1 //===-- combined.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef SCUDO_COMBINED_H_
10 #define SCUDO_COMBINED_H_
11
12 #include "chunk.h"
13 #include "common.h"
14 #include "flags.h"
15 #include "flags_parser.h"
16 #include "local_cache.h"
17 #include "memtag.h"
18 #include "options.h"
19 #include "quarantine.h"
20 #include "report.h"
21 #include "rss_limit_checker.h"
22 #include "secondary.h"
23 #include "stack_depot.h"
24 #include "string_utils.h"
25 #include "tsd.h"
26
27 #include "scudo/interface.h"
28
29 #ifdef GWP_ASAN_HOOKS
30 #include "gwp_asan/guarded_pool_allocator.h"
31 #include "gwp_asan/optional/backtrace.h"
32 #include "gwp_asan/optional/segv_handler.h"
33 #endif // GWP_ASAN_HOOKS
34
EmptyCallback()35 extern "C" inline void EmptyCallback() {}
36
37 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
38 // This function is not part of the NDK so it does not appear in any public
39 // header files. We only declare/use it when targeting the platform.
40 extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
41 size_t num_entries);
42 #endif
43
44 namespace scudo {
45
46 template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
47 class Allocator {
48 public:
49 using PrimaryT = typename Params::Primary;
50 using CacheT = typename PrimaryT::CacheT;
51 typedef Allocator<Params, PostInitCallback> ThisT;
52 typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;
53
callPostInitCallback()54 void callPostInitCallback() {
55 pthread_once(&PostInitNonce, PostInitCallback);
56 }
57
58 struct QuarantineCallback {
QuarantineCallbackQuarantineCallback59 explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
60 : Allocator(Instance), Cache(LocalCache) {}
61
62 // Chunk recycling function, returns a quarantined chunk to the backend,
63 // first making sure it hasn't been tampered with.
recycleQuarantineCallback64 void recycle(void *Ptr) {
65 Chunk::UnpackedHeader Header;
66 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
67 if (UNLIKELY(Header.State != Chunk::State::Quarantined))
68 reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
69
70 Chunk::UnpackedHeader NewHeader = Header;
71 NewHeader.State = Chunk::State::Available;
72 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
73
74 if (allocatorSupportsMemoryTagging<Params>())
75 Ptr = untagPointer(Ptr);
76 void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
77 Cache.deallocate(NewHeader.ClassId, BlockBegin);
78 }
79
80 // We take a shortcut when allocating a quarantine batch by working with the
81 // appropriate class ID instead of using Size. The compiler should optimize
82 // the class ID computation and work with the associated cache directly.
allocateQuarantineCallback83 void *allocate(UNUSED uptr Size) {
84 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
85 sizeof(QuarantineBatch) + Chunk::getHeaderSize());
86 void *Ptr = Cache.allocate(QuarantineClassId);
87 // Quarantine batch allocation failure is fatal.
88 if (UNLIKELY(!Ptr))
89 reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
90
91 Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
92 Chunk::getHeaderSize());
93 Chunk::UnpackedHeader Header = {};
94 Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
95 Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
96 Header.State = Chunk::State::Allocated;
97 Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
98
99 // Reset tag to 0 as this chunk may have been previously used for a tagged
100 // user allocation.
101 if (UNLIKELY(useMemoryTagging<Params>(Allocator.Primary.Options.load())))
102 storeTags(reinterpret_cast<uptr>(Ptr),
103 reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
104
105 return Ptr;
106 }
107
deallocateQuarantineCallback108 void deallocate(void *Ptr) {
109 const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
110 sizeof(QuarantineBatch) + Chunk::getHeaderSize());
111 Chunk::UnpackedHeader Header;
112 Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
113
114 if (UNLIKELY(Header.State != Chunk::State::Allocated))
115 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
116 DCHECK_EQ(Header.ClassId, QuarantineClassId);
117 DCHECK_EQ(Header.Offset, 0);
118 DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
119
120 Chunk::UnpackedHeader NewHeader = Header;
121 NewHeader.State = Chunk::State::Available;
122 Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
123 Cache.deallocate(QuarantineClassId,
124 reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
125 Chunk::getHeaderSize()));
126 }
127
128 private:
129 ThisT &Allocator;
130 CacheT &Cache;
131 };
132
133 typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
134 typedef typename QuarantineT::CacheT QuarantineCacheT;
135
init()136 void init() {
137 performSanityChecks();
138
139 // Check if hardware CRC32 is supported in the binary and by the platform,
140 // if so, opt for the CRC32 hardware version of the checksum.
141 if (&computeHardwareCRC32 && hasHardwareCRC32())
142 HashAlgorithm = Checksum::HardwareCRC32;
143
144 if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
145 Cookie = static_cast<u32>(getMonotonicTime() ^
146 (reinterpret_cast<uptr>(this) >> 4));
147
148 initFlags();
149 reportUnrecognizedFlags();
150
151 RssChecker.init(scudo::getFlags()->soft_rss_limit_mb,
152 scudo::getFlags()->hard_rss_limit_mb);
153
154 // Store some flags locally.
155 if (getFlags()->may_return_null)
156 Primary.Options.set(OptionBit::MayReturnNull);
157 if (getFlags()->zero_contents)
158 Primary.Options.setFillContentsMode(ZeroFill);
159 else if (getFlags()->pattern_fill_contents)
160 Primary.Options.setFillContentsMode(PatternOrZeroFill);
161 if (getFlags()->dealloc_type_mismatch)
162 Primary.Options.set(OptionBit::DeallocTypeMismatch);
163 if (getFlags()->delete_size_mismatch)
164 Primary.Options.set(OptionBit::DeleteSizeMismatch);
165 if (allocatorSupportsMemoryTagging<Params>() &&
166 systemSupportsMemoryTagging())
167 Primary.Options.set(OptionBit::UseMemoryTagging);
168 Primary.Options.set(OptionBit::UseOddEvenTags);
169
170 QuarantineMaxChunkSize =
171 static_cast<u32>(getFlags()->quarantine_max_chunk_size);
172
173 Stats.init();
174 const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
175 Primary.init(ReleaseToOsIntervalMs);
176 Secondary.init(&Stats, ReleaseToOsIntervalMs);
177 Quarantine.init(
178 static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
179 static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
180
181 initRingBuffer();
182 }
183
184 // Initialize the embedded GWP-ASan instance. Requires the main allocator to
185 // be functional, best called from PostInitCallback.
initGwpAsan()186 void initGwpAsan() {
187 #ifdef GWP_ASAN_HOOKS
188 gwp_asan::options::Options Opt;
189 Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
190 Opt.MaxSimultaneousAllocations =
191 getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
192 Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
193 Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
194 Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
195 // Embedded GWP-ASan is locked through the Scudo atfork handler (via
196 // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
197 // handler.
