1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/GrFragmentProcessor.h"
9
10 #include "src/core/SkRuntimeEffectPriv.h"
11 #include "src/gpu/KeyBuilder.h"
12 #include "src/gpu/ganesh/GrPipeline.h"
13 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
14 #include "src/gpu/ganesh/GrShaderCaps.h"
15 #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
16 #include "src/gpu/ganesh/effects/GrSkSLFP.h"
17 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
18 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
19 #include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h"
20 #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
21 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
22
isEqual(const GrFragmentProcessor & that) const23 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
24 if (this->classID() != that.classID()) {
25 return false;
26 }
27 if (this->sampleUsage() != that.sampleUsage()) {
28 return false;
29 }
30 if (!this->onIsEqual(that)) {
31 return false;
32 }
33 if (this->numChildProcessors() != that.numChildProcessors()) {
34 return false;
35 }
36 for (int i = 0; i < this->numChildProcessors(); ++i) {
37 auto thisChild = this->childProcessor(i),
38 thatChild = that .childProcessor(i);
39 if (SkToBool(thisChild) != SkToBool(thatChild)) {
40 return false;
41 }
42 if (thisChild && !thisChild->isEqual(*thatChild)) {
43 return false;
44 }
45 }
46 return true;
47 }
48
visitProxies(const GrVisitProxyFunc & func) const49 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
50 this->visitTextureEffects([&func](const GrTextureEffect& te) {
51 func(te.view().proxy(), te.samplerState().mipmapped());
52 });
53 }
54
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const55 void GrFragmentProcessor::visitTextureEffects(
56 const std::function<void(const GrTextureEffect&)>& func) const {
57 if (auto* te = this->asTextureEffect()) {
58 func(*te);
59 }
60 for (auto& child : fChildProcessors) {
61 if (child) {
62 child->visitTextureEffects(func);
63 }
64 }
65 }
66
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const67 void GrFragmentProcessor::visitWithImpls(
68 const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
69 ProgramImpl& impl) const {
70 f(*this, impl);
71 SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
72 for (int i = 0; i < this->numChildProcessors(); ++i) {
73 if (const auto* child = this->childProcessor(i)) {
74 child->visitWithImpls(f, *impl.childProcessor(i));
75 }
76 }
77 }
78
asTextureEffect()79 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
80 if (this->classID() == kGrTextureEffect_ClassID) {
81 return static_cast<GrTextureEffect*>(this);
82 }
83 return nullptr;
84 }
85
asTextureEffect() const86 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
87 if (this->classID() == kGrTextureEffect_ClassID) {
88 return static_cast<const GrTextureEffect*>(this);
89 }
90 return nullptr;
91 }
92
93 #if GR_TEST_UTILS
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)94 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
95 SkString indent,
96 SkString* text) {
97 for (int index = 0; index < fp.numChildProcessors(); ++index) {
98 text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
99 if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
100 text->append(childFP->dumpInfo());
101 indent.append("\t");
102 recursive_dump_tree_info(*childFP, indent, text);
103 } else {
104 text->append("null");
105 }
106 }
107 }
108
dumpTreeInfo() const109 SkString GrFragmentProcessor::dumpTreeInfo() const {
110 SkString text = this->dumpInfo();
111 recursive_dump_tree_info(*this, SkString("\t"), &text);
112 text.append("\n");
113 return text;
114 }
115 #endif
116
makeProgramImpl() const117 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
118 std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
119 impl->fChildProcessors.push_back_n(fChildProcessors.size());
120 for (int i = 0; i < fChildProcessors.size(); ++i) {
121 impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
122 : nullptr;
123 }
124 return impl;
125 }
126
numNonNullChildProcessors() const127 int GrFragmentProcessor::numNonNullChildProcessors() const {
128 return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
129 [](const auto& c) { return c != nullptr; });
130 }
131
132 #ifdef SK_DEBUG
isInstantiated() const133 bool GrFragmentProcessor::isInstantiated() const {
134 bool result = true;
135 this->visitTextureEffects([&result](const GrTextureEffect& te) {
136 if (!te.texture()) {
137 result = false;
138 }
139 });
140 return result;
141 }
142 #endif
143
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)144 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
145 SkSL::SampleUsage sampleUsage) {
146 SkASSERT(sampleUsage.isSampled());
147
148 if (!child) {
149 fChildProcessors.push_back(nullptr);
150 return;
151 }
152
153 // The child should not have been attached to another FP already and not had any sampling
154 // strategy set on it.
155 SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
156
157 // Configure child's sampling state first
158 child->fUsage = sampleUsage;
159
160 // Propagate the "will read dest-color" flag up to parent FPs.
