rtc_base/strings/string_builder.h"
44
45 namespace dcsctp {
46 namespace {
47
48 // Allow sending only slightly less than an MTU, to account for headers.
49 constexpr float kMinBytesRequiredToSendFactor = 0.9;
50 } // namespace
51
RetransmissionQueue(absl::string_view log_prefix,DcSctpSocketCallbacks * callbacks,TSN my_initial_tsn,size_t a_rwnd,SendQueue & send_queue,std::function<void (DurationMs rtt)> on_new_rtt,std::function<void ()> on_clear_retransmission_counter,Timer & t3_rtx,const DcSctpOptions & options,bool supports_partial_reliability,bool use_message_interleaving)52 RetransmissionQueue::RetransmissionQueue(
53 absl::string_view log_prefix,
54 DcSctpSocketCallbacks* callbacks,
55 TSN my_initial_tsn,
56 size_t a_rwnd,
57 SendQueue& send_queue,
58 std::function<void(DurationMs rtt)> on_new_rtt,
59 std::function<void()> on_clear_retransmission_counter,
60 Timer& t3_rtx,
61 const DcSctpOptions& options,
62 bool supports_partial_reliability,
63 bool use_message_interleaving)
64 : callbacks_(*callbacks),
65 options_(options),
66 min_bytes_required_to_send_(options.mtu * kMinBytesRequiredToSendFactor),
67 partial_reliability_(supports_partial_reliability),
68 log_prefix_(std::string(log_prefix) + "tx: "),
69 data_chunk_header_size_(use_message_interleaving
70 ? IDataChunk::kHeaderSize
71 : DataChunk::kHeaderSize),
72 on_new_rtt_(std::move(on_new_rtt)),
73 on_clear_retransmission_counter_(
74 std::move(on_clear_retransmission_counter)),
75 t3_rtx_(t3_rtx),
76 cwnd_(options_.cwnd_mtus_initial * options_.mtu),
77 rwnd_(a_rwnd),
78 // https://tools.ietf.org/html/rfc4960#section-7.2.1
79 // "The initial value of ssthresh MAY be arbitrarily high (for
80 // example, implementations MAY use the size of the receiver advertised
81 // window).""
82 ssthresh_(rwnd_),
83 partial_bytes_acked_(0),
84 send_queue_(send_queue),
85 outstanding_data_(
86 data_chunk_header_size_,
87 tsn_unwrapper_.Unwrap(my_initial_tsn),
88 tsn_unwrapper_.Unwrap(TSN(*my_initial_tsn - 1)),
89 [this](IsUnordered unordered, StreamID stream_id, MID message_id) {
90 return send_queue_.Discard(unordered, stream_id, message_id);
91 }) {}
92
IsConsistent() const93 bool RetransmissionQueue::IsConsistent() const {
94 return true;
95 }
96
97 // Returns how large a chunk will be, serialized, carrying the data
GetSerializedChunkSize(const Data & data) const98 size_t RetransmissionQueue::GetSerializedChunkSize(const Data& data) const {
99 return RoundUpTo4(data_chunk_header_size_ + data.size());
100 }
101
MaybeExitFastRecovery(UnwrappedTSN cumulative_tsn_ack)102 void RetransmissionQueue::MaybeExitFastRecovery(
103 UnwrappedTSN cumulative_tsn_ack) {
104 // https://tools.ietf.org/html/rfc4960#section-7.2.4
105 // "When a SACK acknowledges all TSNs up to and including this [fast
106 // recovery] exit point, Fast Recovery is exited."
107 if (fast_recovery_exit_tsn_.has_value() &&
108 cumulative_tsn_ack >= *fast_recovery_exit_tsn_) {
109 RTC_DLOG(LS_VERBOSE) << log_prefix_
110 << "exit_point=" << *fast_recovery_exit_tsn_->Wrap()
111 << " reached - exiting fast recovery";
112 fast_recovery_exit_tsn_ = absl::nullopt;
113 }
114 }
115
HandleIncreasedCumulativeTsnAck(size_t outstanding_bytes,size_t total_bytes_acked)116 void RetransmissionQueue::HandleIncreasedCumulativeTsnAck(
117 size_t outstanding_bytes,
118 size_t total_bytes_acked) {
119 // Allow some margin for classifying as fully utilized, due to e.g. that too
120 // small packets (less than kMinimumFragmentedPayload) are not sent +
121 // overhead.
