1 /**
2 * libf2fs.c
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 * Copyright (c) 2019 Google Inc.
7 * http://www.google.com/
8 * Copyright (c) 2020 Google Inc.
9 * Robin Hsu <robinhsu@google.com>
10 * : add quick-buffer for sload compression support
11 *
12 * Dual licensed under the GPL or LGPL version 2 licenses.
13 */
14 #define _LARGEFILE64_SOURCE
15
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 #include <errno.h>
20 #include <unistd.h>
21 #include <fcntl.h>
22 #ifdef HAVE_MNTENT_H
23 #include <mntent.h>
24 #endif
25 #include <time.h>
26 #ifdef HAVE_SYS_STAT_H
27 #include <sys/stat.h>
28 #endif
29 #ifdef HAVE_SYS_MOUNT_H
30 #include <sys/mount.h>
31 #endif
32 #ifdef HAVE_SYS_IOCTL_H
33 #include <sys/ioctl.h>
34 #endif
35 #ifdef HAVE_LINUX_HDREG_H
36 #include <linux/hdreg.h>
37 #endif
38
39 #include <stdbool.h>
40 #include <assert.h>
41 #include <inttypes.h>
42 #include "f2fs_fs.h"
43
44 struct f2fs_configuration c;
45
46 #ifdef HAVE_SPARSE_SPARSE_H
47 #include <sparse/sparse.h>
48 struct sparse_file *f2fs_sparse_file;
49 static char **blocks;
50 uint64_t blocks_count;
51 static char *zeroed_block;
52 #endif
53
__get_device_fd(__u64 * offset)54 static int __get_device_fd(__u64 *offset)
55 {
56 __u64 blk_addr = *offset >> F2FS_BLKSIZE_BITS;
57 int i;
58
59 for (i = 0; i < c.ndevs; i++) {
60 if (c.devices[i].start_blkaddr <= blk_addr &&
61 c.devices[i].end_blkaddr >= blk_addr) {
62 *offset -=
63 c.devices[i].start_blkaddr << F2FS_BLKSIZE_BITS;
64 return c.devices[i].fd;
65 }
66 }
67 return -1;
68 }
69
70 #ifndef HAVE_LSEEK64
71 typedef off_t off64_t;
72
lseek64(int fd,__u64 offset,int set)73 static inline off64_t lseek64(int fd, __u64 offset, int set)
74 {
75 return lseek(fd, offset, set);
76 }
77 #endif
78
79 /* ---------- dev_cache, Least Used First (LUF) policy ------------------- */
80 /*
81 * Least used block will be the first victim to be replaced when max hash
82 * collision exceeds
83 */
84 static bool *dcache_valid; /* is the cached block valid? */
85 static off64_t *dcache_blk; /* which block it cached */
86 static uint64_t *dcache_lastused; /* last used ticks for cache entries */
87 static char *dcache_buf; /* cached block data */
88 static uint64_t dcache_usetick; /* current use tick */
89
90 static uint64_t dcache_raccess;
91 static uint64_t dcache_rhit;
92 static uint64_t dcache_rmiss;
93 static uint64_t dcache_rreplace;
94
95 static bool dcache_exit_registered = false;
96
97 /*
98 * Shadow config:
99 *
100 * Active set of the configurations.