161 if (child->willReadDstColor()) {
162 this->setWillReadDstColor();
163 }
164
165 // If this child receives passthrough or matrix transformed coords from its parent then note
166 // that the parent's coords are used indirectly to ensure that they aren't omitted.
167 if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
168 child->usesSampleCoords()) {
169 fFlags |= kUsesSampleCoordsIndirectly_Flag;
170 }
171
172 // Record that the child is attached to us; this FP is the source of any uniform data needed
173 // to evaluate the child sample matrix.
174 child->fParent = this;
175 fChildProcessors.push_back(std::move(child));
176
177 // Validate: our sample strategy comes from a parent we shouldn't have yet.
178 SkASSERT(!fUsage.isSampled() && !fParent);
179 }
180
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)181 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
182 for (int i = 0; i < src.numChildProcessors(); ++i) {
183 if (auto fp = src.childProcessor(i)) {
184 this->registerChild(fp->clone(), fp->sampleUsage());
185 } else {
186 this->registerChild(nullptr);
187 }
188 }
189 }
190
MakeColor(SkPMColor4f color)191 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
192 // Use ColorFilter signature/factory to get the constant output for constant input optimization
193 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
194 "uniform half4 color;"
195 "half4 main(half4 inColor) { return color; }"
196 );
197 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
198 return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
199 color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
200 : GrSkSLFP::OptFlags::kNone,
201 "color", color);
202 }
203
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)204 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
205 std::unique_ptr<GrFragmentProcessor> fp) {
206 if (!fp) {
207 return nullptr;
208 }
209 return GrBlendFragmentProcessor::Make<SkBlendMode::kSrcIn>(/*src=*/nullptr, std::move(fp));
210 }
211
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)212 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
213 std::unique_ptr<GrFragmentProcessor> child) {
214 SkASSERT(child);
215 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
216 "uniform colorFilter fp;"
217 "half4 main(half4 inColor) {"
218 "return fp.eval(inColor.rgb1) * inColor.a;"
219 "}"
220 );
221 return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
222 GrSkSLFP::OptFlags::kPreservesOpaqueInput |
223 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
224 "fp", std::move(child));
225 }
226
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)227 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
228 std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
229 auto colorFP = MakeColor(color);
230 return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(colorFP),
231 std::move(inputFP));
232 }
233
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)234 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
235 std::unique_ptr<GrFragmentProcessor> fp) {
236 SkASSERT(fp);
237 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
238 "half4 main(half4 inColor) {"
239 "return saturate(inColor);"
240 "}"
241 );
242 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
243 return GrSkSLFP::Make(effect, "Clamp", std::move(fp),
244 GrSkSLFP::OptFlags::kPreservesOpaqueInput);
245 }
246
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const skgpu::Swizzle & swizzle)247 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
248 std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) {
249 class SwizzleFragmentProcessor : public GrFragmentProcessor {
250 public:
251 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
252 const skgpu::Swizzle& swizzle) {
253 return std::unique_ptr<GrFragmentProcessor>(
254 new SwizzleFragmentProcessor(std::move(fp), swizzle));
255 }
256
257 const char* name() const override { return "Swizzle"; }
258
259 std::unique_ptr<GrFragmentProcessor> clone() const override {
260 return Make(this->childProcessor(0)->clone(), fSwizzle);
261 }
262
263 private:
264 SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp,
265 const skgpu::Swizzle& swizzle)
266 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
267 , fSwizzle(swizzle) {
268 this->registerChild(std::move(fp));
269 }
270
271 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
272 class Impl : public ProgramImpl {
273 public:
274 void emitCode(EmitArgs& args) override {
275 SkString childColor = this->invokeChild(0, args);
276
277 const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
278 const skgpu::Swizzle& swizzle = sfp.fSwizzle;
279 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
280
281 fragBuilder->codeAppendf("return %s.%s;",
282 childColor.c_str(), swizzle.asString().c_str());
283 }
284 };
285 return std::make_unique<Impl>();
286 }
287
288 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
289 b->add32(fSwizzle.asKey());
290 }
291
292 bool onIsEqual(const GrFragmentProcessor& other) const override {
293 const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
294 return fSwizzle == sfp.fSwizzle;
295 }
296
297 SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
