• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.math.estimation;
18 
19 import java.io.Serializable;
20 import java.util.Arrays;
21 
22 import org.apache.commons.math.exception.util.LocalizedFormats;
23 import org.apache.commons.math.util.FastMath;
24 
25 
26 /**
27  * This class solves a least squares problem.
28  *
29  * <p>This implementation <em>should</em> work even for over-determined systems
30  * (i.e. systems having more variables than equations). Over-determined systems
31  * are solved by ignoring the variables which have the smallest impact according
32  * to their jacobian column norm. Only the rank of the matrix and some loop bounds
33  * are changed to implement this.</p>
34  *
35  * <p>The resolution engine is a simple translation of the MINPACK <a
36  * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
37  * changes. The changes include the over-determined resolution and the Q.R.
38  * decomposition which has been rewritten following the algorithm described in the
39  * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
40  * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
41  * <p>The authors of the original fortran version are:
42  * <ul>
43  * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
44  * <li>Burton S. Garbow</li>
45  * <li>Kenneth E. Hillstrom</li>
46  * <li>Jorge J. More</li>
47  * </ul>
48  * The redistribution policy for MINPACK is available <a
49  * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
50  * is reproduced below.</p>
51  *
52  * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
53  * <tr><td>
54  *    Minpack Copyright Notice (1999) University of Chicago.
55  *    All rights reserved
56  * </td></tr>
57  * <tr><td>
58  * Redistribution and use in source and binary forms, with or without
59  * modification, are permitted provided that the following conditions
60  * are met:
61  * <ol>
62  *  <li>Redistributions of source code must retain the above copyright
63  *      notice, this list of conditions and the following disclaimer.</li>
64  * <li>Redistributions in binary form must reproduce the above
65  *     copyright notice, this list of conditions and the following
66  *     disclaimer in the documentation and/or other materials provided
67  *     with the distribution.</li>
68  * <li>The end-user documentation included with the redistribution, if any,
69  *     must include the following acknowledgment:
70  *     <code>This product includes software developed by the University of
71  *           Chicago, as Operator of Argonne National Laboratory.</code>
72  *     Alternately, this acknowledgment may appear in the software itself,
73  *     if and wherever such third-party acknowledgments normally appear.</li>
74  * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
75  *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
76  *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
77  *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
78  *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
79  *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
80  *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
81  *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
82  *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
83  *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
84  *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
85  *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
86  *     BE CORRECTED.</strong></li>
87  * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
88  *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
89  *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
90  *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
91  *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
92  *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
93  *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
94  *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
95  *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
96  *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
97  * <ol></td></tr>
98  * </table>
99 
100  * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
101  * @since 1.2
102  * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has
103  * been deprecated and replaced by package org.apache.commons.math.optimization.general
104  *
105  */
106 @Deprecated
107 public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable {
108 
109     /** Serializable version identifier */
110     private static final long serialVersionUID = -5705952631533171019L;
111 
112     /** Number of solved variables. */
113     private int solvedCols;
114 
115     /** Diagonal elements of the R matrix in the Q.R. decomposition. */
116     private double[] diagR;
117 
118     /** Norms of the columns of the jacobian matrix. */
119     private double[] jacNorm;
120 
121     /** Coefficients of the Householder transforms vectors. */
122     private double[] beta;
123 
124     /** Columns permutation array. */
125     private int[] permutation;
126 
127     /** Rank of the jacobian matrix. */
128     private int rank;
129 
130     /** Levenberg-Marquardt parameter. */
131     private double lmPar;
132 
133     /** Parameters evolution direction associated with lmPar. */
134     private double[] lmDir;
135 
136     /** Positive input variable used in determining the initial step bound. */
137     private double initialStepBoundFactor;
138 
139     /** Desired relative error in the sum of squares. */
140     private double costRelativeTolerance;
141 
142     /**  Desired relative error in the approximate solution parameters. */
143     private double parRelativeTolerance;
144 
145     /** Desired max cosine on the orthogonality between the function vector
146      * and the columns of the jacobian. */
147     private double orthoTolerance;
148 
149   /**
150    * Build an estimator for least squares problems.