101 * Global configuration 'dcache_config' will be transferred here when
102 * when dcache_init() is called
103 */
104 static dev_cache_config_t dcache_config = {0, 16, 1};
105 static bool dcache_initialized = false;
106
107 #define MIN_NUM_CACHE_ENTRY 1024L
108 #define MAX_MAX_HASH_COLLISION 16
109
110 static long dcache_relocate_offset0[] = {
111 20, -20, 40, -40, 80, -80, 160, -160,
112 320, -320, 640, -640, 1280, -1280, 2560, -2560,
113 };
114 static int dcache_relocate_offset[16];
115
dcache_print_statistics(void)116 static void dcache_print_statistics(void)
117 {
118 long i;
119 long useCnt;
120
121 /* Number of used cache entries */
122 useCnt = 0;
123 for (i = 0; i < dcache_config.num_cache_entry; i++)
124 if (dcache_valid[i])
125 ++useCnt;
126
127 /*
128 * c: number of cache entries
129 * u: used entries
130 * RA: number of read access blocks
131 * CH: cache hit
132 * CM: cache miss
133 * Repl: read cache replaced
134 */
135 printf ("\nc, u, RA, CH, CM, Repl=\n");
136 printf ("%ld %ld %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
137 dcache_config.num_cache_entry,
138 useCnt,
139 dcache_raccess,
140 dcache_rhit,
141 dcache_rmiss,
142 dcache_rreplace);
143 }
144
dcache_release(void)145 void dcache_release(void)
146 {
147 if (!dcache_initialized)
148 return;
149
150 dcache_initialized = false;
151
152 if (c.cache_config.dbg_en)
153 dcache_print_statistics();
154
155 if (dcache_blk != NULL)
156 free(dcache_blk);
157 if (dcache_lastused != NULL)
158 free(dcache_lastused);
159 if (dcache_buf != NULL)
160 free(dcache_buf);
161 if (dcache_valid != NULL)
162 free(dcache_valid);
163 dcache_config.num_cache_entry = 0;
164 dcache_blk = NULL;
165 dcache_lastused = NULL;
166 dcache_buf = NULL;
167 dcache_valid = NULL;
168 }
169
170 // return 0 for success, error code for failure.
dcache_alloc_all(long n)171 static int dcache_alloc_all(long n)
172 {
173 if (n <= 0)
174 return -1;
175 if ((dcache_blk = (off64_t *) malloc(sizeof(off64_t) * n)) == NULL
176 || (dcache_lastused = (uint64_t *)
177 malloc(sizeof(uint64_t) * n)) == NULL
178 || (dcache_buf = (char *) malloc (F2FS_BLKSIZE * n)) == NULL
179 || (dcache_valid = (bool *) malloc(sizeof(bool) * n)) == NULL)
180 {
181 dcache_release();
182 return -1;
183 }
184 dcache_config.num_cache_entry = n;
185 return 0;
186 }
187
dcache_relocate_init(void)188 static void dcache_relocate_init(void)
189 {
190 int i;
191 int n0 = (sizeof(dcache_relocate_offset0)
192 / sizeof(dcache_relocate_offset0[0]));
193 int n = (sizeof(dcache_relocate_offset)
194 / sizeof(dcache_relocate_offset[0]));
195
196 ASSERT(n == n0);
197 for (i = 0; i < n && i < dcache_config.max_hash_collision; i++) {
198 if (labs(dcache_relocate_offset0[i])
199 > dcache_config.num_cache_entry / 2) {
200 dcache_config.max_hash_collision = i;
201 break;
202 }
203 dcache_relocate_offset[i] =
204 dcache_config.num_cache_entry
205 + dcache_relocate_offset0[i];
206 }
207 }
208
dcache_init(void)209 void dcache_init(void)
210 {
211 long n;
212
213 if (c.cache_config.num_cache_entry <= 0)
214 return;
215
216 /* release previous cache init, if any */
217 dcache_release();
218
219 dcache_blk = NULL;
220 dcache_lastused = NULL;
221 dcache_buf = NULL;
222 dcache_valid = NULL;
223
224 dcache_config = c.cache_config;
225
226 n = max(MIN_NUM_CACHE_ENTRY, dcache_config.num_cache_entry);
227
228 /* halve alloc size until alloc succeed, or min cache reached */
229 while (dcache_alloc_all(n) != 0 && n != MIN_NUM_CACHE_ENTRY)
230 n = max(MIN_NUM_CACHE_ENTRY, n/2);
231
232 /* must be the last: data dependent on num_cache_entry */
233 dcache_relocate_init();
234 dcache_initialized = true;
235
236 if (!dcache_exit_registered) {
237 dcache_exit_registered = true;
238 atexit(dcache_release); /* auto release */
239 }
240
241 dcache_raccess = 0;
242 dcache_rhit = 0;
243 dcache_rmiss = 0;
244 dcache_rreplace = 0;
245 }
246
dcache_addr(long entry)247 static inline char *dcache_addr(long entry)
