• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "IsochronousClockModel"
18 //#define LOG_NDEBUG 0
19 #include <log/log.h>
20 
21 #define __STDC_FORMAT_MACROS
22 #include <inttypes.h>
23 #include <stdint.h>
24 #include <algorithm>
25 
26 #include "utility/AudioClock.h"
27 #include "utility/AAudioUtilities.h"
28 #include "IsochronousClockModel.h"
29 
30 using namespace aaudio;
31 
32 using namespace android::audio_utils;
33 
34 #ifndef ICM_LOG_DRIFT
35 #define ICM_LOG_DRIFT   0
36 #endif // ICM_LOG_DRIFT
37 
38 // To enable the timestamp histogram, enter this before opening the stream:
39 //    adb root
40 //    adb shell setprop aaudio.log_mask 1
41 // A histogram of the lateness of the timestamps will be cleared when the stream is started.
42 // It will be updated when the model is stable and receives a timestamp,
43 // and dumped to the log when the stream is stopped.
44 
IsochronousClockModel()45 IsochronousClockModel::IsochronousClockModel()
46 {
47     if ((AAudioProperty_getLogMask() & AAUDIO_LOG_CLOCK_MODEL_HISTOGRAM) != 0) {
48         mHistogramMicros = std::make_unique<Histogram>(kHistogramBinCount,
49                 kHistogramBinWidthMicros);
50     }
51     update();
52 }
53 
setPositionAndTime(int64_t framePosition,int64_t nanoTime)54 void IsochronousClockModel::setPositionAndTime(int64_t framePosition, int64_t nanoTime) {
55     ALOGV("setPositionAndTime, %lld, %lld", (long long) framePosition, (long long) nanoTime);
56     mMarkerFramePosition = framePosition;
57     mMarkerNanoTime = nanoTime;
58 }
59 
start(int64_t nanoTime)60 void IsochronousClockModel::start(int64_t nanoTime) {
61     ALOGV("start(nanos = %lld)\n", (long long) nanoTime);
62     mMarkerNanoTime = nanoTime;
63     mState = STATE_STARTING;
64     mConsecutiveVeryLateCount = 0;
65     mDspStallCount = 0;
66     if (mHistogramMicros) {
67         mHistogramMicros->clear();
68     }
69 }
70 
stop(int64_t nanoTime)71 void IsochronousClockModel::stop(int64_t nanoTime) {
72     ALOGD("stop(nanos = %lld) max lateness = %d micros, DSP stalled %d times",
73           (long long) nanoTime,
74           (int) (mMaxMeasuredLatenessNanos / 1000),
75           mDspStallCount
76     );
77     setPositionAndTime(convertTimeToPosition(nanoTime), nanoTime);
78     // TODO should we set position?
79     mState = STATE_STOPPED;
80     if (mHistogramMicros) {
81         dumpHistogram();
82     }
83 }
84 
isStarting() const85 bool IsochronousClockModel::isStarting() const {
86     return mState == STATE_STARTING;
87 }
88 
isRunning() const89 bool IsochronousClockModel::isRunning() const {
90     return mState == STATE_RUNNING;
91 }
92 
processTimestamp(int64_t framePosition,int64_t nanoTime)93 void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) {
94     mTimestampCount++;
95 // Log position and time in CSV format so we can import it easily into spreadsheets.
96     //ALOGD("%s() CSV, %d, %lld, %lld", __func__,
97           //mTimestampCount, (long long)framePosition, (long long)nanoTime);
98     int64_t framesDelta = framePosition - mMarkerFramePosition;
99     int64_t nanosDelta = nanoTime - mMarkerNanoTime;
100     if (nanosDelta < 1000) {
101         return;
102     }
103 
104 //    ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu",
105 //         (long long)mMarkerFramePosition,
106 //         (long long)mMarkerNanoTime);
107 
108     int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta);
109 //    ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu",
110 //         (long long)expectedNanosDelta,
111 //         (long long)nanosDelta);
112 
113 //    ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate);
114 //    ALOGD("processTimestamp() - mState = %d", mState);
115     // Lateness relative to the start of the window.
116     int64_t latenessNanos = nanosDelta - expectedNanosDelta;
117     int32_t nextConsecutiveVeryLateCount = 0;
118     switch (mState) {
119     case STATE_STOPPED:
120         break;
121     case STATE_STARTING:
122         setPositionAndTime(framePosition, nanoTime);
123         mState = STATE_SYNCING;
124         break;
125     case STATE_SYNCING:
126         // This will handle a burst of rapid transfer at the beginning.
127         if (latenessNanos < 0) {
128             setPositionAndTime(framePosition, nanoTime);
129         } else {
130 //            ALOGD("processTimestamp() - advance to STATE_RUNNING");
131             mState = STATE_RUNNING;
132         }
133         break;
134     case STATE_RUNNING:
135         if (mHistogramMicros) {
136             mHistogramMicros->add(latenessNanos / AAUDIO_NANOS_PER_MICROSECOND);
137         }
138         // Modify estimated position based on lateness.