198 Opt.InstallForkHandlers = false;
199 Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
200 GuardedAlloc.init(Opt);
201
202 if (Opt.InstallSignalHandlers)
203 gwp_asan::segv_handler::installSignalHandlers(
204 &GuardedAlloc, Printf,
205 gwp_asan::backtrace::getPrintBacktraceFunction(),
206 gwp_asan::backtrace::getSegvBacktraceFunction(),
207 Opt.Recoverable);
208
209 GuardedAllocSlotSize =
210 GuardedAlloc.getAllocatorState()->maximumAllocationSize();
211 Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
212 GuardedAllocSlotSize);
213 #endif // GWP_ASAN_HOOKS
214 }
215
216 #ifdef GWP_ASAN_HOOKS
getGwpAsanAllocationMetadata()217 const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
218 return GuardedAlloc.getMetadataRegion();
219 }
220
getGwpAsanAllocatorState()221 const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
222 return GuardedAlloc.getAllocatorState();
223 }
224 #endif // GWP_ASAN_HOOKS
225
226 ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
227 TSDRegistry.initThreadMaybe(this, MinimalInit);
228 }
229
unmapTestOnly()230 void unmapTestOnly() {
231 TSDRegistry.unmapTestOnly(this);
232 Primary.unmapTestOnly();
233 Secondary.unmapTestOnly();
234 #ifdef GWP_ASAN_HOOKS
235 if (getFlags()->GWP_ASAN_InstallSignalHandlers)
236 gwp_asan::segv_handler::uninstallSignalHandlers();
237 GuardedAlloc.uninitTestOnly();
238 #endif // GWP_ASAN_HOOKS
239 }
240
getTSDRegistry()241 TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
getQuarantine()242 QuarantineT *getQuarantine() { return &Quarantine; }
243
244 // The Cache must be provided zero-initialized.
initCache(CacheT * Cache)245 void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
246
247 // Release the resources used by a TSD, which involves:
248 // - draining the local quarantine cache to the global quarantine;
249 // - releasing the cached pointers back to the Primary;
250 // - unlinking the local stats from the global ones (destroying the cache does
251 // the last two items).
commitBack(TSD<ThisT> * TSD)252 void commitBack(TSD<ThisT> *TSD) {
253 Quarantine.drain(&TSD->getQuarantineCache(),
254 QuarantineCallback(*this, TSD->getCache()));
255 TSD->getCache().destroy(&Stats);
256 }
257
drainCache(TSD<ThisT> * TSD)258 void drainCache(TSD<ThisT> *TSD) {
259 Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
260 QuarantineCallback(*this, TSD->getCache()));
261 TSD->getCache().drain();
262 }
drainCaches()263 void drainCaches() { TSDRegistry.drainCaches(this); }
264
getHeaderTaggedPointer(void * Ptr)265 ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
266 if (!allocatorSupportsMemoryTagging<Params>())
267 return Ptr;
268 auto UntaggedPtr = untagPointer(Ptr);
269 if (UntaggedPtr != Ptr)
270 return UntaggedPtr;
271 // Secondary, or pointer allocated while memory tagging is unsupported or
272 // disabled. The tag mismatch is okay in the latter case because tags will
273 // not be checked.
274 return addHeaderTag(Ptr);
275 }
276
addHeaderTag(uptr Ptr)277 ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
278 if (!allocatorSupportsMemoryTagging<Params>())
279 return Ptr;
280 return addFixedTag(Ptr, 2);
281 }
282
addHeaderTag(void * Ptr)283 ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
284 return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
285 }
286
collectStackTrace()287 NOINLINE u32 collectStackTrace() {
288 #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
289 // Discard collectStackTrace() frame and allocator function frame.
290 constexpr uptr DiscardFrames = 2;
291 uptr Stack[MaxTraceSize + DiscardFrames];
292 uptr Size =
293 android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
294 Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
295 return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
296 #else
297 return 0;
298 #endif
299 }
300
computeOddEvenMaskForPointerMaybe(Options Options,uptr Ptr,uptr ClassId)301 uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr,
302 uptr ClassId) {
303 if (!Options.get(OptionBit::UseOddEvenTags))
304 return 0;
305
306 // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
307 // even, and vice versa. Blocks are laid out Size bytes apart, and adding
308 // Size to Ptr will flip the least significant set bit of Size in Ptr, so
309 // that bit will have the pattern 010101... for consecutive blocks, which we
310 // can use to determine which tag mask to use.
311 return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
312 }
313
314 NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
315 uptr Alignment = MinAlignment,
316 bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
317 initThreadMaybe();
318
319 const Options Options = Primary.Options.load();
320 if (UNLIKELY(Alignment > MaxAlignment)) {
321 if (Options.get(OptionBit::MayReturnNull))
322 return nullptr;
323 reportAlignmentTooBig(Alignment, MaxAlignment);
324 }
325 if (Alignment < MinAlignment)
326 Alignment = MinAlignment;
327
328 #ifdef GWP_ASAN_HOOKS
329 if (UNLIKELY(GuardedAlloc.shouldSample())) {
330 if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
331 if (UNLIKELY(&__scudo_allocate_hook))
332 __scudo_allocate_hook(Ptr, Size);
333 Stats.lock();
334 Stats.add(StatAllocated, GuardedAllocSlotSize);
335 Stats.sub(StatFree, GuardedAllocSlotSize);
336 Stats.unlock();
337 return Ptr;
338 }
339 }
340 #endif // GWP_ASAN_HOOKS
341
342 const FillContentsMode FillContents = ZeroContents ? ZeroFill
343 : TSDRegistry.getDisableMemInit()
344 ? NoFill
345 : Options.getFillContentsMode();
346
347 // If the requested size happens to be 0 (more common than you might think),
348 // allocate MinAlignment bytes on top of the header. Then add the extra
349 // bytes required to fulfill the alignment requirements: we allocate enough
350 // to be sure that there will be an address in the block that will satisfy
351 // the alignment.
352 const uptr NeededSize =
353 roundUp(Size, MinAlignment) +
354 ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
355
356 // Takes care of extravagantly large sizes as well as integer overflows.
357 static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
358 if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
359 if (Options.get(OptionBit::MayReturnNull))
360 return nullptr;
361 reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
362 }
363 DCHECK_LE(Size, NeededSize);
364
365 switch (RssChecker.getRssLimitExceeded()) {
366 case RssLimitChecker::Neither:
367 break;
368 case RssLimitChecker::Soft:
369 if (Options.get(OptionBit::MayReturnNull))
370 return nullptr;
371 reportSoftRSSLimit(RssChecker.getSoftRssLimit());
372 break;
373 case RssLimitChecker::Hard:
374 reportHardRSSLimit(RssChecker.getHardRssLimit());
375 break;
376 }
377
378 void *Block = nullptr;
379 uptr ClassId = 0;
380 uptr SecondaryBlockEnd = 0;
381 if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
382 ClassId = SizeClassMap::getClassIdBySize(NeededSize);
383 DCHECK_NE(ClassId, 0U);
384 bool UnlockRequired;
385 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
386 Block = TSD->getCache().allocate(ClassId);
387 // If the allocation failed, the most likely reason with a 32-bit primary
388 // is the region being full. In that event, retry in each successively
389 // larger class until it fits. If it fails to fit in the largest class,
390 // fallback to the Secondary.
391 if (UNLIKELY(!Block)) {
392 while (ClassId < SizeClassMap::LargestClassId && !Block)
393 Block = TSD->getCache().allocate(++ClassId);
394 if (!Block)
395 ClassId = 0;
396 }
397 if (UnlockRequired)
398 TSD->unlock();
399 }
400 if (UNLIKELY(ClassId == 0)) {
401 Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
402 FillContents);
403 }
404
405 if (UNLIKELY(!Block)) {
406 if (Options.get(OptionBit::MayReturnNull))
407 return nullptr;
408 reportOutOfMemory(NeededSize);
409 }
410
411 const uptr BlockUptr = reinterpret_cast<uptr>(Block);
412 const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
413 const uptr UserPtr = roundUp(UnalignedUserPtr, Alignment);
414
415 void *Ptr = reinterpret_cast<void *>(UserPtr);
416 void *TaggedPtr = Ptr;
417 if (LIKELY(ClassId)) {
418 // We only need to zero or tag the contents for Primary backed
419 // allocations. We only set tags for primary allocations in order to avoid
420 // faulting potentially large numbers of pages for large secondary
421 // allocations. We assume that guard pages are enough to protect these
422 // allocations.