151    * <p>The default values for the algorithm settings are:
152    *   <ul>
153    *    <li>{@link #setInitialStepBoundFactor initial step bound factor}: 100.0</li>
154    *    <li>{@link #setMaxCostEval maximal cost evaluations}: 1000</li>
155    *    <li>{@link #setCostRelativeTolerance cost relative tolerance}: 1.0e-10</li>
156    *    <li>{@link #setParRelativeTolerance parameters relative tolerance}: 1.0e-10</li>
157    *    <li>{@link #setOrthoTolerance orthogonality tolerance}: 1.0e-10</li>
158    *   </ul>
159    * </p>
160    */
LevenbergMarquardtEstimator()161   public LevenbergMarquardtEstimator() {
162 
163     // set up the superclass with a default  max cost evaluations setting
164     setMaxCostEval(1000);
165 
166     // default values for the tuning parameters
167     setInitialStepBoundFactor(100.0);
168     setCostRelativeTolerance(1.0e-10);
169     setParRelativeTolerance(1.0e-10);
170     setOrthoTolerance(1.0e-10);
171 
172   }
173 
174   /**
175    * Set the positive input variable used in determining the initial step bound.
176    * This bound is set to the product of initialStepBoundFactor and the euclidean norm of diag*x if nonzero,
177    * or else to initialStepBoundFactor itself. In most cases factor should lie
178    * in the interval (0.1, 100.0). 100.0 is a generally recommended value
179    *
180    * @param initialStepBoundFactor initial step bound factor
181    * @see #estimate
182    */
setInitialStepBoundFactor(double initialStepBoundFactor)183   public void setInitialStepBoundFactor(double initialStepBoundFactor) {
184     this.initialStepBoundFactor = initialStepBoundFactor;
185   }
186 
187   /**
188    * Set the desired relative error in the sum of squares.
189    *
190    * @param costRelativeTolerance desired relative error in the sum of squares
191    * @see #estimate
192    */
setCostRelativeTolerance(double costRelativeTolerance)193   public void setCostRelativeTolerance(double costRelativeTolerance) {
194     this.costRelativeTolerance = costRelativeTolerance;
195   }
196 
197   /**
198    * Set the desired relative error in the approximate solution parameters.
199    *
200    * @param parRelativeTolerance desired relative error
201    * in the approximate solution parameters
202    * @see #estimate
203    */
setParRelativeTolerance(double parRelativeTolerance)204   public void setParRelativeTolerance(double parRelativeTolerance) {
205     this.parRelativeTolerance = parRelativeTolerance;
206   }
207 
208   /**
209    * Set the desired max cosine on the orthogonality.
210    *
211    * @param orthoTolerance desired max cosine on the orthogonality
212    * between the function vector and the columns of the jacobian
213    * @see #estimate
214    */
setOrthoTolerance(double orthoTolerance)215   public void setOrthoTolerance(double orthoTolerance) {
216     this.orthoTolerance = orthoTolerance;
217   }
218 
219   /**
220    * Solve an estimation problem using the Levenberg-Marquardt algorithm.
221    * <p>The algorithm used is a modified Levenberg-Marquardt one, based
222    * on the MINPACK <a href="http://www.netlib.org/minpack/lmder.f">lmder</a>
223    * routine. The algorithm settings must have been set up before this method
224    * is called with the {@link #setInitialStepBoundFactor},
225    * {@link #setMaxCostEval}, {@link #setCostRelativeTolerance},
226    * {@link #setParRelativeTolerance} and {@link #setOrthoTolerance} methods.