139         // This affects the "early" side of the window, which controls output glitches.
140         if (latenessNanos < 0) {
141             // Earlier than expected timestamp.
142             // This data is probably more accurate, so use it.
143             // Or we may be drifting due to a fast HW clock.
144             setPositionAndTime(framePosition, nanoTime);
145 #if ICM_LOG_DRIFT
146             int earlyDeltaMicros = (int) ((expectedNanosDelta - nanosDelta)
147                     / AAUDIO_NANOS_PER_MICROSECOND);
148             ALOGD("%s() - STATE_RUNNING - #%d, %5d micros EARLY",
149                 __func__, mTimestampCount, earlyDeltaMicros);
150 #endif
151         } else if (latenessNanos > mLatenessForJumpNanos) {
152             ALOGD("%s() - STATE_RUNNING - #%d, %5d micros VERY LATE, %d times",
153                   __func__,
154                   mTimestampCount,
155                   (int) (latenessNanos / AAUDIO_NANOS_PER_MICROSECOND),
156                   mConsecutiveVeryLateCount
157             );
158             // A lateness this large is probably due to a stall in the DSP.
159             // A pause causes a persistent lateness so we can detect it by counting
160             // consecutive late timestamps.
161             if (mConsecutiveVeryLateCount >= kVeryLateCountsNeededToTriggerJump) {
162                 // Assume the timestamp is valid and let subsequent EARLY timestamps
163                 // move the window quickly to the correct place.
164                 setPositionAndTime(framePosition, nanoTime); // JUMP!
165                 mDspStallCount++;
166                 // Throttle the warnings but do not silence them.
167                 // They indicate a bug that needs to be fixed!
168                 if ((nanoTime - mLastJumpWarningTimeNanos) > AAUDIO_NANOS_PER_SECOND) {
169                     ALOGW("%s() - STATE_RUNNING - #%d, %5d micros VERY LATE! Force window jump"
170                           ", mDspStallCount = %d",
171                           __func__,
172                           mTimestampCount,
173                           (int) (latenessNanos / AAUDIO_NANOS_PER_MICROSECOND),
174                           mDspStallCount
175                     );
176                     mLastJumpWarningTimeNanos = nanoTime;
177                 }
178             } else {
179                 nextConsecutiveVeryLateCount = mConsecutiveVeryLateCount + 1;
180                 driftForward(latenessNanos, expectedNanosDelta, framePosition);
181             }
182         } else if (latenessNanos > mLatenessForDriftNanos) {
183             driftForward(latenessNanos, expectedNanosDelta, framePosition);
184         }
185         mConsecutiveVeryLateCount = nextConsecutiveVeryLateCount;
186 
187         // Modify mMaxMeasuredLatenessNanos.
188         // This affects the "late" side of the window, which controls input glitches.
189         if (latenessNanos > mMaxMeasuredLatenessNanos) { // increase
190 #if ICM_LOG_DRIFT
191             ALOGD("%s() - STATE_RUNNING - #%d, newmax %d, oldmax %d micros LATE",
192                     __func__,
193                     mTimestampCount,
194                     (int) (latenessNanos / AAUDIO_NANOS_PER_MICROSECOND),
195                     (int) (mMaxMeasuredLatenessNanos / AAUDIO_NANOS_PER_MICROSECOND)
196                     );
197 #endif
198             mMaxMeasuredLatenessNanos = (int32_t) latenessNanos;
199         }
200 
201         break;
202     default:
203         break;
204     }
205 }
206 
207 // When we are on the late side, it may be because of preemption in the kernel,
208 // or timing jitter caused by resampling in the DSP,
209 // or we may be drifting due to a slow HW clock.
210 // We add slight drift value just in case there is actual long term drift
211 // forward caused by a slower clock.
212 // If the clock is faster than the model will get pushed earlier
213 // by the code in the earlier branch.
214 // The two opposing forces should allow the model to track the real clock
215 // over a long time.