248 {
249 return dcache_buf + F2FS_BLKSIZE * entry;
250 }
251
252 /* relocate on (n+1)-th collision */
dcache_relocate(long entry,int n)253 static inline long dcache_relocate(long entry, int n)
254 {
255 assert(dcache_config.num_cache_entry != 0);
256 return (entry + dcache_relocate_offset[n]) %
257 dcache_config.num_cache_entry;
258 }
259
dcache_find(off64_t blk)260 static long dcache_find(off64_t blk)
261 {
262 register long n = dcache_config.num_cache_entry;
263 register unsigned m = dcache_config.max_hash_collision;
264 long entry, least_used, target;
265 unsigned try;
266
267 assert(n > 0);
268 target = least_used = entry = blk % n; /* simple modulo hash */
269
270 for (try = 0; try < m; try++) {
271 if (!dcache_valid[target] || dcache_blk[target] == blk)
272 return target; /* found target or empty cache slot */
273 if (dcache_lastused[target] < dcache_lastused[least_used])
274 least_used = target;
275 target = dcache_relocate(entry, try); /* next target */
276 }
277 return least_used; /* max search reached, return least used slot */
278 }
279
280 /* Physical read into cache */
dcache_io_read(int fd,long entry,off64_t offset,off64_t blk)281 static int dcache_io_read(int fd, long entry, off64_t offset, off64_t blk)
282 {
283 if (lseek64(fd, offset, SEEK_SET) < 0) {
284 MSG(0, "\n lseek64 fail.\n");
285 return -1;
286 }
287 if (read(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
288 MSG(0, "\n read() fail.\n");
289 return -1;
290 }
291 dcache_lastused[entry] = ++dcache_usetick;
292 dcache_valid[entry] = true;
293 dcache_blk[entry] = blk;
294 return 0;
295 }
296
297 /*
298 * - Note: Read/Write are not symmetric:
299 * For read, we need to do it block by block, due to the cache nature:
300 * some blocks may be cached, and others don't.
301 * For write, since we always do a write-thru, we can join all writes into one,
302 * and write it once at the caller. This function updates the cache for write, but
303 * not the do a physical write. The caller is responsible for the physical write.
304 * - Note: We concentrate read/write together, due to the fact of similar structure to find
305 * the relavant cache entries
306 * - Return values:
307 * 0: success
308 * 1: cache not available (uninitialized)
309 * -1: error
310 */
dcache_update_rw(int fd,void * buf,off64_t offset,size_t byte_count,bool is_write)311 static int dcache_update_rw(int fd, void *buf, off64_t offset,
312 size_t byte_count, bool is_write)
313 {
314 off64_t blk;
315 int addr_in_blk;
316 off64_t start;
317
318 if (!dcache_initialized)
319 dcache_init(); /* auto initialize */
320
321 if (!dcache_initialized)
322 return 1; /* not available */
323
324 blk = offset / F2FS_BLKSIZE;
325 addr_in_blk = offset % F2FS_BLKSIZE;
326 start = blk * F2FS_BLKSIZE;
327
328 while (byte_count != 0) {
329 size_t cur_size = min(byte_count,
330 (size_t)(F2FS_BLKSIZE - addr_in_blk));
331 long entry = dcache_find(blk);
332
333 if (!is_write)
334 ++dcache_raccess;
335
336 if (dcache_valid[entry] && dcache_blk[entry] == blk) {
337 /* cache hit */
338 if (is_write) /* write: update cache */
339 memcpy(dcache_addr(entry) + addr_in_blk,
340 buf, cur_size);
341 else
342 ++dcache_rhit;
343 } else {
344 /* cache miss */
345 if (!is_write) {
346 int err;
347 ++dcache_rmiss;
348 if (dcache_valid[entry])
349 ++dcache_rreplace;
350 /* read: physical I/O read into cache */
351 err = dcache_io_read(fd, entry, start, blk);
352 if (err)
353 return err;
354 }
355 }
356
357 /* read: copy data from cache */
358 /* write: nothing to do, since we don't do physical write. */
359 if (!is_write)
360 memcpy(buf, dcache_addr(entry) + addr_in_blk,
361 cur_size);
362
363 /* next block */
364 ++blk;
365 buf += cur_size;
366 start += F2FS_BLKSIZE;
367 byte_count -= cur_size;
368 addr_in_blk = 0;
369 }
370 return 0;
371 }
372
373 /*
374 * dcache_update_cache() just update cache, won't do physical I/O.