227    * If these methods have not been called, the default values set up by the
228    * {@link #LevenbergMarquardtEstimator() constructor} will be used.</p>
229    * <p>The authors of the original fortran function are:</p>
230    * <ul>
231    *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
232    *   <li>Burton  S. Garbow</li>
233    *   <li>Kenneth E. Hillstrom</li>
234    *   <li>Jorge   J. More</li>
235    *   </ul>
236    * <p>Luc Maisonobe did the Java translation.</p>
237    *
238    * @param problem estimation problem to solve
239    * @exception EstimationException if convergence cannot be
240    * reached with the specified algorithm settings or if there are more variables
241    * than equations
242    * @see #setInitialStepBoundFactor
243    * @see #setCostRelativeTolerance
244    * @see #setParRelativeTolerance
245    * @see #setOrthoTolerance
246    */
247   @Override
estimate(EstimationProblem problem)248   public void estimate(EstimationProblem problem)
249     throws EstimationException {
250 
251     initializeEstimate(problem);
252 
253     // arrays shared with the other private methods
254     solvedCols  = FastMath.min(rows, cols);
255     diagR       = new double[cols];
256     jacNorm     = new double[cols];
257     beta        = new double[cols];
258     permutation = new int[cols];
259     lmDir       = new double[cols];
260 
261     // local variables
262     double   delta   = 0;
263     double   xNorm = 0;
264     double[] diag    = new double[cols];
265     double[] oldX    = new double[cols];
266     double[] oldRes  = new double[rows];
267     double[] work1   = new double[cols];
268     double[] work2   = new double[cols];
269     double[] work3   = new double[cols];
270 
271     // evaluate the function at the starting point and calculate its norm
272     updateResidualsAndCost();
273 
274     // outer loop
275     lmPar = 0;
276     boolean firstIteration = true;
277     while (true) {
278 
279       // compute the Q.R. decomposition of the jacobian matrix
280       updateJacobian();
281       qrDecomposition();
282 
283       // compute Qt.res
284       qTy(residuals);
285 
286       // now we don't need Q anymore,
287       // so let jacobian contain the R matrix with its diagonal elements
288       for (int k = 0; k < solvedCols; ++k) {
289         int pk = permutation[k];
290         jacobian[k * cols + pk] = diagR[pk];
291       }
292 
293       if (firstIteration) {
294 
295         // scale the variables according to the norms of the columns
296         // of the initial jacobian
297         xNorm = 0;
298         for (int k = 0; k < cols; ++k) {
299           double dk = jacNorm[k];
300           if (dk == 0) {
301             dk = 1.0;
302           }
303           double xk = dk * parameters[k].getEstimate();
304           xNorm  += xk * xk;
305           diag[k] = dk;
306         }
307         xNorm = FastMath.sqrt(xNorm);
308 
309         // initialize the step bound delta
310         delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
311 
312       }
313 
314       // check orthogonality between function vector and jacobian columns
315       double maxCosine = 0;
316       if (cost != 0) {
317         for (int j = 0; j < solvedCols; ++j) {
318           int    pj = permutation[j];
319           double s  = jacNorm[pj];
320           if (s != 0) {
321             double sum = 0;
322             int index = pj;
323             for (int i = 0; i <= j; ++i) {
324               sum += jacobian[index] * residuals[i];
325               index += cols;
326             }
327             maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * cost));
328           }
329         }
330       }
331       if (maxCosine <= orthoTolerance) {
332         return;
333       }
334 
335       // rescale if necessary
336       for (int j = 0; j < cols; ++j) {
337         diag[j] = FastMath.max(diag[j], jacNorm[j]);
338       }
339 
340       // inner loop
341       for (double ratio = 0; ratio < 1.0e-4;) {
342 
343         // save the state
344         for (int j = 0; j < solvedCols; ++j) {
345           int pj = permutation[j];
346           oldX[pj] = parameters[pj].getEstimate();
347         }
348         double previousCost = cost;
349         double[] tmpVec = residuals;
350         residuals = oldRes;
351         oldRes    = tmpVec;
352 
353         // determine the Levenberg-Marquardt parameter
354         determineLMParameter(oldRes, delta, diag, work1, work2, work3);
355 
356         // compute the new point and the norm of the evolution direction
357         double lmNorm = 0;
358         for (int j = 0; j < solvedCols; ++j) {
359           int pj = permutation[j];
360           lmDir[pj] = -lmDir[pj];
361           parameters[pj].setEstimate(oldX[pj] + lmDir[pj]);
362           double s = diag[pj] * lmDir[pj];
363           lmNorm  += s * s;
364         }
365         lmNorm = FastMath.sqrt(lmNorm);
366 
367         // on the first iteration, adjust the initial step bound.