driftForward(int64_t latenessNanos,int64_t expectedNanosDelta,int64_t framePosition)216 void IsochronousClockModel::driftForward(int64_t latenessNanos,
217                                          int64_t expectedNanosDelta,
218                                          int64_t framePosition) {
219     const int64_t driftNanos = (latenessNanos - mLatenessForDriftNanos) >> kShifterForDrift;
220     const int64_t minDriftNanos = std::min(driftNanos, kMaxDriftNanos);
221     const int64_t expectedMarkerNanoTime = mMarkerNanoTime + expectedNanosDelta;
222     const int64_t driftedTime = expectedMarkerNanoTime + minDriftNanos;
223     setPositionAndTime(framePosition, driftedTime);
224 #if ICM_LOG_DRIFT
225     ALOGD("%s() - STATE_RUNNING - #%d, %5d micros LATE, nudge window forward by %d micros",
226           __func__,
227           mTimestampCount,
228           (int) (latenessNanos / AAUDIO_NANOS_PER_MICROSECOND),
229           (int) (minDriftNanos / AAUDIO_NANOS_PER_MICROSECOND)
230     );
231 #endif
232 }
233 
setSampleRate(int32_t sampleRate)234 void IsochronousClockModel::setSampleRate(int32_t sampleRate) {
235     mSampleRate = sampleRate;
236     update();
237 }
238 
setFramesPerBurst(int32_t framesPerBurst)239 void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) {
240     mFramesPerBurst = framesPerBurst;
241     update();
242     ALOGD("%s() - mFramesPerBurst = %d - mBurstPeriodNanos = %" PRId64,
243           __func__,
244           mFramesPerBurst,
245           mBurstPeriodNanos
246           );
247 }
248 
249 // Update expected lateness based on sampleRate and framesPerBurst
update()250 void IsochronousClockModel::update() {
251     mBurstPeriodNanos = convertDeltaPositionToTime(mFramesPerBurst);
252     mLatenessForDriftNanos = mBurstPeriodNanos + kLatenessMarginForSchedulingJitter;
253     mLatenessForJumpNanos = mLatenessForDriftNanos * kScalerForJumpLateness;
254 }
255 
convertDeltaPositionToTime(int64_t framesDelta) const256 int64_t IsochronousClockModel::convertDeltaPositionToTime(int64_t framesDelta) const {
257     return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate;
258 }
259 
convertDeltaTimeToPosition(int64_t nanosDelta) const260 int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const {
261     return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND;
262 }
263 
convertPositionToTime(int64_t framePosition) const264 int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const {
265     if (mState == STATE_STOPPED) {
266         return mMarkerNanoTime;
267     }
268     int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst;
269     int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex;
270     int64_t framesDelta = nextBurstPosition - mMarkerFramePosition;
271     int64_t nanosDelta = convertDeltaPositionToTime(framesDelta);
272     int64_t time = mMarkerNanoTime + nanosDelta;
273 //    ALOGD("convertPositionToTime: pos = %llu --> time = %llu",
274 //         (unsigned long long)framePosition,
275 //         (unsigned long long)time);
276     return time;
277 }
278 
convertTimeToPosition(int64_t nanoTime) const279 int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const {
280     if (mState == STATE_STOPPED) {
281         return mMarkerFramePosition;
282     }
283     int64_t nanosDelta = nanoTime - mMarkerNanoTime;
284     int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta);
285     int64_t nextBurstPosition = mMarkerFramePosition + framesDelta;
286     int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst;
287     int64_t position = nextBurstIndex * mFramesPerBurst;
288 //    ALOGD("convertTimeToPosition: time = %llu --> pos = %llu",
289 //         (unsigned long long)nanoTime,
290 //         (unsigned long long)position);
291 //    ALOGD("convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d",
292 //         (long long) framesDelta, mFramesPerBurst);
293     return position;
294 }
295 
getLateTimeOffsetNanos() const296 int32_t IsochronousClockModel::getLateTimeOffsetNanos() const {
297     return mMaxMeasuredLatenessNanos + kExtraLatenessNanos;
298 }
299 
convertPositionToLatestTime(int64_t framePosition) const300 int64_t IsochronousClockModel::convertPositionToLatestTime(int64_t framePosition) const {
301     return convertPositionToTime(framePosition) + getLateTimeOffsetNanos();
302 }
303 
convertLatestTimeToPosition(int64_t nanoTime) const304 int64_t IsochronousClockModel::convertLatestTimeToPosition(int64_t nanoTime) const {
305     return convertTimeToPosition(nanoTime - getLateTimeOffsetNanos());
306 }
307 
dump() const308 void IsochronousClockModel::dump() const {
309     ALOGD("mMarkerFramePosition = %" PRId64, mMarkerFramePosition);
310     ALOGD("mMarkerNanoTime      = %" PRId64, mMarkerNanoTime);
311     ALOGD("mSampleRate          = %6d", mSampleRate);
312     ALOGD("mFramesPerBurst      = %6d", mFramesPerBurst);
313     ALOGD("mMaxMeasuredLatenessNanos = %6" PRId64, mMaxMeasuredLatenessNanos);
314     ALOGD("mState               = %6d", mState);
315 }
316 
dumpHistogram() const317 void IsochronousClockModel::dumpHistogram() const {
318     if (!mHistogramMicros) return;
319     std::istringstream istr(mHistogramMicros->dump());
320     std::string line;
321     while (std::getline(istr, line)) {
322         ALOGD("lateness, %s", line.c_str());
323     }
324 }
325