• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/sme.h>
24 #include <lib/extensions/spe.h>
25 #include <lib/extensions/sve.h>
26 #include <lib/extensions/sys_reg_trace.h>
27 #include <lib/extensions/trbe.h>
28 #include <lib/extensions/trf.h>
29 #include <lib/extensions/twed.h>
30 #include <lib/utils.h>
31 
32 static void manage_extensions_secure(cpu_context_t *ctx);
33 
34 /*******************************************************************************
35  * Context management library initialisation routine. This library is used by
36  * runtime services to share pointers to 'cpu_context' structures for the secure
37  * and non-secure states. Management of the structures and their associated
38  * memory is not done by the context management library e.g. the PSCI service
39  * manages the cpu context used for entry from and exit to the non-secure state.
40  * The Secure payload dispatcher service manages the context(s) corresponding to
41  * the secure state. It also uses this library to get access to the non-secure
42  * state cpu context pointers.
43  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
44  * which will used for programming an entry into a lower EL. The same context
45  * will used to save state upon exception entry from that EL.
46  ******************************************************************************/
cm_init(void)47 void __init cm_init(void)
48 {
49 	/*
50 	 * The context management library has only global data to intialize, but
51 	 * that will be done when the BSS is zeroed out
52 	 */
53 }
54 
55 /*******************************************************************************
56  * The following function initializes the cpu_context 'ctx' for
57  * first use, and sets the initial entrypoint state as specified by the
58  * entry_point_info structure.
59  *
60  * The security state to initialize is determined by the SECURE attribute
61  * of the entry_point_info.
62  *
63  * The EE and ST attributes are used to configure the endianness and secure
64  * timer availability for the new execution context.
65  *
66  * To prepare the register state for entry call cm_prepare_el3_exit() and
67  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
68  * cm_el1_sysregs_context_restore().
69  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)70 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
71 {
72 	unsigned int security_state;
73 	u_register_t scr_el3;
74 	el3_state_t *state;
75 	gp_regs_t *gp_regs;
76 	u_register_t sctlr_elx, actlr_elx;
77 
78 	assert(ctx != NULL);
79 
80 	security_state = GET_SECURITY_STATE(ep->h.attr);
81 
82 	/* Clear any residual register values from the context */
83 	zeromem(ctx, sizeof(*ctx));
84 
85 	/*
86 	 * SCR_EL3 was initialised during reset sequence in macro
87 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
88 	 * affect the next EL.
89 	 *
90 	 * The following fields are initially set to zero and then updated to
91 	 * the required value depending on the state of the SPSR_EL3 and the
92 	 * Security state and entrypoint attributes of the next EL.
93 	 */
94 	scr_el3 = read_scr();
95 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
96 			SCR_ST_BIT | SCR_HCE_BIT);
97 
98 #if ENABLE_RME
99 	/* When RME support is enabled, clear the NSE bit as well. */
100 	scr_el3 &= ~SCR_NSE_BIT;
101 #endif /* ENABLE_RME */
102 
103 	/*
104 	 * SCR_NS: Set the security state of the next EL.
105 	 */
106 	if (security_state == NON_SECURE) {
107 		scr_el3 |= SCR_NS_BIT;
108 	}
109 
110 #if ENABLE_RME
111 	/* Check for realm state if RME support enabled. */
112 	if (security_state == REALM) {
113 		scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
114 	}
115 #endif /* ENABLE_RME */
116 
117 	/*
118 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
119 	 *  Exception level as specified by SPSR.
120 	 */
121 	if (GET_RW(ep->spsr) == MODE_RW_64) {
122 		scr_el3 |= SCR_RW_BIT;
123 	}
124 	/*
125 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
126 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
127 	 *  by the entrypoint attributes.
128 	 */
129 	if (EP_GET_ST(ep->h.attr) != 0U) {
130 		scr_el3 |= SCR_ST_BIT;
131 	}
132 
133 	/*
134 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
135 	 * SCR_EL3.HXEn.