122 bool is_fully_utilized = outstanding_bytes + options_.mtu >= cwnd_;
123 size_t old_cwnd = cwnd_;
124 if (phase() == CongestionAlgorithmPhase::kSlowStart) {
125 if (is_fully_utilized && !is_in_fast_recovery()) {
126 // https://tools.ietf.org/html/rfc4960#section-7.2.1
127 // "Only when these three conditions are met can the cwnd be
128 // increased; otherwise, the cwnd MUST not be increased. If these
129 // conditions are met, then cwnd MUST be increased by, at most, the
130 // lesser of 1) the total size of the previously outstanding DATA
131 // chunk(s) acknowledged, and 2) the destination's path MTU."
132 cwnd_ += std::min(total_bytes_acked, options_.mtu);
133 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "SS increase cwnd=" << cwnd_
134 << " (" << old_cwnd << ")";
135 }
136 } else if (phase() == CongestionAlgorithmPhase::kCongestionAvoidance) {
137 // https://tools.ietf.org/html/rfc4960#section-7.2.2
138 // "Whenever cwnd is greater than ssthresh, upon each SACK arrival
139 // that advances the Cumulative TSN Ack Point, increase
140 // partial_bytes_acked by the total number of bytes of all new chunks
141 // acknowledged in that SACK including chunks acknowledged by the new
142 // Cumulative TSN Ack and by Gap Ack Blocks."
143 size_t old_pba = partial_bytes_acked_;
144 partial_bytes_acked_ += total_bytes_acked;
145
146 if (partial_bytes_acked_ >= cwnd_ && is_fully_utilized) {
147 // https://tools.ietf.org/html/rfc4960#section-7.2.2
148 // "When partial_bytes_acked is equal to or greater than cwnd and
149 // before the arrival of the SACK the sender had cwnd or more bytes of
150 // data outstanding (i.e., before arrival of the SACK, flightsize was
151 // greater than or equal to cwnd), increase cwnd by MTU, and reset
152 // partial_bytes_acked to (partial_bytes_acked - cwnd)."
153
154 // Errata: https://datatracker.ietf.org/doc/html/rfc8540#section-3.12
155 partial_bytes_acked_ -= cwnd_;
156 cwnd_ += options_.mtu;
157 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "CA increase cwnd=" << cwnd_
158 << " (" << old_cwnd << ") ssthresh=" << ssthresh_
159 << ", pba=" << partial_bytes_acked_ << " ("
160 << old_pba << ")";
161 } else {
162 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "CA unchanged cwnd=" << cwnd_
163 << " (" << old_cwnd << ") ssthresh=" << ssthresh_
164 << ", pba=" << partial_bytes_acked_ << " ("
165 << old_pba << ")";
166 }
167 }
168 }
169
HandlePacketLoss(UnwrappedTSN highest_tsn_acked)170 void RetransmissionQueue::HandlePacketLoss(UnwrappedTSN highest_tsn_acked) {
171 if (!is_in_fast_recovery()) {
172 // https://tools.ietf.org/html/rfc4960#section-7.2.4
173 // "If not in Fast Recovery, adjust the ssthresh and cwnd of the
174 // destination address(es) to which the missing DATA chunks were last
175 // sent, according to the formula described in Section 7.2.3."
176 size_t old_cwnd = cwnd_;
177 size_t old_pba = partial_bytes_acked_;
178 ssthresh_ = std::max(cwnd_ / 2, options_.cwnd_mtus_min * options_.mtu);
179 cwnd_ = ssthresh_;
180 partial_bytes_acked_ = 0;
181
182 RTC_DLOG(LS_VERBOSE) << log_prefix_
183 << "packet loss detected (not fast recovery). cwnd="
184 << cwnd_ << " (" << old_cwnd
185 << "), ssthresh=" << ssthresh_
186 << ", pba=" << partial_bytes_acked_ << " (" << old_pba
187 << ")";
188
189 // https://tools.ietf.org/html/rfc4960#section-7.2.4
190 // "If not in Fast Recovery, enter Fast Recovery and mark the highest
191 // outstanding TSN as the Fast Recovery exit point."