375 * Thus even no error, we need normal non-cache I/O for actual write
376 *
377 * return value: 1: cache not available
378 * 0: success, -1: I/O error
379 */
dcache_update_cache(int fd,void * buf,off64_t offset,size_t count)380 int dcache_update_cache(int fd, void *buf, off64_t offset, size_t count)
381 {
382 return dcache_update_rw(fd, buf, offset, count, true);
383 }
384
385 /* handles read into cache + read into buffer */
dcache_read(int fd,void * buf,off64_t offset,size_t count)386 int dcache_read(int fd, void *buf, off64_t offset, size_t count)
387 {
388 return dcache_update_rw(fd, buf, offset, count, false);
389 }
390
391 /*
392 * IO interfaces
393 */
dev_read_version(void * buf,__u64 offset,size_t len)394 int dev_read_version(void *buf, __u64 offset, size_t len)
395 {
396 if (c.sparse_mode)
397 return 0;
398 if (lseek64(c.kd, (off64_t)offset, SEEK_SET) < 0)
399 return -1;
400 if (read(c.kd, buf, len) < 0)
401 return -1;
402 return 0;
403 }
404
405 #ifdef HAVE_SPARSE_SPARSE_H
sparse_read_blk(__u64 block,int count,void * buf)406 static int sparse_read_blk(__u64 block, int count, void *buf)
407 {
408 int i;
409 char *out = buf;
410 __u64 cur_block;
411
412 for (i = 0; i < count; ++i) {
413 cur_block = block + i;
414 if (blocks[cur_block])
415 memcpy(out + (i * F2FS_BLKSIZE),
416 blocks[cur_block], F2FS_BLKSIZE);
417 else if (blocks)
418 memset(out + (i * F2FS_BLKSIZE), 0, F2FS_BLKSIZE);
419 }
420 return 0;
421 }
422
sparse_write_blk(__u64 block,int count,const void * buf)423 static int sparse_write_blk(__u64 block, int count, const void *buf)
424 {
425 int i;
426 __u64 cur_block;
427 const char *in = buf;
428
429 for (i = 0; i < count; ++i) {
430 cur_block = block + i;
431 if (blocks[cur_block] == zeroed_block)
432 blocks[cur_block] = NULL;
433 if (!blocks[cur_block]) {
434 blocks[cur_block] = calloc(1, F2FS_BLKSIZE);
435 if (!blocks[cur_block])
436 return -ENOMEM;
437 }
438 memcpy(blocks[cur_block], in + (i * F2FS_BLKSIZE),
439 F2FS_BLKSIZE);
440 }
441 return 0;
442 }
443
sparse_write_zeroed_blk(__u64 block,int count)444 static int sparse_write_zeroed_blk(__u64 block, int count)
445 {
446 int i;
447 __u64 cur_block;
448
449 for (i = 0; i < count; ++i) {
450 cur_block = block + i;
451 if (blocks[cur_block])
452 continue;
453 blocks[cur_block] = zeroed_block;
454 }
455 return 0;
456 }
457
458 #ifdef SPARSE_CALLBACK_USES_SIZE_T
sparse_import_segment(void * UNUSED (priv),const void * data,size_t len,unsigned int block,unsigned int nr_blocks)459 static int sparse_import_segment(void *UNUSED(priv), const void *data,
460 size_t len, unsigned int block, unsigned int nr_blocks)
461 #else
462 static int sparse_import_segment(void *UNUSED(priv), const void *data, int len,
463 unsigned int block, unsigned int nr_blocks)
464 #endif
465 {
466 /* Ignore chunk headers, only write the data */
467 if (!nr_blocks || len % F2FS_BLKSIZE)
468 return 0;
469
470 return sparse_write_blk(block, nr_blocks, data);