423 //
424 // FIXME: When the kernel provides a way to set the background tag of a
425 // mapping, we should be able to tag secondary allocations as well.
426 //
427 // When memory tagging is enabled, zeroing the contents is done as part of
428 // setting the tag.
429 if (UNLIKELY(useMemoryTagging<Params>(Options))) {
430 uptr PrevUserPtr;
431 Chunk::UnpackedHeader Header;
432 const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
433 const uptr BlockEnd = BlockUptr + BlockSize;
434 // If possible, try to reuse the UAF tag that was set by deallocate().
435 // For simplicity, only reuse tags if we have the same start address as
436 // the previous allocation. This handles the majority of cases since
437 // most allocations will not be more aligned than the minimum alignment.
438 //
439 // We need to handle situations involving reclaimed chunks, and retag
440 // the reclaimed portions if necessary. In the case where the chunk is
441 // fully reclaimed, the chunk's header will be zero, which will trigger
442 // the code path for new mappings and invalid chunks that prepares the
443 // chunk from scratch. There are three possibilities for partial
444 // reclaiming:
445 //
446 // (1) Header was reclaimed, data was partially reclaimed.
447 // (2) Header was not reclaimed, all data was reclaimed (e.g. because
448 // data started on a page boundary).
449 // (3) Header was not reclaimed, data was partially reclaimed.
450 //
451 // Case (1) will be handled in the same way as for full reclaiming,
452 // since the header will be zero.
453 //
454 // We can detect case (2) by loading the tag from the start
455 // of the chunk. If it is zero, it means that either all data was
456 // reclaimed (since we never use zero as the chunk tag), or that the
457 // previous allocation was of size zero. Either way, we need to prepare
458 // a new chunk from scratch.
459 //
460 // We can detect case (3) by moving to the next page (if covered by the
461 // chunk) and loading the tag of its first granule. If it is zero, it
462 // means that all following pages may need to be retagged. On the other
463 // hand, if it is nonzero, we can assume that all following pages are
464 // still tagged, according to the logic that if any of the pages
465 // following the next page were reclaimed, the next page would have been
466 // reclaimed as well.
467 uptr TaggedUserPtr;
468 if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
469 PrevUserPtr == UserPtr &&
470 (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
471 uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
472 const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
473 if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
474 PrevEnd = NextPage;
475 TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
476 resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
477 if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
478 // If an allocation needs to be zeroed (i.e. calloc) we can normally
479 // avoid zeroing the memory now since we can rely on memory having
480 // been zeroed on free, as this is normally done while setting the
481 // UAF tag. But if tagging was disabled per-thread when the memory
482 // was freed, it would not have been retagged and thus zeroed, and
483 // therefore it needs to be zeroed now.
484 memset(TaggedPtr, 0,
485 Min(Size, roundUp(PrevEnd - TaggedUserPtr,
486 archMemoryTagGranuleSize())));
487 } else if (Size) {
488 // Clear any stack metadata that may have previously been stored in
489 // the chunk data.
490 memset(TaggedPtr, 0, archMemoryTagGranuleSize());
491 }
492 } else {
493 const uptr OddEvenMask =
494 computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
495 TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
496 }
497 storePrimaryAllocationStackMaybe(Options, Ptr);
498 } else {
499 Block = addHeaderTag(Block);
500 Ptr = addHeaderTag(Ptr);
501 if (UNLIKELY(FillContents != NoFill)) {
502 // This condition is not necessarily unlikely, but since memset is
503 // costly, we might as well mark it as such.
504 memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
505 PrimaryT::getSizeByClassId(ClassId));
506 }
507 }
508 } else {
509 Block = addHeaderTag(Block);
510 Ptr = addHeaderTag(Ptr);
511 if (UNLIKELY(useMemoryTagging<Params>(Options))) {
512 storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
513 storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
514 }
515 }
516
517 Chunk::UnpackedHeader Header = {};
518 if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
519 const uptr Offset = UserPtr - UnalignedUserPtr;
520 DCHECK_GE(Offset, 2 * sizeof(u32));
521 // The BlockMarker has no security purpose, but is specifically meant for
522 // the chunk iteration function that can be used in debugging situations.
523 // It is the only situation where we have to locate the start of a chunk
524 // based on its block address.
525 reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
526 reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
527 Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
528 }
529 Header.ClassId = ClassId & Chunk::ClassIdMask;
530 Header.State = Chunk::State::Allocated;
531 Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
532 Header.SizeOrUnusedBytes =
533 (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
534 Chunk::SizeOrUnusedBytesMask;
535 Chunk::storeHeader(Cookie, Ptr, &Header);
536
537 if (UNLIKELY(&__scudo_allocate_hook))
538 __scudo_allocate_hook(TaggedPtr, Size);
539
540 return TaggedPtr;
541 }
542
543 NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
544 UNUSED uptr Alignment = MinAlignment) {
545 // For a deallocation, we only ensure minimal initialization, meaning thread
546 // local data will be left uninitialized for now (when using ELF TLS). The
547 // fallback cache will be used instead. This is a workaround for a situation
548 // where the only heap operation performed in a thread would be a free past
549 // the TLS destructors, ending up in initialized thread specific data never
550 // being destroyed properly. Any other heap operation will do a full init.
551 initThreadMaybe(/*MinimalInit=*/true);
552
553 if (UNLIKELY(&__scudo_deallocate_hook))
554 __scudo_deallocate_hook(Ptr);
555
556 if (UNLIKELY(!Ptr))
557 return;
558
559 #ifdef GWP_ASAN_HOOKS
560 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
561 GuardedAlloc.deallocate(Ptr);
562 Stats.lock();
563 Stats.add(StatFree, GuardedAllocSlotSize);
564 Stats.sub(StatAllocated, GuardedAllocSlotSize);
565 Stats.unlock();
566 return;
567 }
568 #endif // GWP_ASAN_HOOKS
569
570 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
571 reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
572
573 void *TaggedPtr = Ptr;
574 Ptr = getHeaderTaggedPointer(Ptr);
575
576 Chunk::UnpackedHeader Header;
577 Chunk::loadHeader(Cookie, Ptr, &Header);
578
579 if (UNLIKELY(Header.State != Chunk::State::Allocated))
580 reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
581
582 const Options Options = Primary.Options.load();
583 if (Options.get(OptionBit::DeallocTypeMismatch)) {
584 if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
585 // With the exception of memalign'd chunks, that can be still be free'd.
586 if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
587 Origin != Chunk::Origin::Malloc)
588 reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
589 Header.OriginOrWasZeroed, Origin);
590 }
591 }
592
593 const uptr Size = getSize(Ptr, &Header);
594 if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
595 if (UNLIKELY(DeleteSize != Size))
596 reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
597 }
598
599 quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
600 }
601
602 void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
603 initThreadMaybe();
604
605 const Options Options = Primary.Options.load();
606 if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
607 if (Options.get(OptionBit::MayReturnNull))
608 return nullptr;
609 reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
610 }
611
612 // The following cases are handled by the C wrappers.