192 fast_recovery_exit_tsn_ = outstanding_data_.highest_outstanding_tsn();
193 RTC_DLOG(LS_VERBOSE) << log_prefix_
194 << "fast recovery initiated with exit_point="
195 << *fast_recovery_exit_tsn_->Wrap();
196 } else {
197 // https://tools.ietf.org/html/rfc4960#section-7.2.4
198 // "While in Fast Recovery, the ssthresh and cwnd SHOULD NOT change for
199 // any destinations due to a subsequent Fast Recovery event (i.e., one
200 // SHOULD NOT reduce the cwnd further due to a subsequent Fast Retransmit)."
201 RTC_DLOG(LS_VERBOSE) << log_prefix_
202 << "packet loss detected (fast recovery). No changes.";
203 }
204 }
205
UpdateReceiverWindow(uint32_t a_rwnd)206 void RetransmissionQueue::UpdateReceiverWindow(uint32_t a_rwnd) {
207 rwnd_ = outstanding_data_.outstanding_bytes() >= a_rwnd
208 ? 0
209 : a_rwnd - outstanding_data_.outstanding_bytes();
210 }
211
StartT3RtxTimerIfOutstandingData()212 void RetransmissionQueue::StartT3RtxTimerIfOutstandingData() {
213 // Note: Can't use `outstanding_bytes()` as that one doesn't count chunks to
214 // be retransmitted.
215 if (outstanding_data_.empty()) {
216 // https://tools.ietf.org/html/rfc4960#section-6.3.2
217 // "Whenever all outstanding data sent to an address have been
218 // acknowledged, turn off the T3-rtx timer of that address.
219 // Note: Already stopped in `StopT3RtxTimerOnIncreasedCumulativeTsnAck`."
220 } else {
221 // https://tools.ietf.org/html/rfc4960#section-6.3.2
222 // "Whenever a SACK is received that acknowledges the DATA chunk
223 // with the earliest outstanding TSN for that address, restart the T3-rtx
224 // timer for that address with its current RTO (if there is still
225 // outstanding data on that address)."
226 // "Whenever a SACK is received missing a TSN that was previously
227 // acknowledged via a Gap Ack Block, start the T3-rtx for the destination
228 // address to which the DATA chunk was originally transmitted if it is not
229 // already running."
230 if (!t3_rtx_.is_running()) {
231 t3_rtx_.Start();
232 }
233 }
234 }
235
IsSackValid(const SackChunk & sack) const236 bool RetransmissionQueue::IsSackValid(const SackChunk& sack) const {
237 // https://tools.ietf.org/html/rfc4960#section-6.2.1
238 // "If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
239 // then drop the SACK. Since Cumulative TSN Ack is monotonically increasing,
240 // a SACK whose Cumulative TSN Ack is less than the Cumulative TSN Ack Point
241 // indicates an out-of- order SACK."
242 //
243 // Note: Important not to drop SACKs with identical TSN to that previously
244 // received, as the gap ack blocks or dup tsn fields may have changed.
245 UnwrappedTSN cumulative_tsn_ack =
246 tsn_unwrapper_.PeekUnwrap(sack.cumulative_tsn_ack());
247 if (cumulative_tsn_ack < outstanding_data_.last_cumulative_tsn_ack()) {
248 // https://tools.ietf.org/html/rfc4960#section-6.2.1
249 // "If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
250 // then drop the SACK. Since Cumulative TSN Ack is monotonically
251 // increasing, a SACK whose Cumulative TSN Ack is less than the Cumulative
252 // TSN Ack Point indicates an out-of- order SACK."
253 return false;
254 } else if (cumulative_tsn_ack > outstanding_data_.highest_outstanding_tsn()) {
255 return false;
256 }
257 return true;
258 }
259
HandleSack(TimeMs now,const SackChunk & sack)260 bool RetransmissionQueue::HandleSack(TimeMs now, const SackChunk& sack) {
261 if (!IsSackValid(sack)) {
262 return false;
263 }
264
265 UnwrappedTSN old_last_cumulative_tsn_ack =
266 outstanding_data_.last_cumulative_tsn_ack();
267 size_t old_outstanding_bytes = outstanding_data_.outstanding_bytes();
268 size_t old_rwnd = rwnd_;
269 UnwrappedTSN cumulative_tsn_ack =
270 tsn_unwrapper_.Unwrap(sack.cumulative_tsn_ack());
271
272 if (sack.gap_ack_blocks().empty()) {
273 UpdateRTT(now, cumulative_tsn_ack);
274 }
275
276 // Exit fast recovery before continuing processing, in case it needs to go
277 // into fast recovery again due to new reported packet loss.
