• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image.h"
18 
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sstream>
22 #include <sys/stat.h>
23 #include <zlib.h>
24 
25 #include "android-base/stringprintf.h"
26 
27 #include "base/bit_utils.h"
28 #include "base/length_prefixed_array.h"
29 #include "base/utils.h"
30 #include "mirror/object-inl.h"
31 #include "mirror/object_array-inl.h"
32 #include "mirror/object_array.h"
33 
34 namespace art {
35 
36 const uint8_t ImageHeader::kImageMagic[] = { 'a', 'r', 't', '\n' };
37 // Last change: Add DexCacheSection.
38 const uint8_t ImageHeader::kImageVersion[] = { '1', '0', '8', '\0' };
39 
ImageHeader(uint32_t image_reservation_size,uint32_t component_count,uint32_t image_begin,uint32_t image_size,ImageSection * sections,uint32_t image_roots,uint32_t oat_checksum,uint32_t oat_file_begin,uint32_t oat_data_begin,uint32_t oat_data_end,uint32_t oat_file_end,uint32_t boot_image_begin,uint32_t boot_image_size,uint32_t boot_image_component_count,uint32_t boot_image_checksum,uint32_t pointer_size)40 ImageHeader::ImageHeader(uint32_t image_reservation_size,
41                          uint32_t component_count,
42                          uint32_t image_begin,
43                          uint32_t image_size,
44                          ImageSection* sections,
45                          uint32_t image_roots,
46                          uint32_t oat_checksum,
47                          uint32_t oat_file_begin,
48                          uint32_t oat_data_begin,
49                          uint32_t oat_data_end,
50                          uint32_t oat_file_end,
51                          uint32_t boot_image_begin,
52                          uint32_t boot_image_size,
53                          uint32_t boot_image_component_count,
54                          uint32_t boot_image_checksum,
55                          uint32_t pointer_size)
56   : image_reservation_size_(image_reservation_size),
57     component_count_(component_count),
58     image_begin_(image_begin),
59     image_size_(image_size),
60     image_checksum_(0u),
61     oat_checksum_(oat_checksum),
62     oat_file_begin_(oat_file_begin),
63     oat_data_begin_(oat_data_begin),
64     oat_data_end_(oat_data_end),
65     oat_file_end_(oat_file_end),
66     boot_image_begin_(boot_image_begin),
67     boot_image_size_(boot_image_size),
68     boot_image_component_count_(boot_image_component_count),
69     boot_image_checksum_(boot_image_checksum),
70     image_roots_(image_roots),
71     pointer_size_(pointer_size) {
72   CHECK_EQ(image_begin, RoundUp(image_begin, kPageSize));
73   if (oat_checksum != 0u) {
74     CHECK_EQ(oat_file_begin, RoundUp(oat_file_begin, kPageSize));
75     CHECK_EQ(oat_data_begin, RoundUp(oat_data_begin, kPageSize));
76     CHECK_LT(image_roots, oat_file_begin);
77     CHECK_LE(oat_file_begin, oat_data_begin);
78     CHECK_LT(oat_data_begin, oat_data_end);
79     CHECK_LE(oat_data_end, oat_file_end);
80   }
81   CHECK(ValidPointerSize(pointer_size_)) << pointer_size_;
82   memcpy(magic_, kImageMagic, sizeof(kImageMagic));
83   memcpy(version_, kImageVersion, sizeof(kImageVersion));
84   std::copy_n(sections, kSectionCount, sections_);
85 }
86 
RelocateImageReferences(int64_t delta)87 void ImageHeader::RelocateImageReferences(int64_t delta) {
88   CHECK_ALIGNED(delta, kPageSize) << "relocation delta must be page aligned";
89   oat_file_begin_ += delta;
90   oat_data_begin_ += delta;
91   oat_data_end_ += delta;
92   oat_file_end_ += delta;
93   image_begin_ += delta;
94   image_roots_ += delta;
95 }
96 
RelocateBootImageReferences(int64_t delta)97 void ImageHeader::RelocateBootImageReferences(int64_t delta) {
98   CHECK_ALIGNED(delta, kPageSize) << "relocation delta must be page aligned";
99   DCHECK_EQ(boot_image_begin_ != 0u, boot_image_size_ != 0u);
100   if (boot_image_begin_ != 0u) {
101     boot_image_begin_ += delta;
102   }
103   for (size_t i = 0; i < kImageMethodsCount; ++i) {
104     image_methods_[i] += delta;
105   }
106 }
107 
IsAppImage() const108 bool ImageHeader::IsAppImage() const {
109   // Unlike boot image and boot image extensions which include address space for
110   // oat files in their reservation size, app images are loaded separately from oat
111   // files and their reservation size is the image size rounded up to full page.