298 return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
299 }
300
301 skgpu::Swizzle fSwizzle;
302
303 using INHERITED = GrFragmentProcessor;
304 };
305
306 if (!fp) {
307 return nullptr;
308 }
309 if (skgpu::Swizzle::RGBA() == swizzle) {
310 return fp;
311 }
312 return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
313 }
314
315 //////////////////////////////////////////////////////////////////////////////
316
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)317 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
318 std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
319 if (!fp) {
320 return nullptr;
321 }
322 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
323 "uniform colorFilter fp;" // Declared as colorFilter so we can pass a color
324 "uniform half4 color;"
325 "half4 main(half4 inColor) {"
326 "return fp.eval(color);"
327 "}"
328 );
329 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
330 return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
331 color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
332 : GrSkSLFP::OptFlags::kNone,
333 "fp", std::move(fp),
334 "color", color);
335 }
336
337 //////////////////////////////////////////////////////////////////////////////
338
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)339 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
340 std::unique_ptr<GrFragmentProcessor> fp) {
341 if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
342 return fp;
343 }
344 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
345 "half4 main(half4 inColor) { return inColor; }"
346 );
347 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
348 return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
349 GrSkSLFP::OptFlags::kPreservesOpaqueInput);
350 }
351
352 //////////////////////////////////////////////////////////////////////////////
353
DestColor()354 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() {
355 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender,
356 "half4 main(half4 src, half4 dst) {"
357 "return dst;"
358 "}"
359 );
360 return GrSkSLFP::Make(effect, "DestColor", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone);
361 }
362
363 //////////////////////////////////////////////////////////////////////////////
364
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)365 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
366 std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
367 class ComposeProcessor : public GrFragmentProcessor {
368 public:
369 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
370 std::unique_ptr<GrFragmentProcessor> g) {
371 return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
372 std::move(g)));
373 }
374
375 const char* name() const override { return "Compose"; }
376
377 std::unique_ptr<GrFragmentProcessor> clone() const override {
378 return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
379 }
380
381 private:
382 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
383 class Impl : public ProgramImpl {
384 public:
385 void emitCode(EmitArgs& args) override {
386 SkString result = this->invokeChild(1, args); // g(x)
387 result = this->invokeChild(0, result.c_str(), args); // f(g(x))
388 args.fFragBuilder->codeAppendf("return %s;", result.c_str());
389 }
390 };
391 return std::make_unique<Impl>();
392 }
393
394 ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
395 std::unique_ptr<GrFragmentProcessor> g)
396 : INHERITED(kSeriesFragmentProcessor_ClassID,
397 f->optimizationFlags() & g->optimizationFlags()) {
398 this->registerChild(std::move(f));
399 this->registerChild(std::move(g));
400 }
401
402 ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
403
404 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
405
406 bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
407
408 SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
409 SkPMColor4f color = inColor;
410 color = ConstantOutputForConstantInput(this->childProcessor(1), color);
411 color = ConstantOutputForConstantInput(this->childProcessor(0), color);
412 return color;
413 }
414
415 using INHERITED = GrFragmentProcessor;
416 };
417
418 // Allow either of the composed functions to be null.
419 if (f == nullptr) {
420 return g;
421 }
422 if (g == nullptr) {
423 return f;
424 }
425
426 // Run an optimization pass on this composition.
427 GrProcessorAnalysisColor inputColor;
428 inputColor.setToUnknown();
429
430 std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
431 GrColorFragmentProcessorAnalysis info(inputColor, series, std::size(series));
432
433 SkPMColor4f knownColor;
434 int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
435 switch (leadingFPsToEliminate) {
436 default:
437 // We shouldn't eliminate more than we started with.
438 SkASSERT(leadingFPsToEliminate <= 2);
439 [[fallthrough]];
440 case 0:
441 // Compose the two processors as requested.
442 return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
443 case 1:
444 // Replace the first processor with a constant color.
445 return ComposeProcessor::Make(/*f=*/std::move(series[1]),
446 /*g=*/MakeColor(knownColor));
447 case 2:
448 // Replace the entire composition with a constant color.
