1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/video_coding/codecs/test/videoprocessor.h"
12
13 #include <string.h>
14
15 #include <algorithm>
16 #include <cstddef>
17 #include <limits>
18 #include <memory>
19 #include <utility>
20
21 #include "api/scoped_refptr.h"
22 #include "api/video/builtin_video_bitrate_allocator_factory.h"
23 #include "api/video/i420_buffer.h"
24 #include "api/video/video_bitrate_allocator_factory.h"
25 #include "api/video/video_frame_buffer.h"
26 #include "api/video/video_rotation.h"
27 #include "api/video_codecs/video_codec.h"
28 #include "api/video_codecs/video_encoder.h"
29 #include "common_video/h264/h264_common.h"
30 #include "common_video/libyuv/include/webrtc_libyuv.h"
31 #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
32 #include "modules/video_coding/codecs/interface/common_constants.h"
33 #include "modules/video_coding/include/video_error_codes.h"
34 #include "rtc_base/checks.h"
35 #include "rtc_base/time_utils.h"
36 #include "test/gtest.h"
37 #include "third_party/libyuv/include/libyuv/compare.h"
38 #include "third_party/libyuv/include/libyuv/scale.h"
39
40 namespace webrtc {
41 namespace test {
42
43 namespace {
44 const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000;
45 const int kMaxBufferedInputFrames = 20;
46
47 const VideoEncoder::Capabilities kCapabilities(false);
48
GetMaxNaluSizeBytes(const EncodedImage & encoded_frame,const VideoCodecTestFixture::Config & config)49 size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
50 const VideoCodecTestFixture::Config& config) {
51 if (config.codec_settings.codecType != kVideoCodecH264)
52 return 0;
53
54 std::vector<webrtc::H264::NaluIndex> nalu_indices =
55 webrtc::H264::FindNaluIndices(encoded_frame.data(), encoded_frame.size());
56
57 RTC_CHECK(!nalu_indices.empty());
58
59 size_t max_size = 0;
60 for (const webrtc::H264::NaluIndex& index : nalu_indices)
61 max_size = std::max(max_size, index.payload_size);
62
63 return max_size;
64 }
65
GetTemporalLayerIndex(const CodecSpecificInfo & codec_specific)66 size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) {
67 size_t temporal_idx = 0;
68 if (codec_specific.codecType == kVideoCodecVP8) {
69 temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx;
70 } else if (codec_specific.codecType == kVideoCodecVP9) {
71 temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx;
72 }
73 if (temporal_idx == kNoTemporalIdx) {
74 temporal_idx = 0;
75 }
76 return temporal_idx;
77 }
78
GetElapsedTimeMicroseconds(int64_t start_ns,int64_t stop_ns)79 int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
80 int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
81 RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
82 RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
83 return static_cast<int>(diff_us);
84 }
85
CalculateFrameQuality(const I420BufferInterface & ref_buffer,const I420BufferInterface & dec_buffer,VideoCodecTestStats::FrameStatistics * frame_stat,bool calc_ssim)86 void CalculateFrameQuality(const I420BufferInterface& ref_buffer,
87 const I420BufferInterface& dec_buffer,
88 VideoCodecTestStats::FrameStatistics* frame_stat,
89 bool calc_ssim) {
90 if (ref_buffer.width() != dec_buffer.width() ||
91 ref_buffer.height() != dec_buffer.height()) {
92 RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width());
93 RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height());
94 // Downscale reference frame.