471 }
472
sparse_merge_blocks(uint64_t start,uint64_t num,int zero)473 static int sparse_merge_blocks(uint64_t start, uint64_t num, int zero)
474 {
475 char *buf;
476 uint64_t i;
477
478 if (zero) {
479 blocks[start] = NULL;
480 return sparse_file_add_fill(f2fs_sparse_file, 0x0,
481 F2FS_BLKSIZE * num, start);
482 }
483
484 buf = calloc(num, F2FS_BLKSIZE);
485 if (!buf) {
486 fprintf(stderr, "failed to alloc %llu\n",
487 (unsigned long long)num * F2FS_BLKSIZE);
488 return -ENOMEM;
489 }
490
491 for (i = 0; i < num; i++) {
492 memcpy(buf + i * F2FS_BLKSIZE, blocks[start + i], F2FS_BLKSIZE);
493 free(blocks[start + i]);
494 blocks[start + i] = NULL;
495 }
496
497 /* free_sparse_blocks will release this buf. */
498 blocks[start] = buf;
499
500 return sparse_file_add_data(f2fs_sparse_file, blocks[start],
501 F2FS_BLKSIZE * num, start);
502 }
503 #else
sparse_read_blk(__u64 UNUSED (block),int UNUSED (count),void * UNUSED (buf))504 static int sparse_read_blk(__u64 UNUSED(block),
505 int UNUSED(count), void *UNUSED(buf))
506 {
507 return 0;
508 }
509
sparse_write_blk(__u64 UNUSED (block),int UNUSED (count),const void * UNUSED (buf))510 static int sparse_write_blk(__u64 UNUSED(block),
511 int UNUSED(count), const void *UNUSED(buf))
512 {
513 return 0;
514 }
515
sparse_write_zeroed_blk(__u64 UNUSED (block),int UNUSED (count))516 static int sparse_write_zeroed_blk(__u64 UNUSED(block), int UNUSED(count))
517 {
518 return 0;
519 }
520 #endif
521
dev_read(void * buf,__u64 offset,size_t len)522 int dev_read(void *buf, __u64 offset, size_t len)
523 {
524 int fd;
525 int err;
526
527 if (c.sparse_mode)
528 return sparse_read_blk(offset / F2FS_BLKSIZE,
529 len / F2FS_BLKSIZE, buf);
530
531 fd = __get_device_fd(&offset);
532 if (fd < 0)
533 return fd;
534
535 /* err = 1: cache not available, fall back to non-cache R/W */
536 /* err = 0: success, err=-1: I/O error */
537 err = dcache_read(fd, buf, (off64_t)offset, len);
538 if (err <= 0)
539 return err;
540 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
541 return -1;
542 if (read(fd, buf, len) < 0)
543 return -1;
544 return 0;
545 }
546
547 #ifdef POSIX_FADV_WILLNEED
dev_readahead(__u64 offset,size_t len)548 int dev_readahead(__u64 offset, size_t len)
549 #else
550 int dev_readahead(__u64 offset, size_t UNUSED(len))
551 #endif
552 {
553 int fd = __get_device_fd(&offset);
554
555 if (fd < 0)
556 return fd;
557 #ifdef POSIX_FADV_WILLNEED
558 return posix_fadvise(fd, offset, len, POSIX_FADV_WILLNEED);
559 #else
560 return 0;
561 #endif
562 }
563
dev_write(void * buf,__u64 offset,size_t len)564 int dev_write(void *buf, __u64 offset, size_t len)
565 {
566 int fd;
567
568 if (c.dry_run)
569 return 0;
570
571 if (c.sparse_mode)
572 return sparse_write_blk(offset / F2FS_BLKSIZE,
573 len / F2FS_BLKSIZE, buf);
574
575 fd = __get_device_fd(&offset);
576 if (fd < 0)
577 return fd;
578
579 /*
580 * dcache_update_cache() just update cache, won't do I/O.
