• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Printable.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <cassert>
36 #include <utility>
37 
38 #define DEBUG_TYPE "target-reg-info"
39 
40 using namespace llvm;
41 
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const LaneBitmask * SRILaneMasks,LaneBitmask SRICoveringLanes,const RegClassInfo * const RCIs,unsigned Mode)42 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
43                              regclass_iterator RCB, regclass_iterator RCE,
44                              const char *const *SRINames,
45                              const LaneBitmask *SRILaneMasks,
46                              LaneBitmask SRICoveringLanes,
47                              const RegClassInfo *const RCIs,
48                              unsigned Mode)
49   : InfoDesc(ID), SubRegIndexNames(SRINames),
50     SubRegIndexLaneMasks(SRILaneMasks),
51     RegClassBegin(RCB), RegClassEnd(RCE),
52     CoveringLanes(SRICoveringLanes),
53     RCInfos(RCIs), HwMode(Mode) {
54 }
55 
56 TargetRegisterInfo::~TargetRegisterInfo() = default;
57 
markSuperRegs(BitVector & RegisterSet,unsigned Reg) const58 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
59     const {
60   for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
61     RegisterSet.set(*AI);
62 }
63 
checkAllSuperRegsMarked(const BitVector & RegisterSet,ArrayRef<MCPhysReg> Exceptions) const64 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
65     ArrayRef<MCPhysReg> Exceptions) const {
66   // Check that all super registers of reserved regs are reserved as well.
67   BitVector Checked(getNumRegs());
68   for (unsigned Reg : RegisterSet.set_bits()) {
69     if (Checked[Reg])
70       continue;
71     for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
72       if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
73         dbgs() << "Error: Super register " << printReg(*SR, this)
74                << " of reserved register " << printReg(Reg, this)
75                << " is not reserved.\n";
76         return false;
77       }
78 
79       // We transitively check superregs. So we can remember this for later
80       // to avoid compiletime explosion in deep register hierarchies.
81       Checked.set(*SR);
82     }
83   }
84   return true;
85 }
86 
87 namespace llvm {
88 
printReg(Register Reg,const TargetRegisterInfo * TRI,unsigned SubIdx,const MachineRegisterInfo * MRI)89 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
90                    unsigned SubIdx, const MachineRegisterInfo *MRI) {
91   return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
92     if (!Reg)
93       OS << "$noreg";
94     else if (Register::isStackSlot(Reg))
95       OS << "SS#" << Register::stackSlot2Index(Reg);
96     else if (Register::isVirtualRegister(Reg)) {
97       StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
98       if (Name != "") {
99         OS << '%' << Name;
100       } else {
101         OS << '%' << Register::virtReg2Index(Reg);
102       }
103     } else if (!TRI)
104       OS << '$' << "physreg" << Reg;
105     else if (Reg < TRI->getNumRegs()) {
106       OS << '$';
107       printLowerCase(TRI->getName(Reg), OS);
108     } else
109       llvm_unreachable("Register kind is unsupported.");
110 
111     if (SubIdx) {
112       if (TRI)
113         OS << ':' << TRI->getSubRegIndexName(SubIdx);
114       else
115         OS << ":sub(" << SubIdx << ')';
116     }
117   });
118 }
119 
printRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)120 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
121   return Printable([Unit, TRI](raw_ostream &OS) {
122     // Generic printout when TRI is missing.
123     if (!TRI) {
124       OS << "Unit~" << Unit;
125       return;
126     }
127 
128     // Check for invalid register units.
129     if (Unit >= TRI->getNumRegUnits()) {
130       OS << "BadUnit~" << Unit;
131       return;
132     }
133 
134     // Normal units have at least one root.