95 rtc::scoped_refptr<I420Buffer> scaled_buffer =
96 I420Buffer::Create(dec_buffer.width(), dec_buffer.height());
97 I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(),
98 ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(),
99 ref_buffer.width(), ref_buffer.height(),
100 scaled_buffer->MutableDataY(), scaled_buffer->StrideY(),
101 scaled_buffer->MutableDataU(), scaled_buffer->StrideU(),
102 scaled_buffer->MutableDataV(), scaled_buffer->StrideV(),
103 scaled_buffer->width(), scaled_buffer->height(),
104 libyuv::kFilterBox);
105
106 CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim);
107 } else {
108 const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
109 dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
110 ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
111
112 const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
113 dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
114 ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
115
116 const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
117 dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
118 ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
119
120 const size_t num_y_samples = dec_buffer.width() * dec_buffer.height();
121 const size_t num_u_samples =
122 dec_buffer.width() / 2 * dec_buffer.height() / 2;
123
124 frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
125 frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples);
126 frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples);
127 frame_stat->psnr = libyuv::SumSquareErrorToPsnr(
128 sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples);
129
130 if (calc_ssim) {
131 frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer);
132 }
133 }
134 }
135
136 } // namespace
137
VideoProcessor(webrtc::VideoEncoder * encoder,VideoDecoderList * decoders,FrameReader * input_frame_reader,const VideoCodecTestFixture::Config & config,VideoCodecTestStatsImpl * stats,IvfFileWriterMap * encoded_frame_writers,FrameWriterList * decoded_frame_writers)138 VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
139 VideoDecoderList* decoders,
140 FrameReader* input_frame_reader,
141 const VideoCodecTestFixture::Config& config,
142 VideoCodecTestStatsImpl* stats,
143 IvfFileWriterMap* encoded_frame_writers,
144 FrameWriterList* decoded_frame_writers)
145 : config_(config),
146 num_simulcast_or_spatial_layers_(
147 std::max(config_.NumberOfSimulcastStreams(),
148 config_.NumberOfSpatialLayers())),
149 analyze_frame_quality_(!config_.measure_cpu),
150 stats_(stats),
151 encoder_(encoder),
152 decoders_(decoders),
153 bitrate_allocator_(
154 CreateBuiltinVideoBitrateAllocatorFactory()
155 ->CreateVideoBitrateAllocator(config_.codec_settings)),
156 encode_callback_(this),
157 input_frame_reader_(input_frame_reader),
158 merged_encoded_frames_(num_simulcast_or_spatial_layers_),
159 encoded_frame_writers_(encoded_frame_writers),
160 decoded_frame_writers_(decoded_frame_writers),
161 last_inputed_frame_num_(0),
162 last_inputed_timestamp_(0),
163 first_encoded_frame_(num_simulcast_or_spatial_layers_, true),
164 last_encoded_frame_num_(num_simulcast_or_spatial_layers_),
165 first_decoded_frame_(num_simulcast_or_spatial_layers_, true),
166 last_decoded_frame_num_(num_simulcast_or_spatial_layers_),
167 last_decoded_frame_buffer_(num_simulcast_or_spatial_layers_),
168 post_encode_time_ns_(0),
169 is_finalized_(false) {
170 // Sanity checks.
171 RTC_CHECK(TaskQueueBase::Current())
172 << "VideoProcessor must be run on a task queue.";
173 RTC_CHECK(stats_);
174 RTC_CHECK(encoder_);
175 RTC_CHECK(decoders_);
176 RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_);
177 RTC_CHECK(input_frame_reader_);
178 RTC_CHECK(encoded_frame_writers_);
179 RTC_CHECK(!decoded_frame_writers ||
180 decoded_frame_writers->size() == num_simulcast_or_spatial_layers_);
181
182 // Setup required callbacks for the encoder and decoder and initialize them.
183 RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
184 WEBRTC_VIDEO_CODEC_OK);
185
186 // Initialize codecs so that they are ready to receive frames.
187 RTC_CHECK_EQ(encoder_->InitEncode(
188 &config_.codec_settings,
189 VideoEncoder::Settings(
190 kCapabilities, static_cast<int>(config_.NumberOfCores()),
191 config_.max_payload_size_bytes)),
192 WEBRTC_VIDEO_CODEC_OK);
193
194 for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
195 decode_callback_.push_back(
196 std::make_unique<VideoProcessorDecodeCompleteCallback>(this, i));
197 VideoDecoder::Settings decoder_settings;
198 decoder_settings.set_max_render_resolution(
199 {config_.codec_settings.width, config_.codec_settings.height});
200 decoder_settings.set_codec_type(config_.codec_settings.codecType);
201 decoder_settings.set_number_of_cores(config_.NumberOfCores());
202 RTC_CHECK(decoders_->at(i)->Configure(decoder_settings));
203 RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback(
204 decode_callback_.at(i).get()),
205 WEBRTC_VIDEO_CODEC_OK);
206 }
207 }
208
~VideoProcessor()209 VideoProcessor::~VideoProcessor() {
210 RTC_DCHECK_RUN_ON(&sequence_checker_);
211
212 if (!is_finalized_) {
213 Finalize();
214 }
215
216 // Explicitly reset codecs, in case they don't do that themselves when they
217 // go out of scope.