112   return image_reservation_size_ == RoundUp(image_size_, kPageSize);
113 }
114 
GetImageSpaceCount() const115 uint32_t ImageHeader::GetImageSpaceCount() const {
116   DCHECK(!IsAppImage());
117   DCHECK_NE(component_count_, 0u);  // Must be the header for the first component.
118   // For images compiled with --single-image, there is only one oat file. To detect
119   // that, check whether the reservation ends at the end of the first oat file.
120   return (image_begin_ + image_reservation_size_ == oat_file_end_) ? 1u : component_count_;
121 }
122 
IsValid() const123 bool ImageHeader::IsValid() const {
124   if (memcmp(magic_, kImageMagic, sizeof(kImageMagic)) != 0) {
125     return false;
126   }
127   if (memcmp(version_, kImageVersion, sizeof(kImageVersion)) != 0) {
128     return false;
129   }
130   if (!IsAligned<kPageSize>(image_reservation_size_)) {
131     return false;
132   }
133   // Unsigned so wraparound is well defined.
134   if (image_begin_ >= image_begin_ + image_size_) {
135     return false;
136   }
137   if (oat_checksum_ != 0u) {
138     if (oat_file_begin_ > oat_file_end_) {
139       return false;
140     }
141     if (oat_data_begin_ > oat_data_end_) {
142       return false;
143     }
144     if (oat_file_begin_ >= oat_data_begin_) {
145       return false;
146     }
147   }
148   return true;
149 }
150 
GetMagic() const151 const char* ImageHeader::GetMagic() const {
152   CHECK(IsValid());
153   return reinterpret_cast<const char*>(magic_);
154 }
155 
GetImageMethod(ImageMethod index) const156 ArtMethod* ImageHeader::GetImageMethod(ImageMethod index) const {
157   CHECK_LT(static_cast<size_t>(index), kImageMethodsCount);
158   return reinterpret_cast<ArtMethod*>(image_methods_[index]);
159 }
160 
operator <<(std::ostream & os,const ImageSection & section)161 std::ostream& operator<<(std::ostream& os, const ImageSection& section) {
162   return os << "size=" << section.Size() << " range=" << section.Offset() << "-" << section.End();
163 }
164 
VisitObjects(ObjectVisitor * visitor,uint8_t * base,PointerSize pointer_size) const165 void ImageHeader::VisitObjects(ObjectVisitor* visitor,
166                                uint8_t* base,
167                                PointerSize pointer_size) const {
168   DCHECK_EQ(pointer_size, GetPointerSize());
169   const ImageSection& objects = GetObjectsSection();
170   static const size_t kStartPos = RoundUp(sizeof(ImageHeader), kObjectAlignment);
171   for (size_t pos = kStartPos; pos < objects.Size(); ) {
172     mirror::Object* object = reinterpret_cast<mirror::Object*>(base + objects.Offset() + pos);
173     visitor->Visit(object);
174     pos += RoundUp(object->SizeOf(), kObjectAlignment);
175   }
176 }
177 
GetPointerSize() const178 PointerSize ImageHeader::GetPointerSize() const {
179   return ConvertToPointerSize(pointer_size_);
180 }
181 
LZ4_decompress_safe_checked(const char * source,char * dest,int compressed_size,int max_decompressed_size,size_t * decompressed_size_checked,std::string * error_msg)182 bool LZ4_decompress_safe_checked(const char* source,
183                                  char* dest,
184                                  int compressed_size,
185                                  int max_decompressed_size,
186                                  /*out*/ size_t* decompressed_size_checked,
187                                  /*out*/ std::string* error_msg) {
188   int decompressed_size = LZ4_decompress_safe(source, dest, compressed_size, max_decompressed_size);
189   if (UNLIKELY(decompressed_size < 0)) {
190     *error_msg = android::base::StringPrintf("LZ4_decompress_safe() returned negative size: %d",
191                                              decompressed_size);
192     return false;
193   } else {
194     *decompressed_size_checked = static_cast<size_t>(decompressed_size);
195     return true;
196   }
197 }
198 
Decompress(uint8_t * out_ptr,const uint8_t * in_ptr,std::string * error_msg) const199 bool ImageHeader::Block::Decompress(uint8_t* out_ptr,
200                                     const uint8_t* in_ptr,
201                                     std::string* error_msg) const {
202   switch (storage_mode_) {
203     case kStorageModeUncompressed: {
204       CHECK_EQ(image_size_, data_size_);
205       memcpy(out_ptr + image_offset_, in_ptr + data_offset_, data_size_);
206       break;
207     }
208     case kStorageModeLZ4:
209     case kStorageModeLZ4HC: {
210       // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
211       size_t decompressed_size;
212       bool ok = LZ4_decompress_safe_checked(
213           reinterpret_cast<const char*>(in_ptr) + data_offset_,
214           reinterpret_cast<char*>(out_ptr) + image_offset_,
215           data_size_,
216           image_size_,
217           &decompressed_size,
218           error_msg);
219       if (!ok) {
220         return false;
221       }
222       CHECK_EQ(decompressed_size, image_size_);