368         if (firstIteration) {
369           delta = FastMath.min(delta, lmNorm);
370         }
371 
372         // evaluate the function at x + p and calculate its norm
373         updateResidualsAndCost();
374 
375         // compute the scaled actual reduction
376         double actRed = -1.0;
377         if (0.1 * cost < previousCost) {
378           double r = cost / previousCost;
379           actRed = 1.0 - r * r;
380         }
381 
382         // compute the scaled predicted reduction
383         // and the scaled directional derivative
384         for (int j = 0; j < solvedCols; ++j) {
385           int pj = permutation[j];
386           double dirJ = lmDir[pj];
387           work1[j] = 0;
388           int index = pj;
389           for (int i = 0; i <= j; ++i) {
390             work1[i] += jacobian[index] * dirJ;
391             index += cols;
392           }
393         }
394         double coeff1 = 0;
395         for (int j = 0; j < solvedCols; ++j) {
396          coeff1 += work1[j] * work1[j];
397         }
398         double pc2 = previousCost * previousCost;
399         coeff1 = coeff1 / pc2;
400         double coeff2 = lmPar * lmNorm * lmNorm / pc2;
401         double preRed = coeff1 + 2 * coeff2;
402         double dirDer = -(coeff1 + coeff2);
403 
404         // ratio of the actual to the predicted reduction
405         ratio = (preRed == 0) ? 0 : (actRed / preRed);
406 
407         // update the step bound
408         if (ratio <= 0.25) {
409           double tmp =
410             (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
411           if ((0.1 * cost >= previousCost) || (tmp < 0.1)) {
412             tmp = 0.1;
413           }
414           delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
415           lmPar /= tmp;
416         } else if ((lmPar == 0) || (ratio >= 0.75)) {
417           delta = 2 * lmNorm;
418           lmPar *= 0.5;
419         }
420 
421         // test for successful iteration.
422         if (ratio >= 1.0e-4) {
423           // successful iteration, update the norm
424           firstIteration = false;
425           xNorm = 0;
426           for (int k = 0; k < cols; ++k) {
427             double xK = diag[k] * parameters[k].getEstimate();
428             xNorm    += xK * xK;
429           }
430           xNorm = FastMath.sqrt(xNorm);
431         } else {
432           // failed iteration, reset the previous values
433           cost = previousCost;
434           for (int j = 0; j < solvedCols; ++j) {
435             int pj = permutation[j];
436             parameters[pj].setEstimate(oldX[pj]);
437           }
438           tmpVec    = residuals;
439           residuals = oldRes;
440           oldRes    = tmpVec;
441         }
442 
443         // tests for convergence.
444         if (((FastMath.abs(actRed) <= costRelativeTolerance) &&
445              (preRed <= costRelativeTolerance) &&
446              (ratio <= 2.0)) ||
447              (delta <= parRelativeTolerance * xNorm)) {
448           return;
449         }
450 
451         // tests for termination and stringent tolerances
452         // (2.2204e-16 is the machine epsilon for IEEE754)
453         if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
454           throw new EstimationException("cost relative tolerance is too small ({0})," +
455                                         " no further reduction in the" +
456                                         " sum of squares is possible",
457                                         costRelativeTolerance);
458         } else if (delta <= 2.2204e-16 * xNorm) {
459           throw new EstimationException("parameters relative tolerance is too small" +
460                                         " ({0}), no further improvement in" +
461                                         " the approximate solution is possible",
462                                         parRelativeTolerance);
463         } else if (maxCosine <= 2.2204e-16)  {
464           throw new EstimationException("orthogonality tolerance is too small ({0})," +
465                                         " solution is orthogonal to the jacobian",
466                                         orthoTolerance);
467         }
468 
469       }
470 
471     }
472 
473   }
474 
475   /**
476    * Determine the Levenberg-Marquardt parameter.
477    * <p>This implementation is a translation in Java of the MINPACK
478    * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
479    * routine.</p>
480    * <p>This method sets the lmPar and lmDir attributes.</p>
481    * <p>The authors of the original fortran function are:</p>
482    * <ul>
483    *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
484    *   <li>Burton  S. Garbow</li>
485    *   <li>Kenneth E. Hillstrom</li>
486    *   <li>Jorge   J. More</li>
487    * </ul>
488    * <p>Luc Maisonobe did the Java translation.</p>
489    *
490    * @param qy array containing qTy
491    * @param delta upper bound on the euclidean norm of diagR * lmDir
492    * @param diag diagonal matrix
493    * @param work1 work array
494    * @param work2 work array
495    * @param work3 work array