135     MCRegUnitRootIterator Roots(Unit, TRI);
136     assert(Roots.isValid() && "Unit has no roots.");
137     OS << TRI->getName(*Roots);
138     for (++Roots; Roots.isValid(); ++Roots)
139       OS << '~' << TRI->getName(*Roots);
140   });
141 }
142 
printVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)143 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
144   return Printable([Unit, TRI](raw_ostream &OS) {
145     if (Register::isVirtualRegister(Unit)) {
146       OS << '%' << Register::virtReg2Index(Unit);
147     } else {
148       OS << printRegUnit(Unit, TRI);
149     }
150   });
151 }
152 
printRegClassOrBank(unsigned Reg,const MachineRegisterInfo & RegInfo,const TargetRegisterInfo * TRI)153 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
154                               const TargetRegisterInfo *TRI) {
155   return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
156     if (RegInfo.getRegClassOrNull(Reg))
157       OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
158     else if (RegInfo.getRegBankOrNull(Reg))
159       OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
160     else {
161       OS << "_";
162       assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
163              "Generic registers must have a valid type");
164     }
165   });
166 }
167 
168 } // end namespace llvm
169 
170 /// getAllocatableClass - Return the maximal subclass of the given register
171 /// class that is alloctable, or NULL.
172 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const173 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
174   if (!RC || RC->isAllocatable())
175     return RC;
176 
177   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
178        ++It) {
179     const TargetRegisterClass *SubRC = getRegClass(It.getID());
180     if (SubRC->isAllocatable())
181       return SubRC;
182   }
183   return nullptr;
184 }
185 
186 /// getMinimalPhysRegClass - Returns the Register Class of a physical
187 /// register of the given type, picking the most sub register class of
188 /// the right type that contains this physreg.
189 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const190 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
191   assert(Register::isPhysicalRegister(reg) &&
192          "reg must be a physical register");
193 
194   // Pick the most sub register class of the right type that contains
195   // this physreg.
196   const TargetRegisterClass* BestRC = nullptr;
197   for (const TargetRegisterClass* RC : regclasses()) {
198     if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
199         RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
200       BestRC = RC;
201   }
202 
203   assert(BestRC && "Couldn't find the register class");
204   return BestRC;
205 }
206 
207 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
208 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)209 static void getAllocatableSetForRC(const MachineFunction &MF,
210                                    const TargetRegisterClass *RC, BitVector &R){
211   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
212   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
213   for (unsigned i = 0; i != Order.size(); ++i)
214     R.set(Order[i]);
215 }
216 
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const217 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
218                                           const TargetRegisterClass *RC) const {
219   BitVector Allocatable(getNumRegs());
220   if (RC) {
221     // A register class with no allocatable subclass returns an empty set.
222     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
223     if (SubClass)
224       getAllocatableSetForRC(MF, SubClass, Allocatable);
225   } else {
226     for (const TargetRegisterClass *C : regclasses())
227       if (C->isAllocatable())
228         getAllocatableSetForRC(MF, C, Allocatable);
229   }
230 
231   // Mask out the reserved registers
232   BitVector Reserved = getReservedRegs(MF);
233   Allocatable &= Reserved.flip();
234 
235   return Allocatable;
236 }
237 
238 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI)239 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
240                                             const uint32_t *B,
241                                             const TargetRegisterInfo *TRI) {
242   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
243     if (unsigned Common = *A++ & *B++)
244       return TRI->getRegClass(I + countTrailingZeros(Common));
245   return nullptr;
246 }
247 
248 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B) const249 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
250                                       const TargetRegisterClass *B) const {
251   // First take care of the trivial cases.
252   if (A == B)
253     return A;
254   if (!A || !B)
255     return nullptr;
256 
257   // Register classes are ordered topologically, so the largest common
258   // sub-class it the common sub-class with the smallest ID.
259   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
260 }
261 
262 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const263 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
264                                              const TargetRegisterClass *B,
265                                              unsigned Idx) const {
266   assert(A && B && "Missing register class");
267   assert(Idx && "Bad sub-register index");
268 
269   // Find Idx in the list of super-register indices.
270   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
271     if (RCI.getSubReg() == Idx)
272       // The bit mask contains all register classes that are projected into B
273       // by Idx. Find a class that is also a sub-class of A.
274       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
275   return nullptr;
276 }
277 
278 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const279 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
280                        const TargetRegisterClass *RCB, unsigned SubB,
281                        unsigned &PreA, unsigned &PreB) const {
282   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
283 
284   // Search all pairs of sub-register indices that project into RCA and RCB
285   // respectively. This is quadratic, but usually the sets are very small. On
286   // most targets like X86, there will only be a single sub-register index
287   // (e.g., sub_16bit projecting into GR16).
