• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEPadLayer.h"
25 
26 #include "arm_compute/runtime/NEON/NEScheduler.h"
27 
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "src/common/utils/Log.h"
31 #include "src/core/NEON/kernels/NEPadLayerKernel.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 
34 namespace arm_compute
35 {
36 namespace
37 {
last_padding_dimension(const PaddingList & padding)38 uint32_t last_padding_dimension(const PaddingList &padding)
39 {
40     int last_padding_dim = padding.size() - 1;
41     for(; last_padding_dim >= 0; --last_padding_dim)
42     {
43         if(padding[last_padding_dim].first > 0 || padding[last_padding_dim].second > 0)
44         {
45             break;
46         }
47     }
48     return static_cast<uint32_t>(last_padding_dim);
49 }
50 } // namespace
51 
52 NEPadLayer::~NEPadLayer() = default;
53 
NEPadLayer()54 NEPadLayer::NEPadLayer()
55     : _copy_function(), _pad_kernel(), _mode(), _padding(), _num_dimensions(0), _slice_functions(), _concat_functions(), _slice_results(), _concat_results()
56 {
57 }
58 
configure_constant_mode(ITensor * input,ITensor * output,const PaddingList & padding,const PixelValue constant_value)59 void NEPadLayer::configure_constant_mode(ITensor *input, ITensor *output, const PaddingList &padding, const PixelValue constant_value)
60 {
61     _pad_kernel = std::make_unique<NEPadLayerKernel>();
62     _pad_kernel->configure(input, output, padding, constant_value, PaddingMode::CONSTANT);
63 }
64 
configure_reflect_symmetric_mode(ITensor * input,ITensor * output)65 void NEPadLayer::configure_reflect_symmetric_mode(ITensor *input, ITensor *output)
66 {
67     // Reflecting can be performed by effectively unfolding the input as follows:
68     // For each dimension starting at DimX:
69     //      For before and after:
70     //          Use strided slice to extract and reverse the part of the
71     //          input / previously produced tensor required for the padding.
72     //      Concatenate the before and after padding with the input / previously
73     //      produced tensor along the current dimension.
74 
75     // Two strided slice functions will be required for each dimension padded as well as a
76     // concatenate function and the tensors to hold the temporary results.
77     _slice_functions.resize(2 * _num_dimensions);
78     _slice_results.resize(2 * _num_dimensions);
79     _concat_functions.resize(_num_dimensions);
80     _concat_results.resize(_num_dimensions - 1);
81 
82     Coordinates starts_before{};
83     Coordinates ends_before{};
84     Coordinates starts_after{};
85     Coordinates ends_after{};
86     Coordinates strides{};
87     ITensor    *prev = input;
88     for(uint32_t i = 0; i < _num_dimensions; ++i)
89     {
90         // Values in strides from the previous dimensions need to be set to 1 to avoid reversing again.
91         if(i > 0)
92         {
93             strides.set(i - 1, 1);
94         }
95 
96         if(_padding[i].first > 0 || _padding[i].second > 0)
97         {
98             // Set the starts, ends, and strides values for the current dimension.
99             // Due to the bit masks passed to strided slice, the values below the current dimension in
100             // starts and ends will be ignored so do not need to be modified.
101             if(_mode == PaddingMode::REFLECT)
102             {
103                 starts_before.set(i, _padding[i].first);
104                 ends_before.set(i, 0);
105                 starts_after.set(i, input->info()->dimension(i) - 2);
106                 ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 2);
107                 strides.set(i, -1);
108             }
109             else
110             {
111                 starts_before.set(i, _padding[i].first - 1);
112                 ends_before.set(i, -1);
113                 starts_after.set(i, input->info()->dimension(i) - 1);
114                 ends_after.set(i, input->info()->dimension(i) - _padding[i].second - 1);
115                 strides.set(i, -1);
116             }
117 
118             // Strided slice wraps negative indexes around to the end of the range,
119             // instead this should indicate use of the full range and so the bit mask will be modified.
120             const int32_t begin_mask_before = starts_before[i] < 0 ? ~0 : ~(1u << i);
121             const int32_t end_mask_before   = ends_before[i] < 0 ? ~0 : ~(1u << i);
122             const int32_t begin_mask_after  = starts_after[i] < 0 ? ~0 : ~(1u << i);
123             const int32_t end_mask_after    = ends_after[i] < 0 ? ~0 : ~(1u << i);
124 
125             // Reflect the input values for the padding before and after the input.
126             std::vector<const ITensor *> concat_vector;
127             if(_padding[i].first > 0)
128             {
129                 if(i < prev->info()->num_dimensions())
130                 {
131                     _slice_functions[2 * i].configure(prev, &_slice_results[2 * i], starts_before, ends_before, strides, begin_mask_before, end_mask_before);
132                     concat_vector.emplace_back(&_slice_results[2 * i]);
133                 }
134                 else
135                 {
136                     // Performing the slice is unnecessary if the result would simply be a copy of the tensor.