136 	 */
137 #if ENABLE_FEAT_HCX
138 	scr_el3 |= SCR_HXEn_BIT;
139 #endif
140 
141 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
142 	/*
143 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
144 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
145 	 */
146 	scr_el3 |= SCR_TERR_BIT;
147 #endif
148 
149 #if !HANDLE_EA_EL3_FIRST
150 	/*
151 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
152 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
153 	 *  Aborts are taken to EL3.
154 	 */
155 	scr_el3 &= ~SCR_EA_BIT;
156 #endif
157 
158 #if FAULT_INJECTION_SUPPORT
159 	/* Enable fault injection from lower ELs */
160 	scr_el3 |= SCR_FIEN_BIT;
161 #endif
162 
163 #if !CTX_INCLUDE_PAUTH_REGS
164 	/*
165 	 * If the pointer authentication registers aren't saved during world
166 	 * switches the value of the registers can be leaked from the Secure to
167 	 * the Non-secure world. To prevent this, rather than enabling pointer
168 	 * authentication everywhere, we only enable it in the Non-secure world.
169 	 *
170 	 * If the Secure world wants to use pointer authentication,
171 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
172 	 */
173 	if (security_state == NON_SECURE) {
174 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
175 	}
176 #endif /* !CTX_INCLUDE_PAUTH_REGS */
177 
178 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
179 	/* Get Memory Tagging Extension support level */
180 	unsigned int mte = get_armv8_5_mte_support();
181 #endif
182 	/*
183 	 * Enable MTE support. Support is enabled unilaterally for the normal
184 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
185 	 * set.
186 	 */
187 #if CTX_INCLUDE_MTE_REGS
188 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
189 	scr_el3 |= SCR_ATA_BIT;
190 #else
191 	/*
192 	 * When MTE is only implemented at EL0, it can be enabled
193 	 * across both worlds as no MTE registers are used.
194 	 */
195 	if ((mte == MTE_IMPLEMENTED_EL0) ||
196 	/*
197 	 * When MTE is implemented at all ELs, it can be only enabled
198 	 * in Non-Secure world without register saving.
199 	 */
200 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
201 	    (security_state == NON_SECURE))) {
202 		scr_el3 |= SCR_ATA_BIT;
203 	}
204 #endif	/* CTX_INCLUDE_MTE_REGS */
205 
206 #ifdef IMAGE_BL31
207 	/*
208 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
209 	 *  indicated by the interrupt routing model for BL31.
210 	 *
211 	 * TODO: The interrupt routing model code is not updated for REALM
212 	 * state. Use the default values of IRQ = FIQ = 0 for REALM security
213 	 * state for now.
214 	 */
215 	if (security_state != REALM) {
216 		scr_el3 |= get_scr_el3_from_routing_model(security_state);
217 	}
218 #endif
219 
220 	/* Save the initialized value of CPTR_EL3 register */
221 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
222 	if (security_state == SECURE) {
223 		manage_extensions_secure(ctx);
224 	}
225 
226 	/*
227 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
228 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
229 	 * next mode is Hyp.
230 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
231 	 * same conditions as HVC instructions and when the processor supports
232 	 * ARMv8.6-FGT.
233 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
234 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
235 	 * and when the processor supports ECV.
236 	 */
237 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
238 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
239 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
240 		scr_el3 |= SCR_HCE_BIT;
241 
242 		if (is_armv8_6_fgt_present()) {
243 			scr_el3 |= SCR_FGTEN_BIT;
244 		}
245 
246 		if (get_armv8_6_ecv_support()
247 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
248 			scr_el3 |= SCR_ECVEN_BIT;
249 		}
250 	}
251 
252 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
253 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
254 		if (GET_RW(ep->spsr) != MODE_RW_64) {
255 			ERROR("S-EL2 can not be used in AArch32.");
256 			panic();
257 		}
258 
259 		scr_el3 |= SCR_EEL2_BIT;
260 	}
261 
262 	/*
263 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
264 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
265 	 * to 1 when EL2 is present.