288   //
289   // The worst case is a register class like DPR on ARM.
290   // We have indices dsub_0..dsub_7 projecting into that class.
291   //
292   // It is very common that one register class is a sub-register of the other.
293   // Arrange for RCA to be the larger register so the answer will be found in
294   // the first iteration. This makes the search linear for the most common
295   // case.
296   const TargetRegisterClass *BestRC = nullptr;
297   unsigned *BestPreA = &PreA;
298   unsigned *BestPreB = &PreB;
299   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
300     std::swap(RCA, RCB);
301     std::swap(SubA, SubB);
302     std::swap(BestPreA, BestPreB);
303   }
304 
305   // Also terminate the search one we have found a register class as small as
306   // RCA.
307   unsigned MinSize = getRegSizeInBits(*RCA);
308 
309   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
310     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
311     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
312       // Check if a common super-register class exists for this index pair.
313       const TargetRegisterClass *RC =
314         firstCommonClass(IA.getMask(), IB.getMask(), this);
315       if (!RC || getRegSizeInBits(*RC) < MinSize)
316         continue;
317 
318       // The indexes must compose identically: PreA+SubA == PreB+SubB.
319       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
320       if (FinalA != FinalB)
321         continue;
322 
323       // Is RC a better candidate than BestRC?
324       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
325         continue;
326 
327       // Yes, RC is the smallest super-register seen so far.
328       BestRC = RC;
329       *BestPreA = IA.getSubReg();
330       *BestPreB = IB.getSubReg();
331 
332       // Bail early if we reached MinSize. We won't find a better candidate.
333       if (getRegSizeInBits(*BestRC) == MinSize)
334         return BestRC;
335     }
336   }
337   return BestRC;
338 }
339 
340 /// Check if the registers defined by the pair (RegisterClass, SubReg)
341 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)342 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
343                                   const TargetRegisterClass *DefRC,
344                                   unsigned DefSubReg,
345                                   const TargetRegisterClass *SrcRC,
346                                   unsigned SrcSubReg) {
347   // Same register class.
348   if (DefRC == SrcRC)
349     return true;
350 
351   // Both operands are sub registers. Check if they share a register class.
352   unsigned SrcIdx, DefIdx;
353   if (SrcSubReg && DefSubReg) {
354     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
355                                       SrcIdx, DefIdx) != nullptr;
356   }
357 
358   // At most one of the register is a sub register, make it Src to avoid
359   // duplicating the test.
360   if (!SrcSubReg) {
361     std::swap(DefSubReg, SrcSubReg);
362     std::swap(DefRC, SrcRC);
363   }
364 
365   // One of the register is a sub register, check if we can get a superclass.
366   if (SrcSubReg)
367     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
368 
369   // Plain copy.
370   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
371 }
372 
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const373 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
374                                               unsigned DefSubReg,
375                                               const TargetRegisterClass *SrcRC,
376                                               unsigned SrcSubReg) const {
377   // If this source does not incur a cross register bank copy, use it.
378   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
379 }
380 
381 // Compute target-independent register allocator hints to help eliminate copies.
382 bool
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const383 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
384                                           ArrayRef<MCPhysReg> Order,
385                                           SmallVectorImpl<MCPhysReg> &Hints,
386                                           const MachineFunction &MF,
387                                           const VirtRegMap *VRM,
388                                           const LiveRegMatrix *Matrix) const {
389   const MachineRegisterInfo &MRI = MF.getRegInfo();
390   const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
391     MRI.getRegAllocationHints(VirtReg);
392 
393   SmallSet<unsigned, 32> HintedRegs;
394   // First hint may be a target hint.
395   bool Skip = (Hints_MRI.first != 0);
396   for (auto Reg : Hints_MRI.second) {
397     if (Skip) {
398       Skip = false;
399       continue;
400     }
401 
402     // Target-independent hints are either a physical or a virtual register.
403     unsigned Phys = Reg;
404     if (VRM && Register::isVirtualRegister(Phys))
405       Phys = VRM->getPhys(Phys);
406 
407     // Don't add the same reg twice (Hints_MRI may contain multiple virtual
408     // registers allocated to the same physreg).