218 RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
219 encoder_->RegisterEncodeCompleteCallback(nullptr);
220 for (auto& decoder : *decoders_) {
221 RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK);
222 decoder->RegisterDecodeCompleteCallback(nullptr);
223 }
224
225 // Sanity check.
226 RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames);
227 }
228
ProcessFrame()229 void VideoProcessor::ProcessFrame() {
230 RTC_DCHECK_RUN_ON(&sequence_checker_);
231 RTC_DCHECK(!is_finalized_);
232
233 RTC_DCHECK_GT(target_rates_.size(), 0u);
234 RTC_DCHECK_EQ(target_rates_.begin()->first, 0u);
235 RateProfile target_rate =
236 std::prev(target_rates_.upper_bound(last_inputed_frame_num_))->second;
237
238 const size_t frame_number = last_inputed_frame_num_++;
239
240 // Get input frame and store for future quality calculation.
241 rtc::scoped_refptr<I420BufferInterface> buffer =
242 input_frame_reader_->ReadFrame();
243 RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
244 const size_t timestamp =
245 last_inputed_timestamp_ +
246 static_cast<size_t>(kVideoPayloadTypeFrequency / target_rate.input_fps);
247 VideoFrame input_frame =
248 VideoFrame::Builder()
249 .set_video_frame_buffer(buffer)
250 .set_timestamp_rtp(static_cast<uint32_t>(timestamp))
251 .set_timestamp_ms(static_cast<int64_t>(timestamp / kMsToRtpTimestamp))
252 .set_rotation(webrtc::kVideoRotation_0)
253 .build();
254 // Store input frame as a reference for quality calculations.
255 if (config_.decode && !config_.measure_cpu) {
256 if (input_frames_.size() == kMaxBufferedInputFrames) {
257 input_frames_.erase(input_frames_.begin());
258 }
259
260 if (config_.reference_width != -1 && config_.reference_height != -1 &&
261 (input_frame.width() != config_.reference_width ||
262 input_frame.height() != config_.reference_height)) {
263 rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
264 config_.codec_settings.width, config_.codec_settings.height);
265 scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
266
267 VideoFrame scaled_reference_frame = input_frame;
268 scaled_reference_frame.set_video_frame_buffer(scaled_buffer);
269 input_frames_.emplace(frame_number, scaled_reference_frame);
270
271 if (config_.reference_width == config_.codec_settings.width &&
272 config_.reference_height == config_.codec_settings.height) {
273 // Both encoding and comparison uses the same down-scale factor, reuse
274 // it for encoder below.
275 input_frame = scaled_reference_frame;
276 }
277 } else {
278 input_frames_.emplace(frame_number, input_frame);
279 }
280 }
281 last_inputed_timestamp_ = timestamp;
282
283 post_encode_time_ns_ = 0;
284
285 // Create frame statistics object for all simulcast/spatial layers.
286 for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
287 FrameStatistics frame_stat(frame_number, timestamp, i);
288 stats_->AddFrame(frame_stat);
289 }
290
291 // For the highest measurement accuracy of the encode time, the start/stop
292 // time recordings should wrap the Encode call as tightly as possible.
293 const int64_t encode_start_ns = rtc::TimeNanos();
294 for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
295 FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
296 frame_stat->encode_start_ns = encode_start_ns;
297 }
298
299 if (input_frame.width() != config_.codec_settings.width ||
300 input_frame.height() != config_.codec_settings.height) {
301 rtc::scoped_refptr<I420Buffer> scaled_buffer = I420Buffer::Create(
302 config_.codec_settings.width, config_.codec_settings.height);
303 scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420());
304 input_frame.set_video_frame_buffer(scaled_buffer);
305 }
306
307 // Encode.