266 	 */
267 	if (is_armv8_6_feat_amuv1p1_present() &&
268 		(el_implemented(2) != EL_IMPL_NONE)) {
269 		scr_el3 |= SCR_AMVOFFEN_BIT;
270 	}
271 
272 	/*
273 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
274 	 * execution state setting all fields rather than relying of the hw.
275 	 * Some fields have architecturally UNKNOWN reset values and these are
276 	 * set to zero.
277 	 *
278 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
279 	 *
280 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
281 	 *  required by PSCI specification)
282 	 */
283 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
284 	if (GET_RW(ep->spsr) == MODE_RW_64) {
285 		sctlr_elx |= SCTLR_EL1_RES1;
286 	} else {
287 		/*
288 		 * If the target execution state is AArch32 then the following
289 		 * fields need to be set.
290 		 *
291 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
292 		 *  instructions are not trapped to EL1.
293 		 *
294 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
295 		 *  instructions are not trapped to EL1.
296 		 *
297 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
298 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
299 		 */
300 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
301 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
302 	}
303 
304 #if ERRATA_A75_764081
305 	/*
306 	 * If workaround of errata 764081 for Cortex-A75 is used then set
307 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
308 	 */
309 	sctlr_elx |= SCTLR_IESB_BIT;
310 #endif
311 
312 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
313 	if (is_armv8_6_twed_present()) {
314 		uint32_t delay = plat_arm_set_twedel_scr_el3();
315 
316 		if (delay != TWED_DISABLED) {
317 			/* Make sure delay value fits */
318 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
319 
320 			/* Set delay in SCR_EL3 */
321 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
322 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
323 					<< SCR_TWEDEL_SHIFT);
324 
325 			/* Enable WFE delay */
326 			scr_el3 |= SCR_TWEDEn_BIT;
327 		}
328 	}
329 
330 	/*
331 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
332 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
333 	 * are not part of the stored cpu_context.
334 	 */
335 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
336 
337 	/*
338 	 * Base the context ACTLR_EL1 on the current value, as it is
339 	 * implementation defined. The context restore process will write
340 	 * the value from the context to the actual register and can cause
341 	 * problems for processor cores that don't expect certain bits to
342 	 * be zero.
343 	 */
344 	actlr_elx = read_actlr_el1();
345 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
346 
347 	/*
348 	 * Populate EL3 state so that we've the right context
349 	 * before doing ERET
350 	 */
351 	state = get_el3state_ctx(ctx);
352 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
353 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
354 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
355 
356 	/*
357 	 * Store the X0-X7 value from the entrypoint into the context
358 	 * Use memcpy as we are in control of the layout of the structures
359 	 */
360 	gp_regs = get_gpregs_ctx(ctx);
361 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
362 }
363 
364 /*******************************************************************************
365  * Enable architecture extensions on first entry to Non-secure world.
366  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
367  * it is zero.
368  ******************************************************************************/
manage_extensions_nonsecure(bool el2_unused,cpu_context_t * ctx)369 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
370 {
371 #if IMAGE_BL31
372 #if ENABLE_SPE_FOR_LOWER_ELS
373 	spe_enable(el2_unused);
374 #endif
375 
376 #if ENABLE_AMU
377 	amu_enable(el2_unused, ctx);
378 #endif
379 
380 #if ENABLE_SME_FOR_NS
381 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
382 	sme_enable(ctx);
383 #elif ENABLE_SVE_FOR_NS
384 	/* Enable SVE and FPU/SIMD for non-secure world. */
385 	sve_enable(ctx);
386 #endif
387 
388 #if ENABLE_MPAM_FOR_LOWER_ELS
389 	mpam_enable(el2_unused);
390 #endif
391 
392 #if ENABLE_TRBE_FOR_NS
393 	trbe_enable();
394 #endif /* ENABLE_TRBE_FOR_NS */
395 
396 #if ENABLE_SYS_REG_TRACE_FOR_NS
397 	sys_reg_trace_enable(ctx);
398 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
399 
400 #if ENABLE_TRF_FOR_NS
401 	trf_enable();
402 #endif /* ENABLE_TRF_FOR_NS */
403 #endif
404 }
405 
406 /*******************************************************************************
407  * Enable architecture extensions on first entry to Secure world.