409     if (!HintedRegs.insert(Phys).second)
410       continue;
411     // Check that Phys is a valid hint in VirtReg's register class.
412     if (!Register::isPhysicalRegister(Phys))
413       continue;
414     if (MRI.isReserved(Phys))
415       continue;
416     // Check that Phys is in the allocation order. We shouldn't heed hints
417     // from VirtReg's register class if they aren't in the allocation order. The
418     // target probably has a reason for removing the register.
419     if (!is_contained(Order, Phys))
420       continue;
421 
422     // All clear, tell the register allocator to prefer this register.
423     Hints.push_back(Phys);
424   }
425   return false;
426 }
427 
isCalleeSavedPhysReg(unsigned PhysReg,const MachineFunction & MF) const428 bool TargetRegisterInfo::isCalleeSavedPhysReg(
429     unsigned PhysReg, const MachineFunction &MF) const {
430   if (PhysReg == 0)
431     return false;
432   const uint32_t *callerPreservedRegs =
433       getCallPreservedMask(MF, MF.getFunction().getCallingConv());
434   if (callerPreservedRegs) {
435     assert(Register::isPhysicalRegister(PhysReg) &&
436            "Expected physical register");
437     return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
438   }
439   return false;
440 }
441 
canRealignStack(const MachineFunction & MF) const442 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
443   return !MF.getFunction().hasFnAttribute("no-realign-stack");
444 }
445 
needsStackRealignment(const MachineFunction & MF) const446 bool TargetRegisterInfo::needsStackRealignment(
447     const MachineFunction &MF) const {
448   const MachineFrameInfo &MFI = MF.getFrameInfo();
449   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
450   const Function &F = MF.getFunction();
451   unsigned StackAlign = TFI->getStackAlignment();
452   bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
453                               F.hasFnAttribute(Attribute::StackAlignment));
454   if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
455     if (canRealignStack(MF))
456       return true;
457     LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
458                       << "\n");
459   }
460   return false;
461 }
462 
regmaskSubsetEqual(const uint32_t * mask0,const uint32_t * mask1) const463 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
464                                             const uint32_t *mask1) const {
465   unsigned N = (getNumRegs()+31) / 32;
466   for (unsigned I = 0; I < N; ++I)
467     if ((mask0[I] & mask1[I]) != mask0[I])
468       return false;
469   return true;
470 }
471 
getRegSizeInBits(unsigned Reg,const MachineRegisterInfo & MRI) const472 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
473                                          const MachineRegisterInfo &MRI) const {
474   const TargetRegisterClass *RC{};
475   if (Register::isPhysicalRegister(Reg)) {
476     // The size is not directly available for physical registers.
477     // Instead, we need to access a register class that contains Reg and
478     // get the size of that register class.
479     RC = getMinimalPhysRegClass(Reg);
480   } else {
481     LLT Ty = MRI.getType(Reg);
482     unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
483     // If Reg is not a generic register, query the register class to
484     // get its size.
485     if (RegSize)
486       return RegSize;
487     // Since Reg is not a generic register, it must have a register class.
488     RC = MRI.getRegClass(Reg);
489   }
490   assert(RC && "Unable to deduce the register class");
491   return getRegSizeInBits(*RC);
492 }
493 
494 unsigned
lookThruCopyLike(unsigned SrcReg,const MachineRegisterInfo * MRI) const495 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
496                                      const MachineRegisterInfo *MRI) const {
497   while (true) {
498     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
499     if (!MI->isCopyLike())
500       return SrcReg;
501 
502     unsigned CopySrcReg;
503     if (MI->isCopy())
504       CopySrcReg = MI->getOperand(1).getReg();
505     else {
506       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
507       CopySrcReg = MI->getOperand(2).getReg();
508     }
509 
510     if (!Register::isVirtualRegister(CopySrcReg))
511       return CopySrcReg;
512 
513     SrcReg = CopySrcReg;
514   }
515 }
516 
517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
518 LLVM_DUMP_METHOD
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)519 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
520                                  const TargetRegisterInfo *TRI) {
521   dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
522 }
523 #endif
524