308 const std::vector<VideoFrameType> frame_types =
309 (frame_number == 0)
310 ? std::vector<VideoFrameType>{VideoFrameType::kVideoFrameKey}
311 : std::vector<VideoFrameType>{VideoFrameType::kVideoFrameDelta};
312 const int encode_return_code = encoder_->Encode(input_frame, &frame_types);
313 for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) {
314 FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i);
315 frame_stat->encode_return_code = encode_return_code;
316 }
317 }
318
SetRates(size_t bitrate_kbps,double framerate_fps)319 void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) {
320 RTC_DCHECK_RUN_ON(&sequence_checker_);
321 RTC_DCHECK(!is_finalized_);
322
323 target_rates_[last_inputed_frame_num_] =
324 RateProfile({.target_kbps = bitrate_kbps, .input_fps = framerate_fps});
325
326 auto bitrate_allocation =
327 bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
328 static_cast<uint32_t>(bitrate_kbps * 1000), framerate_fps));
329 encoder_->SetRates(
330 VideoEncoder::RateControlParameters(bitrate_allocation, framerate_fps));
331 }
332
Decoded(VideoFrame & image)333 int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded(
334 VideoFrame& image) {
335 // Post the callback to the right task queue, if needed.
336 if (!task_queue_->IsCurrent()) {
337 // There might be a limited amount of output buffers, make a copy to make
338 // sure we don't block the decoder.
339 VideoFrame copy = VideoFrame::Builder()
340 .set_video_frame_buffer(I420Buffer::Copy(
341 *image.video_frame_buffer()->ToI420()))
342 .set_rotation(image.rotation())
343 .set_timestamp_us(image.timestamp_us())
344 .set_id(image.id())
345 .build();
346 copy.set_timestamp(image.timestamp());
347
348 task_queue_->PostTask([this, copy]() {
349 video_processor_->FrameDecoded(copy, simulcast_svc_idx_);
350 });
351 return 0;
352 }
353 video_processor_->FrameDecoded(image, simulcast_svc_idx_);
354 return 0;
355 }
356
FrameEncoded(const webrtc::EncodedImage & encoded_image,const webrtc::CodecSpecificInfo & codec_specific)357 void VideoProcessor::FrameEncoded(
358 const webrtc::EncodedImage& encoded_image,
359 const webrtc::CodecSpecificInfo& codec_specific) {
360 RTC_DCHECK_RUN_ON(&sequence_checker_);
361
362 // For the highest measurement accuracy of the encode time, the start/stop
363 // time recordings should wrap the Encode call as tightly as possible.
364 const int64_t encode_stop_ns = rtc::TimeNanos();
365
366 const VideoCodecType codec_type = codec_specific.codecType;
367 if (config_.encoded_frame_checker) {
368 config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image);
369 }
370
371 // Layer metadata.
372 size_t spatial_idx = encoded_image.SpatialIndex().value_or(0);
373 size_t temporal_idx = GetTemporalLayerIndex(codec_specific);
374
375 FrameStatistics* frame_stat =
376 stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
377 const size_t frame_number = frame_stat->frame_number;
378
379 // Ensure that the encode order is monotonically increasing, within this
380 // simulcast/spatial layer.
381 RTC_CHECK(first_encoded_frame_[spatial_idx] ||
382 last_encoded_frame_num_[spatial_idx] < frame_number);
383
384 // Ensure SVC spatial layers are delivered in ascending order.
385 const size_t num_spatial_layers = config_.NumberOfSpatialLayers();
386 if (!first_encoded_frame_[spatial_idx] && num_spatial_layers > 1) {
387 for (size_t i = 0; i < spatial_idx; ++i) {
388 RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number);
389 }
390 for (size_t i = spatial_idx + 1; i < num_simulcast_or_spatial_layers_;
391 ++i) {
392 RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]);
393 }
394 }
395 first_encoded_frame_[spatial_idx] = false;
396 last_encoded_frame_num_[spatial_idx] = frame_number;
397
398 RateProfile target_rate =
399 std::prev(target_rates_.upper_bound(frame_number))->second;
400 auto bitrate_allocation =
401 bitrate_allocator_->Allocate(VideoBitrateAllocationParameters(
402 static_cast<uint32_t>(target_rate.target_kbps * 1000),
403 target_rate.input_fps));
404
405 // Update frame statistics.