408  ******************************************************************************/
manage_extensions_secure(cpu_context_t * ctx)409 static void manage_extensions_secure(cpu_context_t *ctx)
410 {
411 #if IMAGE_BL31
412  #if ENABLE_SME_FOR_NS
413   #if ENABLE_SME_FOR_SWD
414 	/*
415 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
416 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
417 	 */
418 	sme_enable(ctx);
419   #else /* ENABLE_SME_FOR_SWD */
420 	/*
421 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
422 	 * safely use the associated registers.
423 	 */
424 	sme_disable(ctx);
425   #endif /* ENABLE_SME_FOR_SWD */
426  #elif ENABLE_SVE_FOR_NS
427   #if ENABLE_SVE_FOR_SWD
428 	/*
429 	 * Enable SVE and FPU in secure context, secure manager must ensure that
430 	 * the SVE and FPU register contexts are properly managed.
431 	 */
432 	sve_enable(ctx);
433  #else /* ENABLE_SVE_FOR_SWD */
434 	/*
435 	 * Disable SVE and FPU in secure context so non-secure world can safely
436 	 * use them.
437 	 */
438 	sve_disable(ctx);
439   #endif /* ENABLE_SVE_FOR_SWD */
440  #endif /* ENABLE_SVE_FOR_NS */
441 #endif /* IMAGE_BL31 */
442 }
443 
444 /*******************************************************************************
445  * The following function initializes the cpu_context for a CPU specified by
446  * its `cpu_idx` for first use, and sets the initial entrypoint state as
447  * specified by the entry_point_info structure.
448  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)449 void cm_init_context_by_index(unsigned int cpu_idx,
450 			      const entry_point_info_t *ep)
451 {
452 	cpu_context_t *ctx;
453 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
454 	cm_setup_context(ctx, ep);
455 }
456 
457 /*******************************************************************************
458  * The following function initializes the cpu_context for the current CPU
459  * for first use, and sets the initial entrypoint state as specified by the
460  * entry_point_info structure.
461  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)462 void cm_init_my_context(const entry_point_info_t *ep)
463 {
464 	cpu_context_t *ctx;
465 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
466 	cm_setup_context(ctx, ep);
467 }
468 
469 /*******************************************************************************
470  * Prepare the CPU system registers for first entry into realm, secure, or
471  * normal world.
472  *
473  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
474  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
475  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
476  * For all entries, the EL1 registers are initialized from the cpu_context
477  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)478 void cm_prepare_el3_exit(uint32_t security_state)
479 {
480 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
481 	cpu_context_t *ctx = cm_get_context(security_state);
482 	bool el2_unused = false;
483 	uint64_t hcr_el2 = 0U;
484 
485 	assert(ctx != NULL);
486 
487 	if (security_state == NON_SECURE) {
488 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
489 						 CTX_SCR_EL3);
490 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
491 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
492 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
493 							   CTX_SCTLR_EL1);
494 			sctlr_elx &= SCTLR_EE_BIT;
495 			sctlr_elx |= SCTLR_EL2_RES1;
496 #if ERRATA_A75_764081
497 			/*
498 			 * If workaround of errata 764081 for Cortex-A75 is used
499 			 * then set SCTLR_EL2.IESB to enable Implicit Error
500 			 * Synchronization Barrier.