613 DCHECK_NE(OldPtr, nullptr);
614 DCHECK_NE(NewSize, 0);
615
616 #ifdef GWP_ASAN_HOOKS
617 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
618 uptr OldSize = GuardedAlloc.getSize(OldPtr);
619 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
620 if (NewPtr)
621 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
622 GuardedAlloc.deallocate(OldPtr);
623 Stats.lock();
624 Stats.add(StatFree, GuardedAllocSlotSize);
625 Stats.sub(StatAllocated, GuardedAllocSlotSize);
626 Stats.unlock();
627 return NewPtr;
628 }
629 #endif // GWP_ASAN_HOOKS
630
631 void *OldTaggedPtr = OldPtr;
632 OldPtr = getHeaderTaggedPointer(OldPtr);
633
634 if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
635 reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
636
637 Chunk::UnpackedHeader OldHeader;
638 Chunk::loadHeader(Cookie, OldPtr, &OldHeader);
639
640 if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
641 reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
642
643 // Pointer has to be allocated with a malloc-type function. Some
644 // applications think that it is OK to realloc a memalign'ed pointer, which
645 // will trigger this check. It really isn't.
646 if (Options.get(OptionBit::DeallocTypeMismatch)) {
647 if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
648 reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
649 OldHeader.OriginOrWasZeroed,
650 Chunk::Origin::Malloc);
651 }
652
653 void *BlockBegin = getBlockBegin(OldTaggedPtr, &OldHeader);
654 uptr BlockEnd;
655 uptr OldSize;
656 const uptr ClassId = OldHeader.ClassId;
657 if (LIKELY(ClassId)) {
658 BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
659 SizeClassMap::getSizeByClassId(ClassId);
660 OldSize = OldHeader.SizeOrUnusedBytes;
661 } else {
662 BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
663 OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
664 OldHeader.SizeOrUnusedBytes);
665 }
666 // If the new chunk still fits in the previously allocated block (with a
667 // reasonable delta), we just keep the old block, and update the chunk
668 // header to reflect the size change.
669 if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
670 if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
671 Chunk::UnpackedHeader NewHeader = OldHeader;
672 NewHeader.SizeOrUnusedBytes =
673 (ClassId ? NewSize
674 : BlockEnd -
675 (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
676 Chunk::SizeOrUnusedBytesMask;
677 Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
678 if (UNLIKELY(useMemoryTagging<Params>(Options))) {
679 if (ClassId) {
680 resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
681 reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
682 NewSize, untagPointer(BlockEnd));
683 storePrimaryAllocationStackMaybe(Options, OldPtr);
684 } else {
685 storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
686 }
687 }
688 return OldTaggedPtr;
689 }
690 }
691
692 // Otherwise we allocate a new one, and deallocate the old one. Some
693 // allocators will allocate an even larger chunk (by a fixed factor) to
694 // allow for potential further in-place realloc. The gains of such a trick
695 // are currently unclear.
696 void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
697 if (LIKELY(NewPtr)) {
698 memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
699 if (UNLIKELY(&__scudo_deallocate_hook))
700 __scudo_deallocate_hook(OldTaggedPtr);
701 quarantineOrDeallocateChunk(Options, OldTaggedPtr, &OldHeader, OldSize);
702 }
703 return NewPtr;
704 }
705
706 // TODO(kostyak): disable() is currently best-effort. There are some small
707 // windows of time when an allocation could still succeed after
708 // this function finishes. We will revisit that later.
disable()709 void disable() NO_THREAD_SAFETY_ANALYSIS {
710 initThreadMaybe();
711 #ifdef GWP_ASAN_HOOKS
712 GuardedAlloc.disable();
713 #endif
714 TSDRegistry.disable();
715 Stats.disable();
716 Quarantine.disable();
717 Primary.disable();
718 Secondary.disable();
719 }
720
enable()721 void enable() NO_THREAD_SAFETY_ANALYSIS {
722 initThreadMaybe();
723 Secondary.enable();
724 Primary.enable();
725 Quarantine.enable();
726 Stats.enable();
727 TSDRegistry.enable();
728 #ifdef GWP_ASAN_HOOKS
729 GuardedAlloc.enable();
730 #endif
731 }
732
733 // The function returns the amount of bytes required to store the statistics,
734 // which might be larger than the amount of bytes provided. Note that the
735 // statistics buffer is not necessarily constant between calls to this
736 // function. This can be called with a null buffer or zero size for buffer
737 // sizing purposes.
getStats(char * Buffer,uptr Size)738 uptr getStats(char *Buffer, uptr Size) {
739 ScopedString Str;
740 const uptr Length = getStats(&Str) + 1;
741 if (Length < Size)
742 Size = Length;
743 if (Buffer && Size) {
744 memcpy(Buffer, Str.data(), Size);
745 Buffer[Size - 1] = '\0';
746 }
747 return Length;
748 }
749
printStats()750 void printStats() {
751 ScopedString Str;
752 getStats(&Str);
753 Str.output();
754 }
755
releaseToOS(ReleaseToOS ReleaseType)756 void releaseToOS(ReleaseToOS ReleaseType) {
757 initThreadMaybe();
758 if (ReleaseType == ReleaseToOS::ForceAll)
759 drainCaches();
760 Primary.releaseToOS(ReleaseType);
761 Secondary.releaseToOS();
762 }
763
764 // Iterate over all chunks and call a callback for all busy chunks located
765 // within the provided memory range. Said callback must not use this allocator
766 // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
iterateOverChunks(uptr Base,uptr Size,iterate_callback Callback,void * Arg)767 void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
768 void *Arg) {
769 initThreadMaybe();
770 if (archSupportsMemoryTagging())
771 Base = untagPointer(Base);
772 const uptr From = Base;
773 const uptr To = Base + Size;
774 bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging<Params>() &&
775 systemSupportsMemoryTagging();
776 auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
777 Arg](uptr Block) {
778 if (Block < From || Block >= To)
779 return;
780 uptr Chunk;
781 Chunk::UnpackedHeader Header;
782 if (MayHaveTaggedPrimary) {
783 // A chunk header can either have a zero tag (tagged primary) or the
784 // header tag (secondary, or untagged primary). We don't know which so
785 // try both.
786 ScopedDisableMemoryTagChecks x;
787 if (!getChunkFromBlock(Block, &Chunk, &Header) &&
788 !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
789 return;
790 } else {
791 if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
792 return;
793 }
794 if (Header.State == Chunk::State::Allocated) {
795 uptr TaggedChunk = Chunk;
796 if (allocatorSupportsMemoryTagging<Params>())
797 TaggedChunk = untagPointer(TaggedChunk);
798 if (useMemoryTagging<Params>(Primary.Options.load()))
799 TaggedChunk = loadTag(Chunk);
800 Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
801 Arg);
802 }
803 };
804 Primary.iterateOverBlocks(Lambda);
805 Secondary.iterateOverBlocks(Lambda);
806 #ifdef GWP_ASAN_HOOKS
807 GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
808 #endif
809 }
810
canReturnNull()811 bool canReturnNull() {
812 initThreadMaybe();
813 return Primary.Options.load().get(OptionBit::MayReturnNull);
814 }
815
setOption(Option O,sptr Value)816 bool setOption(Option O, sptr Value) {
817 initThreadMaybe();
818 if (O == Option::MemtagTuning) {
819 // Enabling odd/even tags involves a tradeoff between use-after-free
820 // detection and buffer overflow detection. Odd/even tags make it more
821 // likely for buffer overflows to be detected by increasing the size of
822 // the guaranteed "red zone" around the allocation, but on the other hand
823 // use-after-free is less likely to be detected because the tag space for
824 // any particular chunk is cut in half. Therefore we use this tuning
825 // setting to control whether odd/even tags are enabled.