223       break;
224     }
225     default: {
226       if (error_msg != nullptr) {
227         *error_msg = (std::ostringstream() << "Invalid image format " << storage_mode_).str();
228       }
229       return false;
230     }
231   }
232   return true;
233 }
234 
GetImageSectionName(ImageSections index)235 const char* ImageHeader::GetImageSectionName(ImageSections index) {
236   switch (index) {
237     case kSectionObjects: return "Objects";
238     case kSectionArtFields: return "ArtFields";
239     case kSectionArtMethods: return "ArtMethods";
240     case kSectionRuntimeMethods: return "RuntimeMethods";
241     case kSectionImTables: return "ImTables";
242     case kSectionIMTConflictTables: return "IMTConflictTables";
243     case kSectionInternedStrings: return "InternedStrings";
244     case kSectionClassTable: return "ClassTable";
245     case kSectionStringReferenceOffsets: return "StringReferenceOffsets";
246     case kSectionDexCacheArrays: return "DexCacheArrays";
247     case kSectionMetadata: return "Metadata";
248     case kSectionImageBitmap: return "ImageBitmap";
249     case kSectionCount: return nullptr;
250   }
251 }
252 
253 // If `image_storage_mode` is compressed, compress data from `source`
254 // into `storage`, and return an array pointing to the compressed.
255 // If the mode is uncompressed, just return an array pointing to `source`.
MaybeCompressData(ArrayRef<const uint8_t> source,ImageHeader::StorageMode image_storage_mode,dchecked_vector<uint8_t> * storage)256 static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
257                                                  ImageHeader::StorageMode image_storage_mode,
258                                                  /*out*/ dchecked_vector<uint8_t>* storage) {
259   const uint64_t compress_start_time = NanoTime();
260 
261   switch (image_storage_mode) {
262     case ImageHeader::kStorageModeLZ4: {
263       storage->resize(LZ4_compressBound(source.size()));
264       size_t data_size = LZ4_compress_default(
265           reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
266           reinterpret_cast<char*>(storage->data()),
267           source.size(),
268           storage->size());
269       storage->resize(data_size);
270       break;
271     }
272     case ImageHeader::kStorageModeLZ4HC: {
273       // Bound is same as non HC.
274       storage->resize(LZ4_compressBound(source.size()));
275       size_t data_size = LZ4_compress_HC(
276           reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
277           reinterpret_cast<char*>(storage->data()),
278           source.size(),
279           storage->size(),
280           LZ4HC_CLEVEL_MAX);
281       storage->resize(data_size);
282       break;
283     }
284     case ImageHeader::kStorageModeUncompressed: {
285       return source;
286     }
287     default: {
288       LOG(FATAL) << "Unsupported";
289       UNREACHABLE();
290     }
291   }
292 
293   DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
294          image_storage_mode == ImageHeader::kStorageModeLZ4HC);
295   VLOG(image) << "Compressed from " << source.size() << " to " << storage->size() << " in "
296               << PrettyDuration(NanoTime() - compress_start_time);
297   if (kIsDebugBuild) {
298     dchecked_vector<uint8_t> decompressed(source.size());
299     size_t decompressed_size;
300     std::string error_msg;
301     bool ok = LZ4_decompress_safe_checked(
302         reinterpret_cast<char*>(storage->data()),
303         reinterpret_cast<char*>(decompressed.data()),
304         storage->size(),
305         decompressed.size(),
306         &decompressed_size,
307         &error_msg);
308     if (!ok) {
309       LOG(FATAL) << error_msg;
310       UNREACHABLE();
311     }
312     CHECK_EQ(decompressed_size, decompressed.size());
313     CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
314   }
315   return ArrayRef<const uint8_t>(*storage);
316 }
317 
WriteData(const ImageFileGuard & image_file,const uint8_t * data,const uint8_t * bitmap_data,ImageHeader::StorageMode image_storage_mode,uint32_t max_image_block_size,bool update_checksum,std::string * error_msg)318 bool ImageHeader::WriteData(const ImageFileGuard& image_file,
319                             const uint8_t* data,
320                             const uint8_t* bitmap_data,
321                             ImageHeader::StorageMode image_storage_mode,
322                             uint32_t max_image_block_size,
323                             bool update_checksum,
324                             std::string* error_msg) {
325   const bool is_compressed = image_storage_mode != ImageHeader::kStorageModeUncompressed;
326   dchecked_vector<std::pair<uint32_t, uint32_t>> block_sources;
327   dchecked_vector<ImageHeader::Block> blocks;
328 
329   // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
330   // is a block that must be decompressed all at once.