496    */
determineLMParameter(double[] qy, double delta, double[] diag, double[] work1, double[] work2, double[] work3)497   private void determineLMParameter(double[] qy, double delta, double[] diag,
498                                     double[] work1, double[] work2, double[] work3) {
499 
500     // compute and store in x the gauss-newton direction, if the
501     // jacobian is rank-deficient, obtain a least squares solution
502     for (int j = 0; j < rank; ++j) {
503       lmDir[permutation[j]] = qy[j];
504     }
505     for (int j = rank; j < cols; ++j) {
506       lmDir[permutation[j]] = 0;
507     }
508     for (int k = rank - 1; k >= 0; --k) {
509       int pk = permutation[k];
510       double ypk = lmDir[pk] / diagR[pk];
511       int index = pk;
512       for (int i = 0; i < k; ++i) {
513         lmDir[permutation[i]] -= ypk * jacobian[index];
514         index += cols;
515       }
516       lmDir[pk] = ypk;
517     }
518 
519     // evaluate the function at the origin, and test
520     // for acceptance of the Gauss-Newton direction
521     double dxNorm = 0;
522     for (int j = 0; j < solvedCols; ++j) {
523       int pj = permutation[j];
524       double s = diag[pj] * lmDir[pj];
525       work1[pj] = s;
526       dxNorm += s * s;
527     }
528     dxNorm = FastMath.sqrt(dxNorm);
529     double fp = dxNorm - delta;
530     if (fp <= 0.1 * delta) {
531       lmPar = 0;
532       return;
533     }
534 
535     // if the jacobian is not rank deficient, the Newton step provides
536     // a lower bound, parl, for the zero of the function,
537     // otherwise set this bound to zero
538     double sum2;
539     double parl = 0;
540     if (rank == solvedCols) {
541       for (int j = 0; j < solvedCols; ++j) {
542         int pj = permutation[j];
543         work1[pj] *= diag[pj] / dxNorm;
544       }
545       sum2 = 0;
546       for (int j = 0; j < solvedCols; ++j) {
547         int pj = permutation[j];
548         double sum = 0;
549         int index = pj;
550         for (int i = 0; i < j; ++i) {
551           sum += jacobian[index] * work1[permutation[i]];
552           index += cols;
553         }
554         double s = (work1[pj] - sum) / diagR[pj];
555         work1[pj] = s;
556         sum2 += s * s;
557       }
558       parl = fp / (delta * sum2);
559     }
560 
561     // calculate an upper bound, paru, for the zero of the function
562     sum2 = 0;
563     for (int j = 0; j < solvedCols; ++j) {
564       int pj = permutation[j];
565       double sum = 0;
566       int index = pj;
567       for (int i = 0; i <= j; ++i) {
568         sum += jacobian[index] * qy[i];
569         index += cols;
570       }
571       sum /= diag[pj];
572       sum2 += sum * sum;
573     }
574     double gNorm = FastMath.sqrt(sum2);
575     double paru = gNorm / delta;
576     if (paru == 0) {
577       // 2.2251e-308 is the smallest positive real for IEE754
578       paru = 2.2251e-308 / FastMath.min(delta, 0.1);
579     }
580 
581     // if the input par lies outside of the interval (parl,paru),
582     // set par to the closer endpoint
583     lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
584     if (lmPar == 0) {
585       lmPar = gNorm / dxNorm;
586     }
587 
588     for (int countdown = 10; countdown >= 0; --countdown) {
589 
590       // evaluate the function at the current value of lmPar
591       if (lmPar == 0) {
592         lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
593       }
594       double sPar = FastMath.sqrt(lmPar);
595       for (int j = 0; j < solvedCols; ++j) {
596         int pj = permutation[j];
597         work1[pj] = sPar * diag[pj];
598       }
599       determineLMDirection(qy, work1, work2, work3);
600 
601       dxNorm = 0;
602       for (int j = 0; j < solvedCols; ++j) {
603         int pj = permutation[j];
604         double s = diag[pj] * lmDir[pj];
605         work3[pj] = s;
606         dxNorm += s * s;
607       }
608       dxNorm = FastMath.sqrt(dxNorm);
609       double previousFP = fp;
610       fp = dxNorm - delta;
611 
612       // if the function is small enough, accept the current value
613       // of lmPar, also test for the exceptional cases where parl is zero
614       if ((FastMath.abs(fp) <= 0.1 * delta) ||
615           ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
616         return;
617       }
618 
619       // compute the Newton correction
620       for (int j = 0; j < solvedCols; ++j) {
621        int pj = permutation[j];
622         work1[pj] = work3[pj] * diag[pj] / dxNorm;
623       }
624       for (int j = 0; j < solvedCols; ++j) {
625         int pj = permutation[j];
626         work1[pj] /= work2[j];
627         double tmp = work1[pj];
628         for (int i = j + 1; i < solvedCols; ++i) {
629           work1[permutation[i]] -= jacobian[i * cols + pj] * tmp;
630         }
631       }
632       sum2 = 0;
633       for (int j = 0; j < solvedCols; ++j) {
634         double s = work1[permutation[j]];
635         sum2 += s * s;
636       }
637       double correction = fp / (delta * sum2);
638 
639       // depending on the sign of the function, update parl or paru.
