1# Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Helpers to manipulate a tensor graph in python. 16""" 17 18import copy 19import re 20 21from tensorflow.core.framework import graph_pb2 22from tensorflow.core.framework import node_def_pb2 23from tensorflow.python.framework import _proto_comparators 24from tensorflow.python.framework import dtypes 25from tensorflow.python.framework import ops 26from tensorflow.python.util import deprecation 27from tensorflow.python.util import lazy_loader 28from tensorflow.python.util.tf_export import tf_export 29 30tf_export(v1=["GraphDef"])(graph_pb2.GraphDef) 31 32# A normal import here would generate circular dependencies. 33convert_to_constants = lazy_loader.LazyLoader( 34 "convert_to_constants", globals(), 35 "tensorflow.python.framework.convert_to_constants") 36 37_VARIABLE_OPS = { 38 "Assign", 39 "AssignAdd", 40 "AssignSub", 41 "Queue", 42 "ScatterAdd", 43 "ScatterSub", 44 "ScatterUpdate", 45 "TruncatedNormal", 46 "Variable", 47 "VariableV2", 48} 49 50_CONTROL_FLOW_OP_NAMES_OR_IDENTITY = [ 51 "Switch", 52 "Enter", 53 "Exit", 54 "Identity", 55 "Merge", 56 "NextIteration", 57] 58 59_DEPRECATION_MSG = ( 60 "This API was designed for TensorFlow v1. See " 61 "https://www.tensorflow.org/guide/migrate for instructions on how to " 62 "migrate your code to TensorFlow v2.") 63 64 65def _is_variable_op(op): 66 """Returns true if 'op' refers to a Variable node.""" 67 return op in _VARIABLE_OPS 68 69# GraphDef protobuf docstring. 70graph_pb2.GraphDef.__doc__ = """\ 71A protobuf containing the graph of operations. 72 73@compatibility(TF2) 74This API is not available in TensorFlow 2.x. 75 76You should not need to use `GraphDef`s directly in TF2. To load `GraphDef`s in 77TF2, use SavedModel. The SavedModel contains the `GraphDef`. 78 79Before: 80 81```python 82with tf.io.gfile.GFile('/tmp/graph.pb', 'rb') as f: 83 graph_def = tf.compat.v1.GraphDef() 84 graph_def.ParseFromString(f.read()) 85``` 86 87After: 88 89```python 90tf.saved_model.load('/tmp/saved_model') 91``` 92 93If you would like to create a `GraphDef` in TF2, use `tf.function` and 94`get_concrete_function`. 95 96>>> @tf.function 97>>> def f(x): 98>>> return x 99>>> 100>>> graph_def = f.get_concrete_function(1.).graph.as_graph_def() 101>>> print(graph_def) 102 103@end_compatibility 104 105""" 106 107 108@deprecation.deprecated( 109 date=None, 110 instructions=_DEPRECATION_MSG) 111@tf_export(v1=["graph_util.must_run_on_cpu"]) 112def must_run_on_cpu(node, pin_variables_on_cpu=False): 113 """Returns True if the given node_def must run on CPU, otherwise False. 114 115 Args: 116 node: The node to be assigned to a device. Could be either an ops.Operation 117 or NodeDef. 118 pin_variables_on_cpu: If True, this function will return False if node_def 119 represents a variable-related op. 120 121 Returns: 122 True if the given node must run on CPU, otherwise False. 123 """ 124 125 if isinstance(node, ops.Operation): 126 node_def = node.node_def 127 else: 128 assert isinstance(node, node_def_pb2.NodeDef) 129 node_def = node 130 131 # If the op is a variable-related op, should we pin it on CPU? 132 if pin_variables_on_cpu and _is_variable_op(node_def.op): 133 return True 134 135 # Constant operations producing a string or int32 must run on CPU. 136 if node_def.op == "Const": 137 # Get the value of the 'dtype' attr 138 dtype = node_def.attr["dtype"].type 139 if dtype == dtypes.string or dtype == dtypes.int32: 140 return True 141 142 if node_def.op in ["DynamicStitch", "ParallelDynamicStitch"]: 143 dtype = node_def.attr["T"].type 144 if dtype == dtypes.int32: 145 # DynamicStitch on GPU only works for int32 values. 146 return True 147 148 if node_def.op in ["Cast"]: 149 dtype = node_def.attr["SrcT"].type 150 if dtype == dtypes.int32: 151 # Cast on GPU does not works for int32 values. 