278 MaybeExitFastRecovery(cumulative_tsn_ack);
279
280 OutstandingData::AckInfo ack_info = outstanding_data_.HandleSack(
281 cumulative_tsn_ack, sack.gap_ack_blocks(), is_in_fast_recovery());
282
283 // Add lifecycle events for delivered messages.
284 for (LifecycleId lifecycle_id : ack_info.acked_lifecycle_ids) {
285 RTC_DLOG(LS_VERBOSE) << "Triggering OnLifecycleMessageDelivered("
286 << lifecycle_id.value() << ")";
287 callbacks_.OnLifecycleMessageDelivered(lifecycle_id);
288 callbacks_.OnLifecycleEnd(lifecycle_id);
289 }
290 for (LifecycleId lifecycle_id : ack_info.abandoned_lifecycle_ids) {
291 RTC_DLOG(LS_VERBOSE) << "Triggering OnLifecycleMessageExpired("
292 << lifecycle_id.value() << ", true)";
293 callbacks_.OnLifecycleMessageExpired(lifecycle_id,
294 /*maybe_delivered=*/true);
295 callbacks_.OnLifecycleEnd(lifecycle_id);
296 }
297
298 // Update of outstanding_data_ is now done. Congestion control remains.
299 UpdateReceiverWindow(sack.a_rwnd());
300
301 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Received SACK, cum_tsn_ack="
302 << *cumulative_tsn_ack.Wrap() << " ("
303 << *old_last_cumulative_tsn_ack.Wrap()
304 << "), outstanding_bytes="
305 << outstanding_data_.outstanding_bytes() << " ("
306 << old_outstanding_bytes << "), rwnd=" << rwnd_ << " ("
307 << old_rwnd << ")";
308
309 if (cumulative_tsn_ack > old_last_cumulative_tsn_ack) {
310 // https://tools.ietf.org/html/rfc4960#section-6.3.2
311 // "Whenever a SACK is received that acknowledges the DATA chunk
312 // with the earliest outstanding TSN for that address, restart the T3-rtx
313 // timer for that address with its current RTO (if there is still
314 // outstanding data on that address)."
315 // Note: It may be started again in a bit further down.
316 t3_rtx_.Stop();
317
318 HandleIncreasedCumulativeTsnAck(old_outstanding_bytes,
319 ack_info.bytes_acked);
320 }
321
322 if (ack_info.has_packet_loss) {
323 HandlePacketLoss(ack_info.highest_tsn_acked);
324 }
325
326 // https://tools.ietf.org/html/rfc4960#section-8.2
327 // "When an outstanding TSN is acknowledged [...] the endpoint shall clear
328 // the error counter ..."
329 if (ack_info.bytes_acked > 0) {
330 on_clear_retransmission_counter_();
331 }
332
333 StartT3RtxTimerIfOutstandingData();
334 RTC_DCHECK(IsConsistent());
335 return true;
336 }
337
UpdateRTT(TimeMs now,UnwrappedTSN cumulative_tsn_ack)338 void RetransmissionQueue::UpdateRTT(TimeMs now,
339 UnwrappedTSN cumulative_tsn_ack) {
340 // RTT updating is flawed in SCTP, as explained in e.g. Pedersen J, Griwodz C,
341 // Halvorsen P (2006) Considerations of SCTP retransmission delays for thin
342 // streams.
343 // Due to delayed acknowledgement, the SACK may be sent much later which
344 // increases the calculated RTT.
345 // TODO(boivie): Consider occasionally sending DATA chunks with I-bit set and
346 // use only those packets for measurement.