406 frame_stat->encoding_successful = true;
407 frame_stat->encode_time_us = GetElapsedTimeMicroseconds(
408 frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_);
409 frame_stat->target_bitrate_kbps =
410 bitrate_allocation.GetTemporalLayerSum(spatial_idx, temporal_idx) / 1000;
411 frame_stat->target_framerate_fps = target_rate.input_fps;
412 frame_stat->length_bytes = encoded_image.size();
413 frame_stat->frame_type = encoded_image._frameType;
414 frame_stat->temporal_idx = temporal_idx;
415 frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
416 frame_stat->qp = encoded_image.qp_;
417
418 if (codec_type == kVideoCodecVP9) {
419 const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9;
420 frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted;
421 frame_stat->non_ref_for_inter_layer_pred =
422 vp9_info.non_ref_for_inter_layer_pred;
423 } else {
424 frame_stat->inter_layer_predicted = false;
425 frame_stat->non_ref_for_inter_layer_pred = true;
426 }
427
428 const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image;
429 if (config_.decode || !encoded_frame_writers_->empty()) {
430 if (num_spatial_layers > 1) {
431 encoded_image_for_decode = BuildAndStoreSuperframe(
432 encoded_image, codec_type, frame_number, spatial_idx,
433 frame_stat->inter_layer_predicted);
434 }
435 }
436
437 if (config_.decode) {
438 DecodeFrame(*encoded_image_for_decode, spatial_idx);
439
440 if (codec_specific.end_of_picture && num_spatial_layers > 1) {
441 // If inter-layer prediction is enabled and upper layer was dropped then
442 // base layer should be passed to upper layer decoder. Otherwise decoder
443 // won't be able to decode next superframe.
444 const EncodedImage* base_image = nullptr;
445 const FrameStatistics* base_stat = nullptr;
446 for (size_t i = 0; i < num_spatial_layers; ++i) {
447 const bool layer_dropped = (first_decoded_frame_[i] ||
448 last_decoded_frame_num_[i] < frame_number);
449
450 // Ensure current layer was decoded.
451 RTC_CHECK(layer_dropped == false || i != spatial_idx);
452
453 if (!layer_dropped) {
454 base_image = &merged_encoded_frames_[i];
455 base_stat =
456 stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), i);
457 } else if (base_image && !base_stat->non_ref_for_inter_layer_pred) {
458 DecodeFrame(*base_image, i);
459 }
460 }
461 }
462 } else {
463 frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT;
464 }
465
466 // Since frames in higher TLs typically depend on frames in lower TLs,
467 // write out frames in lower TLs to bitstream dumps of higher TLs.
468 for (size_t write_temporal_idx = temporal_idx;
469 write_temporal_idx < config_.NumberOfTemporalLayers();
470 ++write_temporal_idx) {
471 const VideoProcessor::LayerKey layer_key(spatial_idx, write_temporal_idx);
472 auto it = encoded_frame_writers_->find(layer_key);
473 if (it != encoded_frame_writers_->cend()) {
474 RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode,
475 config_.codec_settings.codecType));
476 }
477 }
478
479 if (!config_.encode_in_real_time) {
480 // To get pure encode time for next layers, measure time spent in encode
481 // callback and subtract it from encode time of next layers.
482 post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns;
483 }
484 }
485
CalcFrameQuality(const I420BufferInterface & decoded_frame,FrameStatistics * frame_stat)486 void VideoProcessor::CalcFrameQuality(const I420BufferInterface& decoded_frame,
487 FrameStatistics* frame_stat) {
488 RTC_DCHECK_RUN_ON(&sequence_checker_);
489
490 const auto reference_frame = input_frames_.find(frame_stat->frame_number);
491 RTC_CHECK(reference_frame != input_frames_.cend())
492 << "The codecs are either buffering too much, dropping too much, or "
493 "being too slow relative to the input frame rate.";
494
495 // SSIM calculation is not optimized. Skip it in real-time mode.
496 const bool calc_ssim = !config_.encode_in_real_time;
497 CalculateFrameQuality(*reference_frame->second.video_frame_buffer()->ToI420(),
498 decoded_frame, frame_stat, calc_ssim);
499
500 frame_stat->quality_analysis_successful = true;
501 }
502
WriteDecodedFrame(const I420BufferInterface & decoded_frame,FrameWriter & frame_writer)503 void VideoProcessor::WriteDecodedFrame(const I420BufferInterface& decoded_frame,
504 FrameWriter& frame_writer) {
505 int input_video_width = config_.codec_settings.width;
506 int input_video_height = config_.codec_settings.height;
507
508 rtc::scoped_refptr<I420Buffer> scaled_buffer;
509 const I420BufferInterface* scaled_frame;
510
511 if (decoded_frame.width() == input_video_width &&
512 decoded_frame.height() == input_video_height) {
513 scaled_frame = &decoded_frame;
514 } else {
515 EXPECT_DOUBLE_EQ(
516 static_cast<double>(input_video_width) / input_video_height,
517 static_cast<double>(decoded_frame.width()) / decoded_frame.height());
518
519 scaled_buffer = I420Buffer::Create(input_video_width, input_video_height);
520 scaled_buffer->ScaleFrom(decoded_frame);
521
522 scaled_frame = scaled_buffer.get();
523 }
524
525 // Ensure there is no padding.