826 if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
827 Primary.Options.set(OptionBit::UseOddEvenTags);
828 else if (Value == M_MEMTAG_TUNING_UAF)
829 Primary.Options.clear(OptionBit::UseOddEvenTags);
830 return true;
831 } else {
832 // We leave it to the various sub-components to decide whether or not they
833 // want to handle the option, but we do not want to short-circuit
834 // execution if one of the setOption was to return false.
835 const bool PrimaryResult = Primary.setOption(O, Value);
836 const bool SecondaryResult = Secondary.setOption(O, Value);
837 const bool RegistryResult = TSDRegistry.setOption(O, Value);
838 return PrimaryResult && SecondaryResult && RegistryResult;
839 }
840 return false;
841 }
842
843 // Return the usable size for a given chunk. Technically we lie, as we just
844 // report the actual size of a chunk. This is done to counteract code actively
845 // writing past the end of a chunk (like sqlite3) when the usable size allows
846 // for it, which then forces realloc to copy the usable size of a chunk as
847 // opposed to its actual size.
getUsableSize(const void * Ptr)848 uptr getUsableSize(const void *Ptr) {
849 initThreadMaybe();
850 if (UNLIKELY(!Ptr))
851 return 0;
852
853 #ifdef GWP_ASAN_HOOKS
854 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
855 return GuardedAlloc.getSize(Ptr);
856 #endif // GWP_ASAN_HOOKS
857
858 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
859 Chunk::UnpackedHeader Header;
860 Chunk::loadHeader(Cookie, Ptr, &Header);
861 // Getting the usable size of a chunk only makes sense if it's allocated.
862 if (UNLIKELY(Header.State != Chunk::State::Allocated))
863 reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
864 return getSize(Ptr, &Header);
865 }
866
getStats(StatCounters S)867 void getStats(StatCounters S) {
868 initThreadMaybe();
869 Stats.get(S);
870 }
871
872 // Returns true if the pointer provided was allocated by the current
873 // allocator instance, which is compliant with tcmalloc's ownership concept.
874 // A corrupted chunk will not be reported as owned, which is WAI.
isOwned(const void * Ptr)875 bool isOwned(const void *Ptr) {
876 initThreadMaybe();
877 #ifdef GWP_ASAN_HOOKS
878 if (GuardedAlloc.pointerIsMine(Ptr))
879 return true;
880 #endif // GWP_ASAN_HOOKS
881 if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
882 return false;
883 Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
884 Chunk::UnpackedHeader Header;
885 return Chunk::isValid(Cookie, Ptr, &Header) &&
886 Header.State == Chunk::State::Allocated;
887 }
888
setRssLimitsTestOnly(int SoftRssLimitMb,int HardRssLimitMb,bool MayReturnNull)889 void setRssLimitsTestOnly(int SoftRssLimitMb, int HardRssLimitMb,
890 bool MayReturnNull) {
891 RssChecker.init(SoftRssLimitMb, HardRssLimitMb);
892 if (MayReturnNull)
893 Primary.Options.set(OptionBit::MayReturnNull);
894 }
895
useMemoryTaggingTestOnly()896 bool useMemoryTaggingTestOnly() const {
897 return useMemoryTagging<Params>(Primary.Options.load());
898 }
disableMemoryTagging()899 void disableMemoryTagging() {
900 // If we haven't been initialized yet, we need to initialize now in order to
901 // prevent a future call to initThreadMaybe() from enabling memory tagging
902 // based on feature detection. But don't call initThreadMaybe() because it
903 // may end up calling the allocator (via pthread_atfork, via the post-init
904 // callback), which may cause mappings to be created with memory tagging
905 // enabled.
906 TSDRegistry.initOnceMaybe(this);
907 if (allocatorSupportsMemoryTagging<Params>()) {
908 Secondary.disableMemoryTagging();
909 Primary.Options.clear(OptionBit::UseMemoryTagging);
910 }
911 }
912
setTrackAllocationStacks(bool Track)913 void setTrackAllocationStacks(bool Track) {
914 initThreadMaybe();
915 if (getFlags()->allocation_ring_buffer_size == 0) {
916 DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
917 return;
918 }
919 if (Track)
920 Primary.Options.set(OptionBit::TrackAllocationStacks);
921 else
922 Primary.Options.clear(OptionBit::TrackAllocationStacks);
923 }
924
setFillContents(FillContentsMode FillContents)925 void setFillContents(FillContentsMode FillContents) {
926 initThreadMaybe();
927 Primary.Options.setFillContentsMode(FillContents);
928 }
929
setAddLargeAllocationSlack(bool AddSlack)930 void setAddLargeAllocationSlack(bool AddSlack) {
931 initThreadMaybe();
932 if (AddSlack)
933 Primary.Options.set(OptionBit::AddLargeAllocationSlack);
934 else
935 Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
936 }
937
getStackDepotAddress()938 const char *getStackDepotAddress() const {
939 return reinterpret_cast<const char *>(&Depot);
940 }
941
getRegionInfoArrayAddress()942 const char *getRegionInfoArrayAddress() const {
943 return Primary.getRegionInfoArrayAddress();
944 }
945
getRegionInfoArraySize()946 static uptr getRegionInfoArraySize() {
947 return PrimaryT::getRegionInfoArraySize();
948 }
949
getRingBufferAddress()950 const char *getRingBufferAddress() {
951 initThreadMaybe();
952 return RawRingBuffer;
953 }
954
getRingBufferSize()955 uptr getRingBufferSize() {
956 initThreadMaybe();
957 auto *RingBuffer = getRingBuffer();
958 return RingBuffer ? ringBufferSizeInBytes(RingBuffer->Size) : 0;
959 }
960
setRingBufferSizeForBuffer(char * Buffer,size_t Size)961 static bool setRingBufferSizeForBuffer(char *Buffer, size_t Size) {
962 // Need at least one entry.
963 if (Size < sizeof(AllocationRingBuffer) +
964 sizeof(typename AllocationRingBuffer::Entry)) {
965 return false;
966 }
967 AllocationRingBuffer *RingBuffer =
968 reinterpret_cast<AllocationRingBuffer *>(Buffer);
969 RingBuffer->Size = (Size - sizeof(AllocationRingBuffer)) /
970 sizeof(typename AllocationRingBuffer::Entry);
971 return true;
972 }
973
974 static const uptr MaxTraceSize = 64;
975
collectTraceMaybe(const StackDepot * Depot,uintptr_t (& Trace)[MaxTraceSize],u32 Hash)976 static void collectTraceMaybe(const StackDepot *Depot,
977 uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
978 uptr RingPos, Size;
979 if (!Depot->find(Hash, &RingPos, &Size))
980 return;
981 for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
982 Trace[I] = static_cast<uintptr_t>((*Depot)[RingPos + I]);
983 }
984
getErrorInfo(struct scudo_error_info * ErrorInfo,uintptr_t FaultAddr,const char * DepotPtr,const char * RegionInfoPtr,const char * RingBufferPtr,const char * Memory,const char * MemoryTags,uintptr_t MemoryAddr,size_t MemorySize)985 static void getErrorInfo(struct scudo_error_info *ErrorInfo,
986 uintptr_t FaultAddr, const char *DepotPtr,
987 const char *RegionInfoPtr, const char *RingBufferPtr,
988 const char *Memory, const char *MemoryTags,
989 uintptr_t MemoryAddr, size_t MemorySize) {
990 *ErrorInfo = {};
991 if (!allocatorSupportsMemoryTagging<Params>() ||
992 MemoryAddr + MemorySize < MemoryAddr)
993 return;
994
995 auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
996 size_t NextErrorReport = 0;
997
998 // Check for OOB in the current block and the two surrounding blocks. Beyond
999 // that, UAF is more likely.
