• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_HELPERS_H
25 #define ARM_COMPUTE_HELPERS_H
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/IAccessWindow.h"
29 #include "arm_compute/core/ITensor.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 
34 #include <array>
35 #include <cstddef>
36 #include <cstdint>
37 #include <tuple>
38 
39 namespace arm_compute
40 {
41 class IKernel;
42 class ITensor;
43 class ITensorInfo;
44 
45 /** Iterator updated by @ref execute_window_loop for each window element */
46 class Iterator
47 {
48 public:
49     /** Default constructor to create an empty iterator */
50     constexpr Iterator();
51     /** Create a container iterator for the metadata and allocation contained in the ITensor
52      *
53      * @param[in] tensor The tensor to associate to the iterator.
54      * @param[in] window The window which will be used to iterate over the tensor.
55      */
56     Iterator(const ITensor *tensor, const Window &window);
57 
58     /** Increment the iterator along the specified dimension of the step value associated to the dimension.
59      *
60      * @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow.
61      *
62      * @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start.
63      *
64      * @param[in] dimension Dimension to increment
65      */
66     void increment(size_t dimension);
67 
68     /** Return the offset in bytes from the first element to the current position of the iterator
69      *
70      * @return The current position of the iterator in bytes relative to the first element.
71      */
72     constexpr size_t offset() const;
73 
74     /** Return a pointer to the current pixel.
75      *
76      * @warning Only works if the iterator was created with an ITensor.
77      *
78      * @return equivalent to  buffer() + offset()
79      */
80     constexpr uint8_t *ptr() const;
81 
82     /** Move the iterator back to the beginning of the specified dimension.
83      *
84      * @param[in] dimension Dimension to reset
85      */
86     void reset(size_t dimension);
87 
88 private:
89     uint8_t *_ptr;
90 
91     class Dimension
92     {
93     public:
Dimension()94         constexpr Dimension()
95             : _dim_start(0), _stride(0)
96         {
97         }
98 
99         size_t _dim_start;
100         size_t _stride;
101     };
102 
103     std::array<Dimension, Coordinates::num_max_dimensions> _dims;
104 };
105 
106 /** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element.
107  *  It passes the x and y positions to the lambda_function for each iteration
108  *
109  * @param[in]     w               Window to iterate through.
110  * @param[in]     lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration.
111  *                                Where id represents the absolute coordinates of the item to process.
112  * @param[in,out] iterators       Tensor iterators which will be updated by this function before calling lambda_function.
113  */
114 template <typename L, typename... Ts>
115 inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators);
116 
117 /** Permutes given Dimensions according to a permutation vector
118  *
119  * @warning Validity of permutation is not checked
120  *
121  * @param[in, out] dimensions Dimensions to permute
122  * @param[in]      perm       Permutation vector
123  */
124 template <typename T>
permute(Dimensions<T> & dimensions,const PermutationVector & perm)125 inline void permute(Dimensions<T> &dimensions, const PermutationVector &perm)
126 {
127     auto dimensions_copy = utility::make_array<Dimensions<T>::num_max_dimensions>(dimensions.begin(), dimensions.end());
128     for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
129     {
130         T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0;
131         dimensions.set(i, dimension_val);
132     }
133 }
134 
135 /** Permutes given TensorShape according to a permutation vector
136  *
137  * @warning Validity of permutation is not checked
138  *
139  * @param[in, out] shape Shape to permute
140  * @param[in]      perm  Permutation vector
141  */
permute(TensorShape & shape,const PermutationVector & perm)142 inline void permute(TensorShape &shape, const PermutationVector &perm)
143 {
144     TensorShape shape_copy = shape;
145     for(unsigned int i = 0; i < perm.num_dimensions(); ++i)
146     {
147         size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1;
148         shape.set(i, dimension_val, false, false); // Avoid changes in _num_dimension
149     }
150 }
151 
152 /** Helper function to calculate the Valid Region for Scale.
153  *
154  * @param[in] src_info           Input tensor info used to check.
155  * @param[in] dst_shape          Shape of the output.
156  * @param[in] interpolate_policy Interpolation policy.