347
348 absl::optional<DurationMs> rtt =
349 outstanding_data_.MeasureRTT(now, cumulative_tsn_ack);
350
351 if (rtt.has_value()) {
352 on_new_rtt_(*rtt);
353 }
354 }
355
HandleT3RtxTimerExpiry()356 void RetransmissionQueue::HandleT3RtxTimerExpiry() {
357 size_t old_cwnd = cwnd_;
358 size_t old_outstanding_bytes = outstanding_bytes();
359 // https://tools.ietf.org/html/rfc4960#section-6.3.3
360 // "For the destination address for which the timer expires, adjust
361 // its ssthresh with rules defined in Section 7.2.3 and set the cwnd <- MTU."
362 ssthresh_ = std::max(cwnd_ / 2, 4 * options_.mtu);
363 cwnd_ = 1 * options_.mtu;
364 // Errata: https://datatracker.ietf.org/doc/html/rfc8540#section-3.11
365 partial_bytes_acked_ = 0;
366
367 // https://tools.ietf.org/html/rfc4960#section-6.3.3
368 // "For the destination address for which the timer expires, set RTO
369 // <- RTO * 2 ("back off the timer"). The maximum value discussed in rule C7
370 // above (RTO.max) may be used to provide an upper bound to this doubling
371 // operation."
372
373 // Already done by the Timer implementation.
374
375 // https://tools.ietf.org/html/rfc4960#section-6.3.3
376 // "Determine how many of the earliest (i.e., lowest TSN) outstanding
377 // DATA chunks for the address for which the T3-rtx has expired will fit into
378 // a single packet"
379
380 // https://tools.ietf.org/html/rfc4960#section-6.3.3
381 // "Note: Any DATA chunks that were sent to the address for which the
382 // T3-rtx timer expired but did not fit in one MTU (rule E3 above) should be
383 // marked for retransmission and sent as soon as cwnd allows (normally, when a
384 // SACK arrives)."
385 outstanding_data_.NackAll();
386
387 // https://tools.ietf.org/html/rfc4960#section-6.3.3
388 // "Start the retransmission timer T3-rtx on the destination address
389 // to which the retransmission is sent, if rule R1 above indicates to do so."
390
391 // Already done by the Timer implementation.
392
393 RTC_DLOG(LS_INFO) << log_prefix_ << "t3-rtx expired. new cwnd=" << cwnd_
394 << " (" << old_cwnd << "), ssthresh=" << ssthresh_
395 << ", outstanding_bytes " << outstanding_bytes() << " ("
396 << old_outstanding_bytes << ")";
397 RTC_DCHECK(IsConsistent());
398 }
399
400 std::vector<std::pair<TSN, Data>>
GetChunksForFastRetransmit(size_t bytes_in_packet)401 RetransmissionQueue::GetChunksForFastRetransmit(size_t bytes_in_packet) {
402 RTC_DCHECK(outstanding_data_.has_data_to_be_fast_retransmitted());
403 RTC_DCHECK(IsDivisibleBy4(bytes_in_packet));
404 std::vector<std::pair<TSN, Data>> to_be_sent;
405 size_t old_outstanding_bytes = outstanding_bytes();
406
407 to_be_sent =
408 outstanding_data_.GetChunksToBeFastRetransmitted(bytes_in_packet);
409 RTC_DCHECK(!to_be_sent.empty());
410
411 // https://tools.ietf.org/html/rfc4960#section-7.2.4
412 // "4) Restart the T3-rtx timer only if ... the endpoint is retransmitting
413 // the first outstanding DATA chunk sent to that address."
414 if (to_be_sent[0].first ==
415 outstanding_data_.last_cumulative_tsn_ack().next_value().Wrap()) {
416 RTC_DLOG(LS_VERBOSE)
417 << log_prefix_
418 << "First outstanding DATA to be retransmitted - restarting T3-RTX";
419 t3_rtx_.Stop();
420 }
421
422 // https://tools.ietf.org/html/rfc4960#section-6.3.2
423 // "Every time a DATA chunk is sent to any address (including a
424 // retransmission), if the T3-rtx timer of that address is not running,
425 // start it running so that it will expire after the RTO of that address."