1000 if (extractTag(FaultAddr) != 0)
1001 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
1002 RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
1003 MemorySize, 0, 2);
1004
1005 // Check the ring buffer. For primary allocations this will only find UAF;
1006 // for secondary allocations we can find either UAF or OOB.
1007 getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
1008 RingBufferPtr);
1009
1010 // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
1011 // Beyond that we are likely to hit false positives.
1012 if (extractTag(FaultAddr) != 0)
1013 getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
1014 RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
1015 MemorySize, 2, 16);
1016 }
1017
1018 private:
1019 using SecondaryT = MapAllocator<Params>;
1020 typedef typename PrimaryT::SizeClassMap SizeClassMap;
1021
1022 static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
1023 static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
1024 static const uptr MinAlignment = 1UL << MinAlignmentLog;
1025 static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
1026 static const uptr MaxAllowedMallocSize =
1027 FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
1028
1029 static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
1030 "Minimal alignment must at least cover a chunk header.");
1031 static_assert(!allocatorSupportsMemoryTagging<Params>() ||
1032 MinAlignment >= archMemoryTagGranuleSize(),
1033 "");
1034
1035 static const u32 BlockMarker = 0x44554353U;
1036
1037 // These are indexes into an "array" of 32-bit values that store information
1038 // inline with a chunk that is relevant to diagnosing memory tag faults, where
1039 // 0 corresponds to the address of the user memory. This means that only
1040 // negative indexes may be used. The smallest index that may be used is -2,
1041 // which corresponds to 8 bytes before the user memory, because the chunk
1042 // header size is 8 bytes and in allocators that support memory tagging the
1043 // minimum alignment is at least the tag granule size (16 on aarch64).
1044 static const sptr MemTagAllocationTraceIndex = -2;
1045 static const sptr MemTagAllocationTidIndex = -1;
1046
1047 u32 Cookie = 0;
1048 u32 QuarantineMaxChunkSize = 0;
1049
1050 GlobalStats Stats;
1051 PrimaryT Primary;
1052 SecondaryT Secondary;
1053 QuarantineT Quarantine;
1054 TSDRegistryT TSDRegistry;
1055 pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
1056 RssLimitChecker RssChecker;
1057
1058 #ifdef GWP_ASAN_HOOKS
1059 gwp_asan::GuardedPoolAllocator GuardedAlloc;
1060 uptr GuardedAllocSlotSize = 0;
1061 #endif // GWP_ASAN_HOOKS
1062
1063 StackDepot Depot;
1064
1065 struct AllocationRingBuffer {
1066 struct Entry {
1067 atomic_uptr Ptr;
1068 atomic_uptr AllocationSize;
1069 atomic_u32 AllocationTrace;
1070 atomic_u32 AllocationTid;
1071 atomic_u32 DeallocationTrace;
1072 atomic_u32 DeallocationTid;
1073 };
1074
1075 atomic_uptr Pos;
1076 u32 Size;
1077 // An array of Size (at least one) elements of type Entry is immediately
1078 // following to this struct.
1079 };
1080 // Pointer to memory mapped area starting with AllocationRingBuffer struct,
1081 // and immediately followed by Size elements of type Entry.
1082 char *RawRingBuffer = {};
1083
1084 // The following might get optimized out by the compiler.
performSanityChecks()1085 NOINLINE void performSanityChecks() {
1086 // Verify that the header offset field can hold the maximum offset. In the
1087 // case of the Secondary allocator, it takes care of alignment and the
1088 // offset will always be small. In the case of the Primary, the worst case
1089 // scenario happens in the last size class, when the backend allocation
1090 // would already be aligned on the requested alignment, which would happen
1091 // to be the maximum alignment that would fit in that size class. As a
1092 // result, the maximum offset will be at most the maximum alignment for the
1093 // last size class minus the header size, in multiples of MinAlignment.
1094 Chunk::UnpackedHeader Header = {};
1095 const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1096 SizeClassMap::MaxSize - MinAlignment);
1097 const uptr MaxOffset =
1098 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1099 Header.Offset = MaxOffset & Chunk::OffsetMask;
1100 if (UNLIKELY(Header.Offset != MaxOffset))
1101 reportSanityCheckError("offset");
1102
1103 // Verify that we can fit the maximum size or amount of unused bytes in the
1104 // header. Given that the Secondary fits the allocation to a page, the worst
1105 // case scenario happens in the Primary. It will depend on the second to
1106 // last and last class sizes, as well as the dynamic base for the Primary.
1107 // The following is an over-approximation that works for our needs.
1108 const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1109 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1110 if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1111 reportSanityCheckError("size (or unused bytes)");
1112
1113 const uptr LargestClassId = SizeClassMap::LargestClassId;
1114 Header.ClassId = LargestClassId;
1115 if (UNLIKELY(Header.ClassId != LargestClassId))
1116 reportSanityCheckError("class ID");
1117 }
1118
getBlockBegin(const void * Ptr,Chunk::UnpackedHeader * Header)1119 static inline void *getBlockBegin(const void *Ptr,
1120 Chunk::UnpackedHeader *Header) {
1121 return reinterpret_cast<void *>(
1122 reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1123 (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1124 }
1125
1126 // Return the size of a chunk as requested during its allocation.
getSize(const void * Ptr,Chunk::UnpackedHeader * Header)1127 inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1128 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1129 if (LIKELY(Header->ClassId))
1130 return SizeOrUnusedBytes;
1131 if (allocatorSupportsMemoryTagging<Params>())
1132 Ptr = untagPointer(const_cast<void *>(Ptr));
1133 return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1134 reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1135 }
1136
quarantineOrDeallocateChunk(Options Options,void * TaggedPtr,Chunk::UnpackedHeader * Header,uptr Size)1137 void quarantineOrDeallocateChunk(Options Options, void *TaggedPtr,
1138 Chunk::UnpackedHeader *Header,
1139 uptr Size) NO_THREAD_SAFETY_ANALYSIS {
1140 void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1141 Chunk::UnpackedHeader NewHeader = *Header;
1142 // If the quarantine is disabled, the actual size of a chunk is 0 or larger
1143 // than the maximum allowed, we return a chunk directly to the backend.
1144 // This purposefully underflows for Size == 0.
1145 const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1146 ((Size - 1) >= QuarantineMaxChunkSize) ||
1147 !NewHeader.ClassId;
1148 if (BypassQuarantine)
1149 NewHeader.State = Chunk::State::Available;
1150 else
1151 NewHeader.State = Chunk::State::Quarantined;
1152 NewHeader.OriginOrWasZeroed = useMemoryTagging<Params>(Options) &&
1153 NewHeader.ClassId &&
1154 !TSDRegistry.getDisableMemInit();
1155 Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
1156
1157 if (UNLIKELY(useMemoryTagging<Params>(Options))) {
1158 u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1159 storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1160 if (NewHeader.ClassId) {
1161 if (!TSDRegistry.getDisableMemInit()) {
1162 uptr TaggedBegin, TaggedEnd;
1163 const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1164 Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
1165 NewHeader.ClassId);
1166 // Exclude the previous tag so that immediate use after free is
1167 // detected 100% of the time.