331   auto add_blocks = [&](uint32_t offset, uint32_t size) {
332     while (size != 0u) {
333       const uint32_t cur_size = std::min(size, max_image_block_size);
334       block_sources.emplace_back(offset, cur_size);
335       offset += cur_size;
336       size -= cur_size;
337     }
338   };
339 
340   add_blocks(sizeof(ImageHeader), this->GetImageSize() - sizeof(ImageHeader));
341 
342   // Checksum of compressed image data and header.
343   uint32_t image_checksum = 0u;
344   if (update_checksum) {
345     image_checksum = adler32(0L, Z_NULL, 0);
346     image_checksum = adler32(image_checksum,
347                              reinterpret_cast<const uint8_t*>(this),
348                              sizeof(ImageHeader));
349   }
350 
351   // Copy and compress blocks.
352   uint32_t out_offset = sizeof(ImageHeader);
353   for (const std::pair<uint32_t, uint32_t> block : block_sources) {
354     ArrayRef<const uint8_t> raw_image_data(data + block.first, block.second);
355     dchecked_vector<uint8_t> compressed_data;
356     ArrayRef<const uint8_t> image_data =
357         MaybeCompressData(raw_image_data, image_storage_mode, &compressed_data);
358 
359     if (!is_compressed) {
360       // For uncompressed, preserve alignment since the image will be directly mapped.
361       out_offset = block.first;
362     }
363 
364     // Fill in the compressed location of the block.
365     blocks.emplace_back(ImageHeader::Block(
366         image_storage_mode,
367         /*data_offset=*/ out_offset,
368         /*data_size=*/ image_data.size(),
369         /*image_offset=*/ block.first,
370         /*image_size=*/ block.second));
371 
372     if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
373       *error_msg = "Failed to write image file data " +
374           image_file->GetPath() + ": " + std::string(strerror(errno));
375       return false;
376     }
377     out_offset += image_data.size();
378     if (update_checksum) {
379       image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
380     }
381   }
382 
383   if (is_compressed) {
384     // Align up since the compressed data is not necessarily aligned.
385     out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
386     CHECK(!blocks.empty());
387     const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
388     if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
389       *error_msg = "Failed to write image blocks " +
390           image_file->GetPath() + ": " + std::string(strerror(errno));
391       return false;
392     }
393     this->blocks_offset_ = out_offset;
394     this->blocks_count_ = blocks.size();
395     out_offset += blocks_bytes;
396   }
397 
398   // Data size includes everything except the bitmap.
399   this->data_size_ = out_offset - sizeof(ImageHeader);
400 
401   // Update and write the bitmap section. Note that the bitmap section is relative to the
402   // possibly compressed image.
403   ImageSection& bitmap_section = GetImageSection(ImageHeader::kSectionImageBitmap);
404   // Align up since data size may be unaligned if the image is compressed.
405   out_offset = RoundUp(out_offset, kPageSize);
406   bitmap_section = ImageSection(out_offset, bitmap_section.Size());
407 
408   if (!image_file->PwriteFully(bitmap_data,
409                                bitmap_section.Size(),
410                                bitmap_section.Offset())) {
411     *error_msg = "Failed to write image file bitmap " +
412         image_file->GetPath() + ": " + std::string(strerror(errno));
413     return false;
414   }
415 
416   int err = image_file->Flush();
417   if (err < 0) {
418     *error_msg = "Failed to flush image file " + image_file->GetPath() + ": " + std::to_string(err);
419     return false;
420   }
421 
422   if (update_checksum) {
423       // Calculate the image checksum of the remaining data.
424     image_checksum = adler32(GetImageChecksum(),
425                              reinterpret_cast<const uint8_t*>(bitmap_data),
426                              bitmap_section.Size());
427     this->SetImageChecksum(image_checksum);
428   }
429 
430   if (VLOG_IS_ON(image)) {
431     const size_t separately_written_section_size = bitmap_section.Size();
432     const size_t total_uncompressed_size = image_size_ + separately_written_section_size;
433     const size_t total_compressed_size = out_offset + separately_written_section_size;
434 
435     VLOG(compiler) << "UncompressedImageSize = " << total_uncompressed_size;
436     if (total_uncompressed_size != total_compressed_size) {
437       VLOG(compiler) << "CompressedImageSize = " << total_compressed_size;
438     }
439   }
440 
441   DCHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
442       << "Bitmap should be at the end of the file";
443   return true;
444 }
445 
446 }  // namespace art
447