526 RTC_CHECK_EQ(scaled_frame->StrideY(), input_video_width);
527 RTC_CHECK_EQ(scaled_frame->StrideU(), input_video_width / 2);
528 RTC_CHECK_EQ(scaled_frame->StrideV(), input_video_width / 2);
529
530 RTC_CHECK_EQ(3 * input_video_width * input_video_height / 2,
531 frame_writer.FrameLength());
532
533 RTC_CHECK(frame_writer.WriteFrame(scaled_frame->DataY()));
534 }
535
FrameDecoded(const VideoFrame & decoded_frame,size_t spatial_idx)536 void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame,
537 size_t spatial_idx) {
538 RTC_DCHECK_RUN_ON(&sequence_checker_);
539
540 // For the highest measurement accuracy of the decode time, the start/stop
541 // time recordings should wrap the Decode call as tightly as possible.
542 const int64_t decode_stop_ns = rtc::TimeNanos();
543
544 FrameStatistics* frame_stat =
545 stats_->GetFrameWithTimestamp(decoded_frame.timestamp(), spatial_idx);
546 const size_t frame_number = frame_stat->frame_number;
547
548 if (!first_decoded_frame_[spatial_idx]) {
549 for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
550 dropped_frame_number < frame_number; ++dropped_frame_number) {
551 FrameStatistics* dropped_frame_stat =
552 stats_->GetFrame(dropped_frame_number, spatial_idx);
553
554 if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
555 // Calculate frame quality comparing input frame with last decoded one.
556 CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx],
557 dropped_frame_stat);
558 }
559
560 if (decoded_frame_writers_ != nullptr) {
561 // Fill drops with last decoded frame to make them look like freeze at
562 // playback and to keep decoded layers in sync.
563 WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
564 *decoded_frame_writers_->at(spatial_idx));
565 }
566 }
567 }
568
569 // Ensure that the decode order is monotonically increasing, within this
570 // simulcast/spatial layer.
571 RTC_CHECK(first_decoded_frame_[spatial_idx] ||
572 last_decoded_frame_num_[spatial_idx] < frame_number);
573 first_decoded_frame_[spatial_idx] = false;
574 last_decoded_frame_num_[spatial_idx] = frame_number;
575
576 // Update frame statistics.
577 frame_stat->decoding_successful = true;
578 frame_stat->decode_time_us =
579 GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
580 frame_stat->decoded_width = decoded_frame.width();
581 frame_stat->decoded_height = decoded_frame.height();
582
583 // Skip quality metrics calculation to not affect CPU usage.
584 if (analyze_frame_quality_ || decoded_frame_writers_) {
585 // Save last decoded frame to handle possible future drops.
586 rtc::scoped_refptr<I420BufferInterface> i420buffer =
587 decoded_frame.video_frame_buffer()->ToI420();
588
589 // Copy decoded frame to a buffer without padding/stride such that we can
590 // dump Y, U and V planes into a file in one shot.
591 last_decoded_frame_buffer_[spatial_idx] = I420Buffer::Copy(
592 i420buffer->width(), i420buffer->height(), i420buffer->DataY(),
593 i420buffer->StrideY(), i420buffer->DataU(), i420buffer->StrideU(),
594 i420buffer->DataV(), i420buffer->StrideV());
595 }
596
597 if (analyze_frame_quality_) {
598 CalcFrameQuality(*decoded_frame.video_frame_buffer()->ToI420(), frame_stat);
599 }
600
601 if (decoded_frame_writers_ != nullptr) {
602 WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
603 *decoded_frame_writers_->at(spatial_idx));
604 }
605
606 // Erase all buffered input frames that we have moved past for all
607 // simulcast/spatial layers. Never buffer more than
608 // `kMaxBufferedInputFrames` frames, to protect against long runs of
609 // consecutive frame drops for a particular layer.