1168 setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1169 &TaggedEnd);
1170 }
1171 }
1172 }
1173 if (BypassQuarantine) {
1174 if (allocatorSupportsMemoryTagging<Params>())
1175 Ptr = untagPointer(Ptr);
1176 void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
1177 const uptr ClassId = NewHeader.ClassId;
1178 if (LIKELY(ClassId)) {
1179 bool UnlockRequired;
1180 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1181 TSD->getCache().deallocate(ClassId, BlockBegin);
1182 if (UnlockRequired)
1183 TSD->unlock();
1184 } else {
1185 if (UNLIKELY(useMemoryTagging<Params>(Options)))
1186 storeTags(reinterpret_cast<uptr>(BlockBegin),
1187 reinterpret_cast<uptr>(Ptr));
1188 Secondary.deallocate(Options, BlockBegin);
1189 }
1190 } else {
1191 bool UnlockRequired;
1192 auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
1193 Quarantine.put(&TSD->getQuarantineCache(),
1194 QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
1195 if (UnlockRequired)
1196 TSD->unlock();
1197 }
1198 }
1199
getChunkFromBlock(uptr Block,uptr * Chunk,Chunk::UnpackedHeader * Header)1200 bool getChunkFromBlock(uptr Block, uptr *Chunk,
1201 Chunk::UnpackedHeader *Header) {
1202 *Chunk =
1203 Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1204 return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1205 }
1206
getChunkOffsetFromBlock(const char * Block)1207 static uptr getChunkOffsetFromBlock(const char *Block) {
1208 u32 Offset = 0;
1209 if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1210 Offset = reinterpret_cast<const u32 *>(Block)[1];
1211 return Offset + Chunk::getHeaderSize();
1212 }
1213
1214 // Set the tag of the granule past the end of the allocation to 0, to catch
1215 // linear overflows even if a previous larger allocation used the same block
1216 // and tag. Only do this if the granule past the end is in our block, because
1217 // this would otherwise lead to a SEGV if the allocation covers the entire
1218 // block and our block is at the end of a mapping. The tag of the next block's
1219 // header granule will be set to 0, so it will serve the purpose of catching
1220 // linear overflows in this case.
1221 //
1222 // For allocations of size 0 we do not end up storing the address tag to the
1223 // memory tag space, which getInlineErrorInfo() normally relies on to match
1224 // address tags against chunks. To allow matching in this case we store the
1225 // address tag in the first byte of the chunk.
storeEndMarker(uptr End,uptr Size,uptr BlockEnd)1226 void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1227 DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1228 uptr UntaggedEnd = untagPointer(End);
1229 if (UntaggedEnd != BlockEnd) {
1230 storeTag(UntaggedEnd);
1231 if (Size == 0)
1232 *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1233 }
1234 }
1235
prepareTaggedChunk(void * Ptr,uptr Size,uptr ExcludeMask,uptr BlockEnd)1236 void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1237 uptr BlockEnd) {
1238 // Prepare the granule before the chunk to store the chunk header by setting
1239 // its tag to 0. Normally its tag will already be 0, but in the case where a
1240 // chunk holding a low alignment allocation is reused for a higher alignment
1241 // allocation, the chunk may already have a non-zero tag from the previous
1242 // allocation.
1243 storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1244
1245 uptr TaggedBegin, TaggedEnd;
1246 setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1247
1248 storeEndMarker(TaggedEnd, Size, BlockEnd);
1249 return reinterpret_cast<void *>(TaggedBegin);
1250 }
1251
resizeTaggedChunk(uptr OldPtr,uptr NewPtr,uptr NewSize,uptr BlockEnd)1252 void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1253 uptr BlockEnd) {
1254 uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
1255 uptr RoundNewPtr;
1256 if (RoundOldPtr >= NewPtr) {
1257 // If the allocation is shrinking we just need to set the tag past the end
1258 // of the allocation to 0. See explanation in storeEndMarker() above.
1259 RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
1260 } else {
1261 // Set the memory tag of the region
1262 // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
1263 // to the pointer tag stored in OldPtr.
1264 RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1265 }
1266 storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1267 }
1268
storePrimaryAllocationStackMaybe(Options Options,void * Ptr)1269 void storePrimaryAllocationStackMaybe(Options Options, void *Ptr) {
1270 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1271 return;
1272 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1273 Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
1274 Ptr32[MemTagAllocationTidIndex] = getThreadID();
1275 }
1276
storeRingBufferEntry(void * Ptr,u32 AllocationTrace,u32 AllocationTid,uptr AllocationSize,u32 DeallocationTrace,u32 DeallocationTid)1277 void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid,
1278 uptr AllocationSize, u32 DeallocationTrace,
1279 u32 DeallocationTid) {
1280 uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed);
1281 typename AllocationRingBuffer::Entry *Entry =
1282 getRingBufferEntry(RawRingBuffer, Pos % getRingBuffer()->Size);
1283
1284 // First invalidate our entry so that we don't attempt to interpret a
1285 // partially written state in getSecondaryErrorInfo(). The fences below
1286 // ensure that the compiler does not move the stores to Ptr in between the
1287 // stores to the other fields.
1288 atomic_store_relaxed(&Entry->Ptr, 0);
1289
1290 __atomic_signal_fence(__ATOMIC_SEQ_CST);
1291 atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1292 atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1293 atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1294 atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1295 atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1296 __atomic_signal_fence(__ATOMIC_SEQ_CST);
1297
1298 atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1299 }
1300
storeSecondaryAllocationStackMaybe(Options Options,void * Ptr,uptr Size)1301 void storeSecondaryAllocationStackMaybe(Options Options, void *Ptr,
1302 uptr Size) {
1303 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1304 return;
1305
1306 u32 Trace = collectStackTrace();
1307 u32 Tid = getThreadID();
1308
1309 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1310 Ptr32[MemTagAllocationTraceIndex] = Trace;
1311 Ptr32[MemTagAllocationTidIndex] = Tid;
1312
1313 storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1314 }
1315
storeDeallocationStackMaybe(Options Options,void * Ptr,u8 PrevTag,uptr Size)1316 void storeDeallocationStackMaybe(Options Options, void *Ptr, u8 PrevTag,
1317 uptr Size) {
1318 if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1319 return;
1320
1321 auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1322 u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1323 u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1324
1325 u32 DeallocationTrace = collectStackTrace();
1326 u32 DeallocationTid = getThreadID();
1327
1328 storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag),
1329 AllocationTrace, AllocationTid, Size,
1330 DeallocationTrace, DeallocationTid);
1331 }
1332
1333 static const size_t NumErrorReports =
1334 sizeof(((scudo_error_info *)nullptr)->reports) /
1335 sizeof(((scudo_error_info *)nullptr)->reports[0]);
1336
getInlineErrorInfo(struct scudo_error_info * ErrorInfo,size_t & NextErrorReport,uintptr_t FaultAddr,const StackDepot * Depot,const char * RegionInfoPtr,const char * Memory,const char * MemoryTags,uintptr_t MemoryAddr,size_t MemorySize,size_t MinDistance,size_t MaxDistance)1337 static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1338 size_t &NextErrorReport, uintptr_t FaultAddr,
1339 const StackDepot *Depot,
1340 const char *RegionInfoPtr, const char *Memory,
1341 const char *MemoryTags, uintptr_t MemoryAddr,
1342 size_t MemorySize, size_t MinDistance,
1343 size_t MaxDistance) {
1344 uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1345 u8 FaultAddrTag = extractTag(FaultAddr);
1346 BlockInfo Info =
1347 PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1348
1349 auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1350 if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1351 Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1352 return false;
1353 *Data = &Memory[Addr - MemoryAddr];
1354 *Tag = static_cast<u8>(
1355 MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1356 return true;
1357 };
1358
1359 auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1360 Chunk::UnpackedHeader *Header, const u32 **Data,
1361 u8 *Tag) {
1362 const char *BlockBegin;
1363 u8 BlockBeginTag;
1364 if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1365 return false;
1366 uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1367 *ChunkAddr = Addr + ChunkOffset;
1368
1369 const char *ChunkBegin;
1370 if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1371 return false;
1372 *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1373 ChunkBegin - Chunk::getHeaderSize());
1374 *Data = reinterpret_cast<const u32 *>(ChunkBegin);
1375
1376 // Allocations of size 0 will have stashed the tag in the first byte of
1377 // the chunk, see storeEndMarker().