152 return True 153 return False 154 155 156################################################################################ 157# 158# device functions for use in with g.device(...) 159# 160################################################################################ 161 162 163def _node_name(n): 164 if n.startswith("^"): 165 return n[1:] 166 else: 167 return n.split(":")[0] 168 169 170def _get_colocated_node_name(colocated_node_name): 171 """Decodes colocated node name and returns it without loc:@ prepended.""" 172 colocated_node_decoded = colocated_node_name.decode("utf-8") 173 if colocated_node_decoded.startswith("loc:@"): 174 return colocated_node_decoded[5:] 175 return colocated_node_decoded 176 177 178def _extract_graph_summary(graph_def): 179 """Extracts useful information from the graph and returns them.""" 180 name_to_input_name = {} # Keyed by the dest node name. 181 name_to_node = {} # Keyed by node name. 182 183 # Keeps track of node sequences. It is important to still output the 184 # operations in the original order. 185 name_to_seq_num = {} # Keyed by node name. 186 seq = 0 187 for node in graph_def.node: 188 n = _node_name(node.name) 189 name_to_node[n] = node 190 name_to_input_name[n] = [_node_name(x) for x in node.input] 191 # Prevent colocated nodes from being lost. 192 if "_class" in node.attr: 193 for colocated_node_name in node.attr["_class"].list.s: 194 name_to_input_name[n].append( 195 _get_colocated_node_name(colocated_node_name)) 196 name_to_seq_num[n] = seq 197 seq += 1 198 return name_to_input_name, name_to_node, name_to_seq_num 199 200 201def _assert_nodes_are_present(name_to_node, nodes): 202 """Assert that nodes are present in the graph.""" 203 for d in nodes: 204 assert d in name_to_node, "%s is not in graph" % d 205 206 207def _bfs_for_reachable_nodes(target_nodes, name_to_input_name): 208 """Breadth first search for reachable nodes from target nodes.""" 209 nodes_to_keep = set() 210 # Breadth first search to find all the nodes that we should keep. 211 next_to_visit = list(target_nodes) 212 while next_to_visit: 213 node = next_to_visit[0] 214 del next_to_visit[0] 215 if node in nodes_to_keep: 216 # Already visited this node. 217 continue 218 nodes_to_keep.add(node) 219 if node in name_to_input_name: 220 next_to_visit += name_to_input_name[node] 221 return nodes_to_keep 222 223 224@deprecation.deprecated( 225 date=None, 226 instructions=_DEPRECATION_MSG) 227@tf_export(v1=["graph_util.extract_sub_graph"]) 228def extract_sub_graph(graph_def, dest_nodes): 229 """Extract the subgraph that can reach any of the nodes in 'dest_nodes'. 230 231 Args: 232 graph_def: A graph_pb2.GraphDef proto. 233 dest_nodes: An iterable of strings specifying the destination node names. 234 Returns: 235 The GraphDef of the sub-graph. 236 237 Raises: 238 TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto. 239 """ 240 241 if not isinstance(graph_def, graph_pb2.GraphDef): 242 raise TypeError("graph_def must be a graph_pb2.GraphDef proto, but got " 243 f"type {type(graph_def)}.") 244 245 if isinstance(dest_nodes, str): 246 raise TypeError("dest_nodes must be an iterable of strings, but got " 247 f"type {type(dest_nodes)}.") 248 249 name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary( 250 graph_def) 251 _assert_nodes_are_present(name_to_node, dest_nodes) 252 253 nodes_to_keep = _bfs_for_reachable_nodes(dest_nodes, name_to_input_name) 254 255 nodes_to_keep_list = sorted( 256 list(nodes_to_keep), key=lambda n: name_to_seq_num[n]) 257 # Now construct the output GraphDef 258 out = graph_pb2.GraphDef() 259 for n in nodes_to_keep_list: 260 out.node.extend([copy.deepcopy(name_to_node[n])]) 261 out.library.CopyFrom(graph_def.library) 262 out.versions.CopyFrom(graph_def.versions) 263 264 return out 265 266 267@deprecation.deprecated( 268 date=None, 269 instructions=_DEPRECATION_MSG) 270@tf_export(v1=["graph_util.tensor_shape_from_node_def_name"]) 271def tensor_shape_from_node_def_name(graph, input_name): 272 """Convenience function to get a shape from a NodeDef's input string.""" 