137                     concat_vector.push_back(prev);
138                 }
139             }
140             concat_vector.push_back(prev);
141             if(_padding[i].second > 0)
142             {
143                 if(i < prev->info()->num_dimensions())
144                 {
145                     _slice_functions[2 * i + 1].configure(prev, &_slice_results[2 * i + 1], starts_after, ends_after, strides, begin_mask_after, end_mask_after);
146                     concat_vector.emplace_back(&_slice_results[2 * i + 1]);
147                 }
148                 else
149                 {
150                     // Performing the slice is unnecessary if the result would simply be a copy of the tensor.
151                     concat_vector.push_back(prev);
152                 }
153             }
154             // Concatenate the padding before and after with the input.
155             ITensor *out = (i == _num_dimensions - 1) ? output : &_concat_results[i];
156             out->info()->set_quantization_info(output->info()->quantization_info());
157             for(auto &v : concat_vector)
158             {
159                 v->info()->set_quantization_info(input->info()->quantization_info());
160             }
161             _concat_functions[i].configure(concat_vector, out, i);
162             if(i != _num_dimensions - 1)
163             {
164                 _concat_results[i].allocator()->allocate();
165             }
166             prev = out;
167         }
168         _slice_results[2 * i].allocator()->allocate();
169         _slice_results[2 * i + 1].allocator()->allocate();
170     }
171 }
172 
configure(ITensor * input,ITensor * output,const PaddingList & padding,const PixelValue constant_value,const PaddingMode mode)173 void NEPadLayer::configure(ITensor *input, ITensor *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
174 {
175     ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), padding, constant_value, mode));
176     ARM_COMPUTE_LOG_PARAMS(input, output, padding, constant_value, mode);
177 
178     _padding = padding;
179     _mode    = mode;
180 
181     const TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->info()->tensor_shape(), _padding);
182 
183     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(padded_shape));
184 
185     // Find the last dimension requiring padding so that it is known when to write to output and whether any padding is applied.
186     _num_dimensions = last_padding_dimension(padding) + 1;
187     if(_num_dimensions > 0)
188     {
189         switch(_mode)
190         {
191             case PaddingMode::CONSTANT:
192             {
193                 configure_constant_mode(input, output, padding, constant_value);
194                 break;
195             }
196             case PaddingMode::REFLECT:
197             case PaddingMode::SYMMETRIC:
198             {
199                 configure_reflect_symmetric_mode(input, output);
200                 break;
201             }
202             default:
203                 ARM_COMPUTE_ERROR("Padding mode not supported.");
204         }
205     }
206     else
207     {
208         // Copy the input to the whole output if no padding is applied
209         _copy_function.configure(input, output);
210     }
211 }
212 
validate(const ITensorInfo * input,const ITensorInfo * output,const PaddingList & padding,const PixelValue constant_value,const PaddingMode mode)213 Status NEPadLayer::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
214 {
215     ARM_COMPUTE_UNUSED(constant_value);
216 
217     const TensorShape padded_shape = misc::shape_calculator::compute_padded_shape(input->tensor_shape(), padding);
218 
219     if(output->total_size() > 0)
220     {
221         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), padded_shape);
222         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
223     }
224 
225     switch(mode)
226     {
227         case PaddingMode::CONSTANT:
228         {
229             return NEPadLayerKernel::validate(input, output, padding, constant_value, mode);
230         }
231         case PaddingMode::REFLECT:
232         case PaddingMode::SYMMETRIC:
233         {
234             for(uint32_t i = 0; i < padding.size(); ++i)
235             {
236                 if(mode == PaddingMode::REFLECT)
237                 {
238                     ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first >= input->dimension(i));
239                     ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second >= input->dimension(i));
240                 }
241                 else
242                 {
243                     ARM_COMPUTE_RETURN_ERROR_ON(padding[i].first > input->dimension(i));
244                     ARM_COMPUTE_RETURN_ERROR_ON(padding[i].second > input->dimension(i));
245                 }
246             }
247             break;
248         }
249         default:
250         {
251             ARM_COMPUTE_ERROR("Invalid mode");
252         }
253     }
254     return Status{};
255 }
256 
run()257 void NEPadLayer::run()
258 {
259     if(_num_dimensions > 0)
260     {
261         switch(_mode)
262         {
263             case PaddingMode::CONSTANT:
264             {
265                 NEScheduler::get().schedule(_pad_kernel.get(), Window::DimZ);
266                 break;
267             }
268             case PaddingMode::REFLECT:
269             case PaddingMode::SYMMETRIC:
270             {
271                 for(uint32_t i = 0; i < _num_dimensions; ++i)
272                 {
273                     if(_padding[i].first > 0 || _padding[i].second > 0)
274                     {
275                         if(_padding[i].first > 0 && _slice_results[2 * i].info()->total_size() > 0)
276                         {
277                             _slice_functions[2 * i].run();
278                         }
279                         if(_padding[i].second > 0 && _slice_results[2 * i + 1].info()->total_size() > 0)
280                         {
281                             _slice_functions[2 * i + 1].run();
282                         }
283                         _concat_functions[i].run();
284                     }
285                 }
286                 break;
287             }
288             default:
289                 ARM_COMPUTE_ERROR("Padding mode not supported.");
290         }
291     }
292     else
293     {
294         _copy_function.run();
295     }
296 }
297 } // namespace arm_compute
298