449 return MakeColor(knownColor);
450 }
451 }
452
453 //////////////////////////////////////////////////////////////////////////////
454
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)455 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
456 std::unique_ptr<GrFragmentProcessor> child,
457 const float matrix[20],
458 bool unpremulInput,
459 bool clampRGBOutput,
460 bool premulOutput) {
461 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
462 "uniform half4x4 m;"
463 "uniform half4 v;"
464 "uniform int unpremulInput;" // always specialized
465 "uniform int clampRGBOutput;" // always specialized
466 "uniform int premulOutput;" // always specialized
467 "half4 main(half4 color) {"
468 "if (bool(unpremulInput)) {"
469 "color = unpremul(color);"
470 "}"
471 "color = m * color + v;"
472 "if (bool(clampRGBOutput)) {"
473 "color = saturate(color);"
474 "} else {"
475 "color.a = saturate(color.a);"
476 "}"
477 "if (bool(premulOutput)) {"
478 "color.rgb *= color.a;"
479 "}"
480 "return color;"
481 "}"
482 );
483 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
484
485 SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
486 matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
487 matrix[10], matrix[11], matrix[12], matrix[13],
488 matrix[15], matrix[16], matrix[17], matrix[18]);
489 SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
490 return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
491 "m", m44,
492 "v", v4,
493 "unpremulInput", GrSkSLFP::Specialize(unpremulInput ? 1 : 0),
494 "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
495 "premulOutput", GrSkSLFP::Specialize(premulOutput ? 1 : 0));
496 }
497
498 //////////////////////////////////////////////////////////////////////////////
499
SurfaceColor()500 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
501 class SurfaceColorProcessor : public GrFragmentProcessor {
502 public:
503 static std::unique_ptr<GrFragmentProcessor> Make() {
504 return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
505 }
506
507 std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
508
509 const char* name() const override { return "SurfaceColor"; }
510
511 private:
512 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
513 class Impl : public ProgramImpl {
514 public:
515 void emitCode(EmitArgs& args) override {
516 const char* dstColor = args.fFragBuilder->dstColor();
517 args.fFragBuilder->codeAppendf("return %s;", dstColor);
518 }
519 };
520 return std::make_unique<Impl>();
521 }
522
523 SurfaceColorProcessor()
524 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
525 this->setWillReadDstColor();
526 }
527
528 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
529
530 bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
531
532 using INHERITED = GrFragmentProcessor;
533 };
534
535 return SurfaceColorProcessor::Make();
536 }
537
538 //////////////////////////////////////////////////////////////////////////////
539
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)540 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
541 std::unique_ptr<GrFragmentProcessor> fp) {
542 if (!fp) {
543 return nullptr;
544 }
545
546 class DeviceSpace : GrFragmentProcessor {
547 public:
548 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
549 return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
550 }
551
552 private:
553 DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
554 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
555 // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
556 this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
557 }
558
559 std::unique_ptr<GrFragmentProcessor> clone() const override {
560 auto child = this->childProcessor(0)->clone();
561 return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
562 }
563
564 SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
565 return this->childProcessor(0)->constantOutputForConstantInput(f);
566 }
567
568 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
569 class Impl : public ProgramImpl {
570 public:
571 Impl() = default;
572 void emitCode(ProgramImpl::EmitArgs& args) override {
573 auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
574 args.fFragBuilder->codeAppendf("return %s;", child.c_str());
575 }
576 };
577 return std::make_unique<Impl>();
578 }
579
580 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
581
582 bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
583
584 const char* name() const override { return "DeviceSpace"; }
585 };
586
587 return DeviceSpace::Make(std::move(fp));
588 }
589
590 //////////////////////////////////////////////////////////////////////////////
591
592 #define CLIP_EDGE_SKSL \
593 "const int kFillBW = 0;" \
594 "const int kFillAA = 1;" \
595 "const int kInverseFillBW = 2;" \
596 "const int kInverseFillAA = 3;"
597
598 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
599 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
600 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
601 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
602
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)603 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
604 std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
605 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
606 CLIP_EDGE_SKSL
607 "uniform int edgeType;" // GrClipEdgeType, specialized
608 "uniform float4 rectUniform;"
609
610 "half4 main(float2 xy) {"
611 "half coverage;"
612 "if (edgeType == kFillBW || edgeType == kInverseFillBW) {"
613 // non-AA
614 "coverage = half(all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),"
615 "float4(rectUniform.xy, sk_FragCoord.xy))));"
616 "} else {"
617 // compute coverage relative to left and right edges, add, then subtract 1 to
618 // account for double counting. And similar for top/bottom.
619 "half4 dists4 = saturate(half4(1, 1, -1, -1) *"
620 "half4(sk_FragCoord.xyxy - rectUniform));"
621 "half2 dists2 = dists4.xy + dists4.zw - 1;"
622 "coverage = dists2.x * dists2.y;"
623 "}"
624
625 "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
626 "coverage = 1.0 - coverage;"
627 "}"
628
629 "return half4(coverage);"
630 "}"
631 );
632
633 SkASSERT(rect.isSorted());
634 // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
635 // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
636 SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
637
638 auto rectFP = GrSkSLFP::Make(effect, "Rect", /*inputFP=*/nullptr,
639 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
640 "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
641 "rectUniform", rectUniform);
642 return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rectFP),
643 std::move(inputFP));
644 }
645
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)646 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
647 GrClipEdgeType edgeType,
648 SkPoint center,
649 float radius) {
650 // A radius below half causes the implicit insetting done by this processor to become
651 // inverted. We could handle this case by making the processor code more complicated.