273 # To get a tensor, the name must be in the form <input>:<port>, for example 274 # 'Mul:0'. The GraphDef input strings don't always have the port specified 275 # though, so if there isn't a colon we need to add a default ':0' to the end. 276 if ":" not in input_name: 277 canonical_name = input_name + ":0" 278 else: 279 canonical_name = input_name 280 tensor = graph.get_tensor_by_name(canonical_name) 281 shape = tensor.get_shape() 282 return shape 283 284 285@deprecation.deprecated( 286 date=None, 287 instructions=_DEPRECATION_MSG) 288@tf_export(v1=["graph_util.convert_variables_to_constants"]) 289def convert_variables_to_constants(sess, 290 input_graph_def, 291 output_node_names, 292 variable_names_whitelist=None, 293 variable_names_blacklist=None): 294 """Replaces all the variables in a graph with constants of the same values. 295 296 If you have a trained graph containing Variable ops, it can be convenient to 297 convert them all to Const ops holding the same values. This makes it possible 298 to describe the network fully with a single GraphDef file, and allows the 299 removal of a lot of ops related to loading and saving the variables. 300 301 Args: 302 sess: Active TensorFlow session containing the variables. 303 input_graph_def: GraphDef object holding the network. 304 output_node_names: List of name strings for the result nodes of the graph. 305 variable_names_whitelist: The set of variable names to convert (by default, 306 all variables are converted). 307 variable_names_blacklist: The set of variable names to omit converting 308 to constants. 309 310 Returns: 311 GraphDef containing a simplified version of the original. 312 313 Raises: 314 RuntimeError: if a DT_RESOURCE op is found whose ancestor Variables are both 315 denylisted AND whitelisted for freezing. 316 """ 317 ret = convert_to_constants.convert_variables_to_constants_from_session_graph( 318 session=sess, 319 graph_def=input_graph_def, 320 output_node_names=output_node_names, 321 variable_names_allowlist=variable_names_whitelist, 322 variable_names_denylist=variable_names_blacklist) 323 # The previous code logic generated an empty versions field, we clear it here 324 # to maintain backwards compatibility. 325 ret.versions.Clear() 326 return ret 327 328 329@deprecation.deprecated( 330 date=None, 331 instructions=_DEPRECATION_MSG) 332@tf_export(v1=["graph_util.remove_training_nodes"]) 333def remove_training_nodes(input_graph, protected_nodes=None): 334 """Prunes out nodes that aren't needed for inference. 335 336 There are nodes like Identity and CheckNumerics that are only useful 337 during training, and can be removed in graphs that will be used for 338 nothing but inference. Here we identify and remove them, returning an 339 equivalent graph. To be specific, CheckNumerics nodes are always removed, and 340 Identity nodes that aren't involved in control edges are spliced out so that 341 their input and outputs are directly connected. 342 343 Args: 344 input_graph: Model to analyze and prune. 345 protected_nodes: An optional list of names of nodes to be kept 346 unconditionally. This is for example useful to preserve Identity output 347 nodes. 348 349 Returns: 350 A list of nodes with the unnecessary ones removed. 