501 			 */
502 			sctlr_elx |= SCTLR_IESB_BIT;
503 #endif
504 			write_sctlr_el2(sctlr_elx);
505 		} else if (el_implemented(2) != EL_IMPL_NONE) {
506 			el2_unused = true;
507 
508 			/*
509 			 * EL2 present but unused, need to disable safely.
510 			 * SCTLR_EL2 can be ignored in this case.
511 			 *
512 			 * Set EL2 register width appropriately: Set HCR_EL2
513 			 * field to match SCR_EL3.RW.
514 			 */
515 			if ((scr_el3 & SCR_RW_BIT) != 0U)
516 				hcr_el2 |= HCR_RW_BIT;
517 
518 			/*
519 			 * For Armv8.3 pointer authentication feature, disable
520 			 * traps to EL2 when accessing key registers or using
521 			 * pointer authentication instructions from lower ELs.
522 			 */
523 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
524 
525 			write_hcr_el2(hcr_el2);
526 
527 			/*
528 			 * Initialise CPTR_EL2 setting all fields rather than
529 			 * relying on the hw. All fields have architecturally
530 			 * UNKNOWN reset values.
531 			 *
532 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
533 			 *  accesses to the CPACR_EL1 or CPACR from both
534 			 *  Execution states do not trap to EL2.
535 			 *
536 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
537 			 *  register accesses to the trace registers from both
538 			 *  Execution states do not trap to EL2.
539 			 *  If PE trace unit System registers are not implemented
540 			 *  then this bit is reserved, and must be set to zero.
541 			 *
542 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
543 			 *  to SIMD and floating-point functionality from both
544 			 *  Execution states do not trap to EL2.
545 			 */
546 			write_cptr_el2(CPTR_EL2_RESET_VAL &
547 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
548 					| CPTR_EL2_TFP_BIT));
549 
550 			/*
551 			 * Initialise CNTHCTL_EL2. All fields are
552 			 * architecturally UNKNOWN on reset and are set to zero
553 			 * except for field(s) listed below.
554 			 *
555 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
556 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
557 			 *  physical timer registers.
558 			 *
559 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
560 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
561 			 *  physical counter registers.
562 			 */
563 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
564 						EL1PCEN_BIT | EL1PCTEN_BIT);
565 
566 			/*
567 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
568 			 * architecturally UNKNOWN value.
569 			 */
570 			write_cntvoff_el2(0);
571 
572 			/*
573 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
574 			 * MPIDR_EL1 respectively.
575 			 */
576 			write_vpidr_el2(read_midr_el1());
577 			write_vmpidr_el2(read_mpidr_el1());
578 
579 			/*
580 			 * Initialise VTTBR_EL2. All fields are architecturally
581 			 * UNKNOWN on reset.
582 			 *
583 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
584 			 *  2 address translation is disabled, cache maintenance
585 			 *  operations depend on the VMID.
586 			 *
587 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
588 			 *  translation is disabled.
589 			 */
590 			write_vttbr_el2(VTTBR_RESET_VAL &
591 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
592 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
593 
594 			/*
595 			 * Initialise MDCR_EL2, setting all fields rather than
596 			 * relying on hw. Some fields are architecturally
597 			 * UNKNOWN on reset.
598 			 *
599 			 * MDCR_EL2.HLP: Set to one so that event counter
600 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
601 			 *  occurs on the increment that changes
602 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
603 			 *  implemented. This bit is RES0 in versions of the
604 			 *  architecture earlier than ARMv8.5, setting it to 1
605 			 *  doesn't have any effect on them.
606 			 *
607 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
608 			 *  Filter Control register TRFCR_EL1 at EL1 is not
609 			 *  trapped to EL2. This bit is RES0 in versions of
610 			 *  the architecture earlier than ARMv8.4.
611 			 *
612 			 * MDCR_EL2.HPMD: Set to one so that event counting is
613 			 *  prohibited at EL2. This bit is RES0 in versions of
614 			 *  the architecture earlier than ARMv8.1, setting it
615 			 *  to 1 doesn't have any effect on them.