426 if (!t3_rtx_.is_running()) {
427 t3_rtx_.Start();
428 }
429 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Fast-retransmitting TSN "
430 << StrJoin(to_be_sent, ",",
431 [&](rtc::StringBuilder& sb,
432 const std::pair<TSN, Data>& c) {
433 sb << *c.first;
434 })
435 << " - "
436 << absl::c_accumulate(
437 to_be_sent, 0,
438 [&](size_t r, const std::pair<TSN, Data>& d) {
439 return r + GetSerializedChunkSize(d.second);
440 })
441 << " bytes. outstanding_bytes=" << outstanding_bytes()
442 << " (" << old_outstanding_bytes << ")";
443
444 RTC_DCHECK(IsConsistent());
445 return to_be_sent;
446 }
447
GetChunksToSend(TimeMs now,size_t bytes_remaining_in_packet)448 std::vector<std::pair<TSN, Data>> RetransmissionQueue::GetChunksToSend(
449 TimeMs now,
450 size_t bytes_remaining_in_packet) {
451 // Chunks are always padded to even divisible by four.
452 RTC_DCHECK(IsDivisibleBy4(bytes_remaining_in_packet));
453
454 std::vector<std::pair<TSN, Data>> to_be_sent;
455 size_t old_outstanding_bytes = outstanding_bytes();
456 size_t old_rwnd = rwnd_;
457
458 // Calculate the bandwidth budget (how many bytes that is
459 // allowed to be sent), and fill that up first with chunks that are
460 // scheduled to be retransmitted. If there is still budget, send new chunks
461 // (which will have their TSN assigned here.)
462 size_t max_bytes =
463 RoundDownTo4(std::min(max_bytes_to_send(), bytes_remaining_in_packet));
464
465 to_be_sent = outstanding_data_.GetChunksToBeRetransmitted(max_bytes);
466 max_bytes -= absl::c_accumulate(to_be_sent, 0,
467 [&](size_t r, const std::pair<TSN, Data>& d) {
468 return r + GetSerializedChunkSize(d.second);
469 });
470
471 while (max_bytes > data_chunk_header_size_) {
472 RTC_DCHECK(IsDivisibleBy4(max_bytes));
473 absl::optional<SendQueue::DataToSend> chunk_opt =
474 send_queue_.Produce(now, max_bytes - data_chunk_header_size_);
475 if (!chunk_opt.has_value()) {
476 break;
477 }
478
479 size_t chunk_size = GetSerializedChunkSize(chunk_opt->data);
480 max_bytes -= chunk_size;
481 rwnd_ -= chunk_size;
482
483 absl::optional<UnwrappedTSN> tsn = outstanding_data_.Insert(
484 chunk_opt->data, now,
485 partial_reliability_ ? chunk_opt->max_retransmissions
486 : MaxRetransmits::NoLimit(),
487 partial_reliability_ ? chunk_opt->expires_at : TimeMs::InfiniteFuture(),
488 chunk_opt->lifecycle_id);
489
490 if (tsn.has_value()) {
491 if (chunk_opt->lifecycle_id.IsSet()) {
492 RTC_DCHECK(chunk_opt->data.is_end);
493 callbacks_.OnLifecycleMessageFullySent(chunk_opt->lifecycle_id);
494 }
495 to_be_sent.emplace_back(tsn->Wrap(), std::move(chunk_opt->data));
496 }
497 }
498
499 if (!to_be_sent.empty()) {
500 // https://tools.ietf.org/html/rfc4960#section-6.3.2
501 // "Every time a DATA chunk is sent to any address (including a
502 // retransmission), if the T3-rtx timer of that address is not running,
503 // start it running so that it will expire after the RTO of that address."