351 """ 352 if not protected_nodes: 353 protected_nodes = [] 354 355 types_to_remove = {"CheckNumerics": True} 356 357 input_nodes = input_graph.node 358 names_to_remove = {} 359 for node in input_nodes: 360 if node.op in types_to_remove and node.name not in protected_nodes: 361 names_to_remove[node.name] = True 362 363 nodes_after_removal = [] 364 for node in input_nodes: 365 if node.name in names_to_remove: 366 continue 367 new_node = node_def_pb2.NodeDef() 368 new_node.CopyFrom(node) 369 input_before_removal = node.input 370 del new_node.input[:] 371 for full_input_name in input_before_removal: 372 input_name = re.sub(r"^\^", "", full_input_name) 373 if input_name in names_to_remove: 374 continue 375 new_node.input.append(full_input_name) 376 nodes_after_removal.append(new_node) 377 378 types_to_splice = {"Identity": True} 379 control_input_names = set() 380 node_names_with_control_input = set() 381 for node in nodes_after_removal: 382 for node_input in node.input: 383 if "^" in node_input: 384 control_input_names.add(node_input.replace("^", "")) 385 node_names_with_control_input.add(node.name) 386 387 names_to_splice = {} 388 for node in nodes_after_removal: 389 if node.op in types_to_splice and node.name not in protected_nodes: 390 # We don't want to remove nodes that have control edge inputs, because 391 # they might be involved in subtle dependency issues that removing them 392 # will jeopardize. 393 if node.name not in node_names_with_control_input: 394 names_to_splice[node.name] = node.input[0] 395 396 # We also don't want to remove nodes which are used as control edge inputs. 397 names_to_splice = {name: value for name, value in names_to_splice.items() 398 if name not in control_input_names} 399 400 nodes_after_splicing = [] 401 for node in nodes_after_removal: 402 if node.name in names_to_splice: 403 continue 404 new_node = node_def_pb2.NodeDef() 405 new_node.CopyFrom(node) 406 input_before_removal = node.input 407 del new_node.input[:] 408 for full_input_name in input_before_removal: 409 input_name = re.sub(r"^\^", "", full_input_name) 410 while input_name in names_to_splice: 411 full_input_name = names_to_splice[input_name] 412 input_name = re.sub(r"^\^", "", full_input_name) 413 new_node.input.append(full_input_name) 414 nodes_after_splicing.append(new_node) 415 416 output_graph = graph_pb2.GraphDef() 417 output_graph.node.extend(nodes_after_splicing) 418 return output_graph 419 420 421@tf_export("__internal__.graph_util.graph_defs_equal", v1=[]) 422def graph_defs_equal(graph_def_1: graph_pb2.GraphDef, 423 graph_def_2: graph_pb2.GraphDef, 424 treat_nan_as_equal: bool = False) -> bool: 425 """Returns True iff the graph def arguments are structurally equivalent. 426 427 The notion of equivalence encoded here checks that the set of NodeDefs in 428 the GraphDef's function library and main graph body are identical. 429 Additionally, it checks that the functions in the function library are equal 430 as sets. 431 432 Example usage: 433 434 ``` 435 with tf.Graph().as_default() as g1: 436 tf.constant(1) 437 438 with tf.Graph().as_default() as g2: 439 tf.constant(2) 440 441 with tf.Graph().as_default() as g3: 442 tf.constant(1) 443 444 assert tf.__internal__.graph_util.graph_defs_equal(g1.as_graph_def(), 445 g3.as_graph_def()) 446 447 assert not tf.__internal__.graph_util.graph_defs_equal(g1.as_graph_def(), 448 g2.as_graph_def()) 449 ``` 450 451 Args: 452 graph_def_1: Instance of `graph_pb2.GraphDef` to compare. 453 graph_def_2: Instance of `graph_pb2.GraphDef` to compare. 454 treat_nan_as_equal: Boolean indicating whether or not to treat nan 455 floating-point values as equal. This is crucial for any equivalence 456 relation defined over GraphDefs, to ensure symmetry. 457 458 Returns: 459 Boolean indicating structural equivalence as described above. 460 461 Raises: 462 TypeError: If either of the GraphDefs are not instances of 463 `graph_pb2.GraphDef`. 464 """ 465 if not isinstance(graph_def_1, graph_pb2.GraphDef): 466 raise TypeError("graph_def_1 must be a graph_pb2.GraphDef proto, but got " 467 f"type {type(graph_def_1)}.") 468 if not isinstance(graph_def_2, graph_pb2.GraphDef): 469 raise TypeError("graph_def_2 must be a graph_pb2.GraphDef proto, but got " 470 f"type {type(graph_def_2)}.") 471 options = _proto_comparators.ProtoComparisonOptions(treat_nan_as_equal) 472 return _proto_comparators.EqualsGraphDef(graph_def_1.SerializeToString(), 473 graph_def_2.SerializeToString(), 474 options) 475