616 			 *
617 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
618 			 *  Statistical Profiling control registers from EL1
619 			 *  do not trap to EL2. This bit is RES0 when SPE is
620 			 *  not implemented.
621 			 *
622 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
623 			 *  EL1 System register accesses to the Debug ROM
624 			 *  registers are not trapped to EL2.
625 			 *
626 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
627 			 *  System register accesses to the powerdown debug
628 			 *  registers are not trapped to EL2.
629 			 *
630 			 * MDCR_EL2.TDA: Set to zero so that System register
631 			 *  accesses to the debug registers do not trap to EL2.
632 			 *
633 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
634 			 *  are not routed to EL2.
635 			 *
636 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
637 			 *  Monitors.
638 			 *
639 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
640 			 *  EL1 accesses to all Performance Monitors registers
641 			 *  are not trapped to EL2.
642 			 *
643 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
644 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
645 			 *  trapped to EL2.
646 			 *
647 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
648 			 *  architecturally-defined reset value.
649 			 *
650 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
651 			 *  owning exception level is NS-EL1 and, tracing is
652 			 *  prohibited at NS-EL2. These bits are RES0 when
653 			 *  FEAT_TRBE is not implemented.
654 			 */
655 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
656 				     MDCR_EL2_HPMD) |
657 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
658 				   >> PMCR_EL0_N_SHIFT)) &
659 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
660 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
661 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
662 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
663 				     MDCR_EL2_TPMCR_BIT |
664 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
665 
666 			write_mdcr_el2(mdcr_el2);
667 
668 			/*
669 			 * Initialise HSTR_EL2. All fields are architecturally
670 			 * UNKNOWN on reset.
671 			 *
672 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
673 			 *  Non-secure EL0 or EL1 accesses to System registers
674 			 *  do not trap to EL2.
675 			 */
676 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
677 			/*
678 			 * Initialise CNTHP_CTL_EL2. All fields are
679 			 * architecturally UNKNOWN on reset.
680 			 *
681 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
682 			 *  physical timer and prevent timer interrupts.
683 			 */
684 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
685 						~(CNTHP_CTL_ENABLE_BIT));
686 		}
687 		manage_extensions_nonsecure(el2_unused, ctx);
688 	}
689 
690 	cm_el1_sysregs_context_restore(security_state);
691 	cm_set_next_eret_context(security_state);
692 }
693 
694 #if CTX_INCLUDE_EL2_REGS
695 /*******************************************************************************
696  * Save EL2 sysreg context
697  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)698 void cm_el2_sysregs_context_save(uint32_t security_state)
699 {
700 	u_register_t scr_el3 = read_scr();
701 
702 	/*
703 	 * Always save the non-secure and realm EL2 context, only save the
704 	 * S-EL2 context if S-EL2 is enabled.
705 	 */
706 	if ((security_state != SECURE) ||
707 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
708 		cpu_context_t *ctx;
709 
710 		ctx = cm_get_context(security_state);
711 		assert(ctx != NULL);
712 
713 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
714 	}
715 }
716 
717 /*******************************************************************************
718  * Restore EL2 sysreg context
719  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)720 void cm_el2_sysregs_context_restore(uint32_t security_state)
721 {
722 	u_register_t scr_el3 = read_scr();
723 
724 	/*
725 	 * Always restore the non-secure and realm EL2 context, only restore the
726 	 * S-EL2 context if S-EL2 is enabled.
727 	 */
728 	if ((security_state != SECURE) ||
729 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
730 		cpu_context_t *ctx;
731 
732 		ctx = cm_get_context(security_state);
733 		assert(ctx != NULL);
734 
735 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
736 	}
737 }
738 #endif /* CTX_INCLUDE_EL2_REGS */
739 
740 /*******************************************************************************
741  * The next four functions are used by runtime services to save and restore
742  * EL1 context on the 'cpu_context' structure for the specified security
743  * state.