504 if (!t3_rtx_.is_running()) {
505 t3_rtx_.Start();
506 }
507 RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Sending TSN "
508 << StrJoin(to_be_sent, ",",
509 [&](rtc::StringBuilder& sb,
510 const std::pair<TSN, Data>& c) {
511 sb << *c.first;
512 })
513 << " - "
514 << absl::c_accumulate(
515 to_be_sent, 0,
516 [&](size_t r, const std::pair<TSN, Data>& d) {
517 return r + GetSerializedChunkSize(d.second);
518 })
519 << " bytes. outstanding_bytes=" << outstanding_bytes()
520 << " (" << old_outstanding_bytes << "), cwnd=" << cwnd_
521 << ", rwnd=" << rwnd_ << " (" << old_rwnd << ")";
522 }
523 RTC_DCHECK(IsConsistent());
524 return to_be_sent;
525 }
526
can_send_data() const527 bool RetransmissionQueue::can_send_data() const {
528 return cwnd_ < options_.avoid_fragmentation_cwnd_mtus * options_.mtu ||
529 max_bytes_to_send() >= min_bytes_required_to_send_;
530 }
531
ShouldSendForwardTsn(TimeMs now)532 bool RetransmissionQueue::ShouldSendForwardTsn(TimeMs now) {
533 if (!partial_reliability_) {
534 return false;
535 }
536 outstanding_data_.ExpireOutstandingChunks(now);
537 bool ret = outstanding_data_.ShouldSendForwardTsn();
538 RTC_DCHECK(IsConsistent());
539 return ret;
540 }
541
max_bytes_to_send() const542 size_t RetransmissionQueue::max_bytes_to_send() const {
543 size_t left = outstanding_bytes() >= cwnd_ ? 0 : cwnd_ - outstanding_bytes();
544
545 if (outstanding_bytes() == 0) {
546 // https://datatracker.ietf.org/doc/html/rfc4960#section-6.1
547 // ... However, regardless of the value of rwnd (including if it is 0), the
548 // data sender can always have one DATA chunk in flight to the receiver if
549 // allowed by cwnd (see rule B, below).
550 return left;
551 }
552
553 return std::min(rwnd(), left);
554 }
555
PrepareResetStream(StreamID stream_id)556 void RetransmissionQueue::PrepareResetStream(StreamID stream_id) {
557 // TODO(boivie): These calls are now only affecting the send queue. The
558 // packet buffer can also change behavior - for example draining the chunk
559 // producer and eagerly assign TSNs so that an "Outgoing SSN Reset Request"
560 // can be sent quickly, with a known `sender_last_assigned_tsn`.
561 send_queue_.PrepareResetStream(stream_id);
562 }
HasStreamsReadyToBeReset() const563 bool RetransmissionQueue::HasStreamsReadyToBeReset() const {
564 return send_queue_.HasStreamsReadyToBeReset();
565 }
CommitResetStreams()566 void RetransmissionQueue::CommitResetStreams() {
567 send_queue_.CommitResetStreams();
568 }
RollbackResetStreams()569 void RetransmissionQueue::RollbackResetStreams() {
570 send_queue_.RollbackResetStreams();
571 }
572
GetHandoverReadiness() const573 HandoverReadinessStatus RetransmissionQueue::GetHandoverReadiness() const {
574 HandoverReadinessStatus status;
575 if (!outstanding_data_.empty()) {
576 status.Add(HandoverUnreadinessReason::kRetransmissionQueueOutstandingData);
577 }
578 if (fast_recovery_exit_tsn_.has_value()) {
579 status.Add(HandoverUnreadinessReason::kRetransmissionQueueFastRecovery);
580 }
581 if (outstanding_data_.has_data_to_be_retransmitted()) {
582 status.Add(HandoverUnreadinessReason::kRetransmissionQueueNotEmpty);
583 }
584 return status;
585 }
586
AddHandoverState(DcSctpSocketHandoverState & state)587 void RetransmissionQueue::AddHandoverState(DcSctpSocketHandoverState& state) {
588 state.tx.next_tsn = next_tsn().value();
589 state.tx.rwnd = rwnd_;
590 state.tx.cwnd = cwnd_;
591 state.tx.ssthresh = ssthresh_;
592 state.tx.partial_bytes_acked = partial_bytes_acked_;
593 }
594
RestoreFromState(const DcSctpSocketHandoverState & state)595 void RetransmissionQueue::RestoreFromState(
596 const DcSctpSocketHandoverState& state) {
597 // Validate that the component is in pristine state.
598 RTC_DCHECK(outstanding_data_.empty());
599 RTC_DCHECK(!t3_rtx_.is_running());
600 RTC_DCHECK(partial_bytes_acked_ == 0);
601
602 cwnd_ = state.tx.cwnd;
603 rwnd_ = state.tx.rwnd;
604 ssthresh_ = state.tx.ssthresh;
605 partial_bytes_acked_ = state.tx.partial_bytes_acked;
606
607 outstanding_data_.ResetSequenceNumbers(
608 tsn_unwrapper_.Unwrap(TSN(state.tx.next_tsn)),
609 tsn_unwrapper_.Unwrap(TSN(state.tx.next_tsn - 1)));
610 }
611 } // namespace dcsctp
612