581 * Thus even no error, we need normal non-cache I/O for actual write
582 */
583 if (dcache_update_cache(fd, buf, (off64_t)offset, len) < 0)
584 return -1;
585 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
586 return -1;
587 if (write(fd, buf, len) < 0)
588 return -1;
589 return 0;
590 }
591
dev_write_block(void * buf,__u64 blk_addr)592 int dev_write_block(void *buf, __u64 blk_addr)
593 {
594 return dev_write(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
595 }
596
dev_write_dump(void * buf,__u64 offset,size_t len)597 int dev_write_dump(void *buf, __u64 offset, size_t len)
598 {
599 if (lseek64(c.dump_fd, (off64_t)offset, SEEK_SET) < 0)
600 return -1;
601 if (write(c.dump_fd, buf, len) < 0)
602 return -1;
603 return 0;
604 }
605
dev_fill(void * buf,__u64 offset,size_t len)606 int dev_fill(void *buf, __u64 offset, size_t len)
607 {
608 int fd;
609
610 if (c.sparse_mode)
611 return sparse_write_zeroed_blk(offset / F2FS_BLKSIZE,
612 len / F2FS_BLKSIZE);
613
614 fd = __get_device_fd(&offset);
615 if (fd < 0)
616 return fd;
617
618 /* Only allow fill to zero */
619 if (*((__u8*)buf))
620 return -1;
621 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
622 return -1;
623 if (write(fd, buf, len) < 0)
624 return -1;
625 return 0;
626 }
627
dev_fill_block(void * buf,__u64 blk_addr)628 int dev_fill_block(void *buf, __u64 blk_addr)
629 {
630 return dev_fill(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
631 }
632
dev_read_block(void * buf,__u64 blk_addr)633 int dev_read_block(void *buf, __u64 blk_addr)
634 {
635 return dev_read(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
636 }
637
dev_reada_block(__u64 blk_addr)638 int dev_reada_block(__u64 blk_addr)
639 {
640 return dev_readahead(blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
641 }
642
f2fs_fsync_device(void)643 int f2fs_fsync_device(void)
644 {
645 #ifdef HAVE_FSYNC
646 int i;
647
648 for (i = 0; i < c.ndevs; i++) {
649 if (fsync(c.devices[i].fd) < 0) {
650 MSG(0, "\tError: Could not conduct fsync!!!\n");
651 return -1;
652 }
653 }
654 #endif
655 return 0;
656 }
657
f2fs_init_sparse_file(void)658 int f2fs_init_sparse_file(void)
659 {
660 #ifdef HAVE_SPARSE_SPARSE_H
661 if (c.func == MKFS) {
662 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE, c.device_size);
663 if (!f2fs_sparse_file)
664 return -1;
665 } else {
666 f2fs_sparse_file = sparse_file_import(c.devices[0].fd,
667 true, false);
668 if (!f2fs_sparse_file)
669 return -1;
670
671 c.device_size = sparse_file_len(f2fs_sparse_file, 0, 0);
672 c.device_size &= (~((uint64_t)(F2FS_BLKSIZE - 1)));
673 }
674
675 if (sparse_file_block_size(f2fs_sparse_file) != F2FS_BLKSIZE) {
676 MSG(0, "\tError: Corrupted sparse file\n");
677 return -1;
678 }
679 blocks_count = c.device_size / F2FS_BLKSIZE;
680 blocks = calloc(blocks_count, sizeof(char *));
681 if (!blocks) {
682 MSG(0, "\tError: Calloc Failed for blocks!!!\n");
683 return -1;
684 }
685
686 zeroed_block = calloc(1, F2FS_BLKSIZE);