157  * @param[in] sampling_policy    Sampling policy.
158  * @param[in] border_undefined   True if the border is undefined.
159  *
160  * @return The corresponding valid region
161  */
162 ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape,
163                                          InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined);
164 
165 /** Convert a linear index into n-dimensional coordinates.
166  *
167  * @param[in] shape Shape of the n-dimensional tensor.
168  * @param[in] index Linear index specifying the i-th element.
169  *
170  * @return n-dimensional coordinates.
171  */
172 inline Coordinates index2coords(const TensorShape &shape, int index);
173 
174 /** Convert n-dimensional coordinates into a linear index.
175  *
176  * @param[in] shape Shape of the n-dimensional tensor.
177  * @param[in] coord N-dimensional coordinates.
178  *
179  * @return linead index
180  */
181 inline int coords2index(const TensorShape &shape, const Coordinates &coord);
182 
183 /** Returns a static map used to find an index or dimension based on a data layout
184   *
185   * *** Layouts ***
186   *
187   * *** 4D ***
188   * [N C H W]
189   * [3 2 1 0]
190   * [N H W C]
191   *
192   * * *** 5D ***
193   * [N C D H W]
194   * [4 3 2 1 0]
195   * [N D H W C]
196   */
197 const std::map<DataLayout, std::vector<DataLayoutDimension>> &get_layout_map();
198 
199 /** Get the index of the given dimension.
200  *
201  * @param[in] data_layout           The data layout.
202  * @param[in] data_layout_dimension The dimension which this index is requested for.
203  *
204  * @return The int conversion of the requested data layout index.
205  */
206 inline size_t get_data_layout_dimension_index(const DataLayout &data_layout, const DataLayoutDimension &data_layout_dimension);
207 
208 /** Get the DataLayoutDimension of a given index and layout.
209  *
210  * @param[in] data_layout The data layout.
211  * @param[in] index       The data layout index.
212  *
213  * @return The dimension which this index is requested for.
214  */
215 inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout &data_layout, const size_t index);
216 
217 /** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform
218  *  to know the number of tiles on the x and y direction
219  *
220  * @param[in] in_dims          Spatial dimensions of the input tensor of convolution layer
221  * @param[in] kernel_size      Kernel size
222  * @param[in] output_tile_size Size of a single output tile
223  * @param[in] conv_info        Convolution info (i.e. pad, stride,...)
224  *
225  * @return the number of output tiles along the x and y directions of size "output_tile_size"
226  */
compute_winograd_convolution_tiles(const Size2D & in_dims,const Size2D & kernel_size,const Size2D & output_tile_size,const PadStrideInfo & conv_info)227 inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info)
228 {
229     int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
230     int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
231 
232     // Clamp in case we provide paddings but we have 1D convolution
233     num_tiles_x = std::min(num_tiles_x, static_cast<int>(in_dims.width));
234     num_tiles_y = std::min(num_tiles_y, static_cast<int>(in_dims.height));
235 
236     return Size2D(num_tiles_x, num_tiles_y);
237 }
238 
239 /** Wrap-around a number within the range 0 <= x < m
240  *
241  * @param[in] x Input value
242  * @param[in] m Range
243  *
244  * @return the wrapped-around number
245  */
246 template <typename T>
wrap_around(T x,T m)247 inline T wrap_around(T x, T m)
248 {
249     return x >= 0 ? x % m : (x % m + m) % m;
250 }
251 
252 /** Convert negative coordinates to positive in the range [0, num_dims_input]
253  *
254  * @param[out] coords    Array of coordinates to be converted.
255  * @param[in]  max_value Maximum value to be used when wrapping the negative values in coords
256  */
convert_negative_axis(Coordinates & coords,int max_value)257 inline Coordinates &convert_negative_axis(Coordinates &coords, int max_value)
258 {
259     for(unsigned int i = 0; i < coords.num_dimensions(); ++i)
260     {
261         coords[i] = wrap_around(coords[i], max_value);
262     }
263     return coords;
264 }
265 } // namespace arm_compute
266 
267 #include "arm_compute/core/Helpers.inl"
268 #endif /*ARM_COMPUTE_HELPERS_H */
269