640       if (fp > 0) {
641         parl = FastMath.max(parl, lmPar);
642       } else if (fp < 0) {
643         paru = FastMath.min(paru, lmPar);
644       }
645 
646       // compute an improved estimate for lmPar
647       lmPar = FastMath.max(parl, lmPar + correction);
648 
649     }
650   }
651 
652   /**
653    * Solve a*x = b and d*x = 0 in the least squares sense.
654    * <p>This implementation is a translation in Java of the MINPACK
655    * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
656    * routine.</p>
657    * <p>This method sets the lmDir and lmDiag attributes.</p>
658    * <p>The authors of the original fortran function are:</p>
659    * <ul>
660    *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
661    *   <li>Burton  S. Garbow</li>
662    *   <li>Kenneth E. Hillstrom</li>
663    *   <li>Jorge   J. More</li>
664    * </ul>
665    * <p>Luc Maisonobe did the Java translation.</p>
666    *
667    * @param qy array containing qTy
668    * @param diag diagonal matrix
669    * @param lmDiag diagonal elements associated with lmDir
670    * @param work work array
671    */
determineLMDirection(double[] qy, double[] diag, double[] lmDiag, double[] work)672   private void determineLMDirection(double[] qy, double[] diag,
673                                     double[] lmDiag, double[] work) {
674 
675     // copy R and Qty to preserve input and initialize s
676     //  in particular, save the diagonal elements of R in lmDir
677     for (int j = 0; j < solvedCols; ++j) {
678       int pj = permutation[j];
679       for (int i = j + 1; i < solvedCols; ++i) {
680         jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]];
681       }
682       lmDir[j] = diagR[pj];
683       work[j]  = qy[j];
684     }
685 
686     // eliminate the diagonal matrix d using a Givens rotation
687     for (int j = 0; j < solvedCols; ++j) {
688 
689       // prepare the row of d to be eliminated, locating the
690       // diagonal element using p from the Q.R. factorization
691       int pj = permutation[j];
692       double dpj = diag[pj];
693       if (dpj != 0) {
694         Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
695       }
696       lmDiag[j] = dpj;
697 
698       //  the transformations to eliminate the row of d
699       // modify only a single element of Qty
700       // beyond the first n, which is initially zero.
701       double qtbpj = 0;
702       for (int k = j; k < solvedCols; ++k) {
703         int pk = permutation[k];
704 
705         // determine a Givens rotation which eliminates the
706         // appropriate element in the current row of d
707         if (lmDiag[k] != 0) {
708 
709           final double sin;
710           final double cos;
711           double rkk = jacobian[k * cols + pk];
712           if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
713             final double cotan = rkk / lmDiag[k];
714             sin   = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
715             cos   = sin * cotan;
716           } else {
717             final double tan = lmDiag[k] / rkk;
718             cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
719             sin = cos * tan;
720           }
721 
722           // compute the modified diagonal element of R and
723           // the modified element of (Qty,0)
724           jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k];
725           final double temp = cos * work[k] + sin * qtbpj;
726           qtbpj = -sin * work[k] + cos * qtbpj;
727           work[k] = temp;
728 
729           // accumulate the tranformation in the row of s
730           for (int i = k + 1; i < solvedCols; ++i) {
731             double rik = jacobian[i * cols + pk];
732             final double temp2 = cos * rik + sin * lmDiag[i];
733             lmDiag[i] = -sin * rik + cos * lmDiag[i];
734             jacobian[i * cols + pk] = temp2;
735           }
736 
737         }
738       }
739 
740       // store the diagonal element of s and restore
741       // the corresponding diagonal element of R
742       int index = j * cols + permutation[j];
743       lmDiag[j]       = jacobian[index];
744       jacobian[index] = lmDir[j];
745 
746     }
747 
748     // solve the triangular system for z, if the system is
749     // singular, then obtain a least squares solution
750     int nSing = solvedCols;
751     for (int j = 0; j < solvedCols; ++j) {
752       if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
753         nSing = j;
754       }
755       if (nSing < solvedCols) {
756         work[j] = 0;
757       }
758     }
759     if (nSing > 0) {
760       for (int j = nSing - 1; j >= 0; --j) {
761         int pj = permutation[j];
762         double sum = 0;
763         for (int i = j + 1; i < nSing; ++i) {
764           sum += jacobian[i * cols + pj] * work[i];
765         }
766         work[j] = (work[j] - sum) / lmDiag[j];
767       }
768     }
769 
770     // permute the components of z back to components of lmDir
771     for (int j = 0; j < lmDir.length; ++j) {
772       lmDir[permutation[j]] = work[j];
773     }
774 
775   }
776 
777   /**
778    * Decompose a matrix A as A.P = Q.R using Householder transforms.