744  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)745 void cm_el1_sysregs_context_save(uint32_t security_state)
746 {
747 	cpu_context_t *ctx;
748 
749 	ctx = cm_get_context(security_state);
750 	assert(ctx != NULL);
751 
752 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
753 
754 #if IMAGE_BL31
755 	if (security_state == SECURE)
756 		PUBLISH_EVENT(cm_exited_secure_world);
757 	else
758 		PUBLISH_EVENT(cm_exited_normal_world);
759 #endif
760 }
761 
cm_el1_sysregs_context_restore(uint32_t security_state)762 void cm_el1_sysregs_context_restore(uint32_t security_state)
763 {
764 	cpu_context_t *ctx;
765 
766 	ctx = cm_get_context(security_state);
767 	assert(ctx != NULL);
768 
769 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
770 
771 #if IMAGE_BL31
772 	if (security_state == SECURE)
773 		PUBLISH_EVENT(cm_entering_secure_world);
774 	else
775 		PUBLISH_EVENT(cm_entering_normal_world);
776 #endif
777 }
778 
779 /*******************************************************************************
780  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
781  * given security state with the given entrypoint
782  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)783 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
784 {
785 	cpu_context_t *ctx;
786 	el3_state_t *state;
787 
788 	ctx = cm_get_context(security_state);
789 	assert(ctx != NULL);
790 
791 	/* Populate EL3 state so that ERET jumps to the correct entry */
792 	state = get_el3state_ctx(ctx);
793 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
794 }
795 
796 /*******************************************************************************
797  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
798  * pertaining to the given security state
799  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)800 void cm_set_elr_spsr_el3(uint32_t security_state,
801 			uintptr_t entrypoint, uint32_t spsr)
802 {
803 	cpu_context_t *ctx;
804 	el3_state_t *state;
805 
806 	ctx = cm_get_context(security_state);
807 	assert(ctx != NULL);
808 
809 	/* Populate EL3 state so that ERET jumps to the correct entry */
810 	state = get_el3state_ctx(ctx);
811 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
812 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
813 }
814 
815 /*******************************************************************************
816  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
817  * pertaining to the given security state using the value and bit position
818  * specified in the parameters. It preserves all other bits.
819  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)820 void cm_write_scr_el3_bit(uint32_t security_state,
821 			  uint32_t bit_pos,
822 			  uint32_t value)
823 {
824 	cpu_context_t *ctx;
825 	el3_state_t *state;
826 	u_register_t scr_el3;
827 
828 	ctx = cm_get_context(security_state);
829 	assert(ctx != NULL);
830 
831 	/* Ensure that the bit position is a valid one */
832 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
833 
834 	/* Ensure that the 'value' is only a bit wide */
835 	assert(value <= 1U);
836 
837 	/*
838 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
839 	 * and set it to its new value.
840 	 */
841 	state = get_el3state_ctx(ctx);
842 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
843 	scr_el3 &= ~(1UL << bit_pos);
844 	scr_el3 |= (u_register_t)value << bit_pos;
845 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
846 }
847 
848 /*******************************************************************************
849  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
850  * given security state.
851  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)852 u_register_t cm_get_scr_el3(uint32_t security_state)
853 {
854 	cpu_context_t *ctx;
855 	el3_state_t *state;
856 
857 	ctx = cm_get_context(security_state);
858 	assert(ctx != NULL);
859 
860 	/* Populate EL3 state so that ERET jumps to the correct entry */
861 	state = get_el3state_ctx(ctx);
862 	return read_ctx_reg(state, CTX_SCR_EL3);
863 }
864 
865 /*******************************************************************************
866  * This function is used to program the context that's used for exception
867  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
868  * the required security state
869  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)870 void cm_set_next_eret_context(uint32_t security_state)
871 {
872 	cpu_context_t *ctx;
873 
874 	ctx = cm_get_context(security_state);
875 	assert(ctx != NULL);
876 
877 	cm_set_next_context(ctx);
878 }
879