1378 if (Header->SizeOrUnusedBytes == 0)
1379 *Tag = static_cast<u8>(*ChunkBegin);
1380
1381 return true;
1382 };
1383
1384 if (NextErrorReport == NumErrorReports)
1385 return;
1386
1387 auto CheckOOB = [&](uptr BlockAddr) {
1388 if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1389 return false;
1390
1391 uptr ChunkAddr;
1392 Chunk::UnpackedHeader Header;
1393 const u32 *Data;
1394 uint8_t Tag;
1395 if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1396 Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1397 return false;
1398
1399 auto *R = &ErrorInfo->reports[NextErrorReport++];
1400 R->error_type =
1401 UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1402 R->allocation_address = ChunkAddr;
1403 R->allocation_size = Header.SizeOrUnusedBytes;
1404 collectTraceMaybe(Depot, R->allocation_trace,
1405 Data[MemTagAllocationTraceIndex]);
1406 R->allocation_tid = Data[MemTagAllocationTidIndex];
1407 return NextErrorReport == NumErrorReports;
1408 };
1409
1410 if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1411 return;
1412
1413 for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1414 if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1415 CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1416 return;
1417 }
1418
getRingBufferErrorInfo(struct scudo_error_info * ErrorInfo,size_t & NextErrorReport,uintptr_t FaultAddr,const StackDepot * Depot,const char * RingBufferPtr)1419 static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1420 size_t &NextErrorReport,
1421 uintptr_t FaultAddr,
1422 const StackDepot *Depot,
1423 const char *RingBufferPtr) {
1424 auto *RingBuffer =
1425 reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1426 if (!RingBuffer || RingBuffer->Size == 0)
1427 return;
1428 uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1429
1430 for (uptr I = Pos - 1;
1431 I != Pos - 1 - RingBuffer->Size && NextErrorReport != NumErrorReports;
1432 --I) {
1433 auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBuffer->Size);
1434 uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1435 if (!EntryPtr)
1436 continue;
1437
1438 uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1439 uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1440 u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1441 u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1442 u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1443 u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1444
1445 if (DeallocationTid) {
1446 // For UAF we only consider in-bounds fault addresses because
1447 // out-of-bounds UAF is rare and attempting to detect it is very likely
1448 // to result in false positives.
1449 if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1450 continue;
1451 } else {
1452 // Ring buffer OOB is only possible with secondary allocations. In this
1453 // case we are guaranteed a guard region of at least a page on either
1454 // side of the allocation (guard page on the right, guard page + tagged
1455 // region on the left), so ignore any faults outside of that range.
1456 if (FaultAddr < EntryPtr - getPageSizeCached() ||
1457 FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1458 continue;
1459
1460 // For UAF the ring buffer will contain two entries, one for the
1461 // allocation and another for the deallocation. Don't report buffer
1462 // overflow/underflow using the allocation entry if we have already
1463 // collected a report from the deallocation entry.
1464 bool Found = false;
1465 for (uptr J = 0; J != NextErrorReport; ++J) {
1466 if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1467 Found = true;
1468 break;
1469 }
1470 }
1471 if (Found)
1472 continue;
1473 }
1474
1475 auto *R = &ErrorInfo->reports[NextErrorReport++];
1476 if (DeallocationTid)
1477 R->error_type = USE_AFTER_FREE;
1478 else if (FaultAddr < EntryPtr)
1479 R->error_type = BUFFER_UNDERFLOW;
1480 else
1481 R->error_type = BUFFER_OVERFLOW;
1482
1483 R->allocation_address = UntaggedEntryPtr;
1484 R->allocation_size = EntrySize;
1485 collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1486 R->allocation_tid = AllocationTid;
1487 collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1488 R->deallocation_tid = DeallocationTid;
1489 }
1490 }
1491
getStats(ScopedString * Str)1492 uptr getStats(ScopedString *Str) {
1493 Primary.getStats(Str);
1494 Secondary.getStats(Str);
1495 Quarantine.getStats(Str);
1496 TSDRegistry.getStats(Str);
1497 return Str->length();
1498 }
1499
1500 static typename AllocationRingBuffer::Entry *
getRingBufferEntry(char * RawRingBuffer,uptr N)1501 getRingBufferEntry(char *RawRingBuffer, uptr N) {
1502 return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1503 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1504 }
1505 static const typename AllocationRingBuffer::Entry *
getRingBufferEntry(const char * RawRingBuffer,uptr N)1506 getRingBufferEntry(const char *RawRingBuffer, uptr N) {
1507 return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1508 &RawRingBuffer[sizeof(AllocationRingBuffer)])[N];
1509 }
1510
initRingBuffer()1511 void initRingBuffer() {
1512 u32 AllocationRingBufferSize =
1513 static_cast<u32>(getFlags()->allocation_ring_buffer_size);
1514 if (AllocationRingBufferSize < 1)
1515 return;
1516 MapPlatformData Data = {};
1517 RawRingBuffer = static_cast<char *>(
1518 map(/*Addr=*/nullptr,
1519 roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
1520 getPageSizeCached()),
1521 "AllocatorRingBuffer", /*Flags=*/0, &Data));
1522 auto *RingBuffer = reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1523 RingBuffer->Size = AllocationRingBufferSize;
1524 static_assert(sizeof(AllocationRingBuffer) %
1525 alignof(typename AllocationRingBuffer::Entry) ==
1526 0,
1527 "invalid alignment");
1528 }
1529
ringBufferSizeInBytes(u32 AllocationRingBufferSize)1530 static constexpr size_t ringBufferSizeInBytes(u32 AllocationRingBufferSize) {
1531 return sizeof(AllocationRingBuffer) +
1532 AllocationRingBufferSize *
1533 sizeof(typename AllocationRingBuffer::Entry);
1534 }
1535
getRingBuffer()1536 inline AllocationRingBuffer *getRingBuffer() {
1537 return reinterpret_cast<AllocationRingBuffer *>(RawRingBuffer);
1538 }
1539 };
1540
1541 } // namespace scudo
1542
1543 #endif // SCUDO_COMBINED_H_
1544