610 const auto min_last_decoded_frame_num = std::min_element(
611 last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend());
612 const size_t min_buffered_frame_num =
613 std::max(0, static_cast<int>(frame_number) - kMaxBufferedInputFrames + 1);
614 RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend());
615 const auto input_frames_erase_before = input_frames_.lower_bound(
616 std::max(*min_last_decoded_frame_num, min_buffered_frame_num));
617 input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before);
618 }
619
DecodeFrame(const EncodedImage & encoded_image,size_t spatial_idx)620 void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image,
621 size_t spatial_idx) {
622 RTC_DCHECK_RUN_ON(&sequence_checker_);
623 FrameStatistics* frame_stat =
624 stats_->GetFrameWithTimestamp(encoded_image.Timestamp(), spatial_idx);
625
626 frame_stat->decode_start_ns = rtc::TimeNanos();
627 frame_stat->decode_return_code =
628 decoders_->at(spatial_idx)->Decode(encoded_image, false, 0);
629 }
630
BuildAndStoreSuperframe(const EncodedImage & encoded_image,const VideoCodecType codec,size_t frame_number,size_t spatial_idx,bool inter_layer_predicted)631 const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe(
632 const EncodedImage& encoded_image,
633 const VideoCodecType codec,
634 size_t frame_number,
635 size_t spatial_idx,
636 bool inter_layer_predicted) {
637 // Should only be called for SVC.
638 RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1);
639
640 EncodedImage base_image;
641 RTC_CHECK_EQ(base_image.size(), 0);
642
643 // Each SVC layer is decoded with dedicated decoder. Find the nearest
644 // non-dropped base frame and merge it and current frame into superframe.
645 if (inter_layer_predicted) {
646 for (int base_idx = static_cast<int>(spatial_idx) - 1; base_idx >= 0;
647 --base_idx) {
648 EncodedImage lower_layer = merged_encoded_frames_.at(base_idx);
649 if (lower_layer.Timestamp() == encoded_image.Timestamp()) {
650 base_image = lower_layer;
651 break;
652 }
653 }
654 }
655 const size_t payload_size_bytes = base_image.size() + encoded_image.size();
656
657 auto buffer = EncodedImageBuffer::Create(payload_size_bytes);
658 if (base_image.size()) {
659 RTC_CHECK(base_image.data());
660 memcpy(buffer->data(), base_image.data(), base_image.size());
661 }
662 memcpy(buffer->data() + base_image.size(), encoded_image.data(),
663 encoded_image.size());
664
665 EncodedImage copied_image = encoded_image;
666 copied_image.SetEncodedData(buffer);
667 if (base_image.size())
668 copied_image._frameType = base_image._frameType;
669
670 // Replace previous EncodedImage for this spatial layer.
671 merged_encoded_frames_.at(spatial_idx) = std::move(copied_image);
672
673 return &merged_encoded_frames_.at(spatial_idx);
674 }
675
Finalize()676 void VideoProcessor::Finalize() {
677 RTC_DCHECK_RUN_ON(&sequence_checker_);
678 RTC_DCHECK(!is_finalized_);
679 is_finalized_ = true;
680
681 if (!(analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) &&
682 decoded_frame_writers_ == nullptr) {
683 return;
684 }
685
686 for (size_t spatial_idx = 0; spatial_idx < num_simulcast_or_spatial_layers_;
687 ++spatial_idx) {
688 if (first_decoded_frame_[spatial_idx]) {
689 continue; // No decoded frames on this spatial layer.
690 }
691
692 for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1;
693 dropped_frame_number < last_inputed_frame_num_;
694 ++dropped_frame_number) {
695 FrameStatistics* frame_stat =
696 stats_->GetFrame(dropped_frame_number, spatial_idx);
697
698 RTC_DCHECK(!frame_stat->decoding_successful);
699
700 if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) {
701 CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], frame_stat);
702 }
703
704 if (decoded_frame_writers_ != nullptr) {
705 WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx],
706 *decoded_frame_writers_->at(spatial_idx));
707 }
708 }
709 }
710 }
711
712 } // namespace test
713 } // namespace webrtc
714