687 if (!zeroed_block) {
688 MSG(0, "\tError: Calloc Failed for zeroed block!!!\n");
689 return -1;
690 }
691
692 return sparse_file_foreach_chunk(f2fs_sparse_file, true, false,
693 sparse_import_segment, NULL);
694 #else
695 MSG(0, "\tError: Sparse mode is only supported for android\n");
696 return -1;
697 #endif
698 }
699
f2fs_release_sparse_resource(void)700 void f2fs_release_sparse_resource(void)
701 {
702 #ifdef HAVE_SPARSE_SPARSE_H
703 int j;
704
705 if (c.sparse_mode) {
706 if (f2fs_sparse_file != NULL) {
707 sparse_file_destroy(f2fs_sparse_file);
708 f2fs_sparse_file = NULL;
709 }
710 for (j = 0; j < blocks_count; j++)
711 free(blocks[j]);
712 free(blocks);
713 blocks = NULL;
714 free(zeroed_block);
715 zeroed_block = NULL;
716 }
717 #endif
718 }
719
720 #define MAX_CHUNK_SIZE (1 * 1024 * 1024 * 1024ULL)
721 #define MAX_CHUNK_COUNT (MAX_CHUNK_SIZE / F2FS_BLKSIZE)
f2fs_finalize_device(void)722 int f2fs_finalize_device(void)
723 {
724 int i;
725 int ret = 0;
726
727 #ifdef HAVE_SPARSE_SPARSE_H
728 if (c.sparse_mode) {
729 int64_t chunk_start = (blocks[0] == NULL) ? -1 : 0;
730 uint64_t j;
731
732 if (c.func != MKFS) {
733 sparse_file_destroy(f2fs_sparse_file);
734 ret = ftruncate(c.devices[0].fd, 0);
735 ASSERT(!ret);
736 lseek(c.devices[0].fd, 0, SEEK_SET);
737 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE,
738 c.device_size);
739 }
740
741 for (j = 0; j < blocks_count; ++j) {
742 if (chunk_start != -1) {
743 if (j - chunk_start >= MAX_CHUNK_COUNT) {
744 ret = sparse_merge_blocks(chunk_start,
745 j - chunk_start, 0);
746 ASSERT(!ret);
747 chunk_start = -1;
748 }
749 }
750
751 if (chunk_start == -1) {
752 if (!blocks[j])
753 continue;
754
755 if (blocks[j] == zeroed_block) {
756 ret = sparse_merge_blocks(j, 1, 1);
757 ASSERT(!ret);
758 } else {
759 chunk_start = j;
760 }
761 } else {
762 if (blocks[j] && blocks[j] != zeroed_block)
763 continue;
764
765 ret = sparse_merge_blocks(chunk_start,
766 j - chunk_start, 0);
767 ASSERT(!ret);
768
769 if (blocks[j] == zeroed_block) {
770 ret = sparse_merge_blocks(j, 1, 1);
771 ASSERT(!ret);
772 }
773
774 chunk_start = -1;
775 }
776 }
777 if (chunk_start != -1) {
778 ret = sparse_merge_blocks(chunk_start,
779 blocks_count - chunk_start, 0);
780 ASSERT(!ret);
781 }
782
783 sparse_file_write(f2fs_sparse_file, c.devices[0].fd,
784 /*gzip*/0, /*sparse*/1, /*crc*/0);
785
786 f2fs_release_sparse_resource();
787 }
788 #endif
789 /*
790 * We should call fsync() to flush out all the dirty pages
791 * in the block device page cache.
792 */
793 for (i = 0; i < c.ndevs; i++) {
794 #ifdef HAVE_FSYNC
795 ret = fsync(c.devices[i].fd);
796 if (ret < 0) {
797 MSG(0, "\tError: Could not conduct fsync!!!\n");
798 break;
799 }
800 #endif
801 ret = close(c.devices[i].fd);
802 if (ret < 0) {
803 MSG(0, "\tError: Failed to close device file!!!\n");
804 break;
805 }
806 free(c.devices[i].path);
807 free(c.devices[i].zone_cap_blocks);
808 }
809 close(c.kd);
810
811 return ret;
812 }
813