779    * <p>As suggested in the P. Lascaux and R. Theodor book
780    * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
781    * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
782    * the Householder transforms with u<sub>k</sub> unit vectors such that:
783    * <pre>
784    * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
785    * </pre>
786    * we use <sub>k</sub> non-unit vectors such that:
787    * <pre>
788    * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
789    * </pre>
790    * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
791    * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
792    * them from the v<sub>k</sub> vectors would be costly.</p>
793    * <p>This decomposition handles rank deficient cases since the tranformations
794    * are performed in non-increasing columns norms order thanks to columns
795    * pivoting. The diagonal elements of the R matrix are therefore also in
796    * non-increasing absolute values order.</p>
797    * @exception EstimationException if the decomposition cannot be performed
798    */
qrDecomposition()799   private void qrDecomposition() throws EstimationException {
800 
801     // initializations
802     for (int k = 0; k < cols; ++k) {
803       permutation[k] = k;
804       double norm2 = 0;
805       for (int index = k; index < jacobian.length; index += cols) {
806         double akk = jacobian[index];
807         norm2 += akk * akk;
808       }
809       jacNorm[k] = FastMath.sqrt(norm2);
810     }
811 
812     // transform the matrix column after column
813     for (int k = 0; k < cols; ++k) {
814 
815       // select the column with the greatest norm on active components
816       int nextColumn = -1;
817       double ak2 = Double.NEGATIVE_INFINITY;
818       for (int i = k; i < cols; ++i) {
819         double norm2 = 0;
820         int iDiag = k * cols + permutation[i];
821         for (int index = iDiag; index < jacobian.length; index += cols) {
822           double aki = jacobian[index];
823           norm2 += aki * aki;
824         }
825         if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
826             throw new EstimationException(
827                     LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
828                     rows, cols);
829         }
830         if (norm2 > ak2) {
831           nextColumn = i;
832           ak2        = norm2;
833         }
834       }
835       if (ak2 == 0) {
836         rank = k;
837         return;
838       }
839       int pk                  = permutation[nextColumn];
840       permutation[nextColumn] = permutation[k];
841       permutation[k]          = pk;
842 
843       // choose alpha such that Hk.u = alpha ek
844       int    kDiag = k * cols + pk;
845       double akk   = jacobian[kDiag];
846       double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
847       double betak = 1.0 / (ak2 - akk * alpha);
848       beta[pk]     = betak;
849 
850       // transform the current column
851       diagR[pk]        = alpha;
852       jacobian[kDiag] -= alpha;
853 
854       // transform the remaining columns
855       for (int dk = cols - 1 - k; dk > 0; --dk) {
856         int dkp = permutation[k + dk] - pk;
857         double gamma = 0;
858         for (int index = kDiag; index < jacobian.length; index += cols) {
859           gamma += jacobian[index] * jacobian[index + dkp];
860         }
861         gamma *= betak;
862         for (int index = kDiag; index < jacobian.length; index += cols) {
863           jacobian[index + dkp] -= gamma * jacobian[index];
864         }
865       }
866 
867     }
868 
869     rank = solvedCols;
870 
871   }
872 
873   /**
874    * Compute the product Qt.y for some Q.R. decomposition.
875    *
876    * @param y vector to multiply (will be overwritten with the result)
877    */
qTy(double[] y)878   private void qTy(double[] y) {
879     for (int k = 0; k < cols; ++k) {
880       int pk = permutation[k];
881       int kDiag = k * cols + pk;
882       double gamma = 0;
883       int index = kDiag;
884       for (int i = k; i < rows; ++i) {
885         gamma += jacobian[index] * y[i];
886         index += cols;
887       }
888       gamma *= beta[pk];
889       index = kDiag;
890       for (int i = k; i < rows; ++i) {
891         y[i] -= gamma * jacobian[index];
892         index += cols;
893       }
894     }
895   }
896 
897 }
898