652 if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
653 return GrFPFailure(std::move(inputFP));
654 }
655
656 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
657 CLIP_EDGE_SKSL
658 "uniform int edgeType;" // GrClipEdgeType, specialized
659 // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
660 // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
661 "uniform float4 circle;"
662
663 "half4 main(float2 xy) {"
664 // TODO: Right now the distance to circle calculation is performed in a space normalized
665 // to the radius and then denormalized. This is to mitigate overflow on devices that
666 // don't have full float.
667 "half d;"
668 "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
669 "d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);"
670 "} else {"
671 "d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z);"
672 "}"
673 "return half4((edgeType == kFillAA || edgeType == kInverseFillAA)"
674 "? saturate(d)"
675 ": (d > 0.5 ? 1 : 0));"
676 "}"
677 );
678
679 SkScalar effectiveRadius = radius;
680 if (GrClipEdgeTypeIsInverseFill(edgeType)) {
681 effectiveRadius -= 0.5f;
682 // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
683 effectiveRadius = std::max(0.001f, effectiveRadius);
684 } else {
685 effectiveRadius += 0.5f;
686 }
687 SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
688
689 auto circleFP = GrSkSLFP::Make(effect, "Circle", /*inputFP=*/nullptr,
690 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
691 "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
692 "circle", circle);
693 return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(inputFP),
694 std::move(circleFP)));
695 }
696
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)697 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
698 GrClipEdgeType edgeType,
699 SkPoint center,
700 SkPoint radii,
701 const GrShaderCaps& caps) {
702 const bool medPrecision = !caps.fFloatIs32Bits;
703
704 // Small radii produce bad results on devices without full float.
705 if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
706 return GrFPFailure(std::move(inputFP));
707 }
708 // Very narrow ellipses produce bad results on devices without full float
709 if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
710 return GrFPFailure(std::move(inputFP));
711 }
712 // Very large ellipses produce bad results on devices without full float
713 if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
714 return GrFPFailure(std::move(inputFP));
715 }
716
717 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
718 CLIP_EDGE_SKSL
719 "uniform int edgeType;" // GrClipEdgeType, specialized
720 "uniform int medPrecision;" // !sk_Caps.floatIs32Bits, specialized
721
722 "uniform float4 ellipse;"
723 "uniform float2 scale;" // only for medPrecision
724
725 "half4 main(float2 xy) {"
726 // d is the offset to the ellipse center
727 "float2 d = sk_FragCoord.xy - ellipse.xy;"
728 // If we're on a device with a "real" mediump then we'll do the distance computation in
729 // a space that is normalized by the larger radius or 128, whichever is smaller. The
730 // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
731 // already in this normalized space. The center is not.
732 "if (bool(medPrecision)) {"
733 "d *= scale.y;"
734 "}"
735 "float2 Z = d * ellipse.zw;"
736 // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
737 "float implicit = dot(Z, d) - 1;"
738 // grad_dot is the squared length of the gradient of the implicit.
739 "float grad_dot = 4 * dot(Z, Z);"
740 // Avoid calling inversesqrt on zero.
741 "if (bool(medPrecision)) {"
742 "grad_dot = max(grad_dot, 6.1036e-5);"
743 "} else {"
744 "grad_dot = max(grad_dot, 1.1755e-38);"
745 "}"
746 "float approx_dist = implicit * inversesqrt(grad_dot);"
747 "if (bool(medPrecision)) {"
748 "approx_dist *= scale.x;"
749 "}"
750
751 "half alpha;"
752 "if (edgeType == kFillBW) {"
753 "alpha = approx_dist > 0.0 ? 0.0 : 1.0;"
754 "} else if (edgeType == kFillAA) {"
755 "alpha = saturate(0.5 - half(approx_dist));"
756 "} else if (edgeType == kInverseFillBW) {"
757 "alpha = approx_dist > 0.0 ? 1.0 : 0.0;"
758 "} else {" // edgeType == kInverseFillAA
759 "alpha = saturate(0.5 + half(approx_dist));"
760 "}"
761 "return half4(alpha);"
762 "}"
763 );
764
765 float invRXSqd;
766 float invRYSqd;
767 SkV2 scale = {1, 1};
768 // If we're using a scale factor to work around precision issues, choose the larger radius as
769 // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
770 if (medPrecision) {
771 if (radii.fX > radii.fY) {
772 invRXSqd = 1.f;
773 invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
774 scale = {radii.fX, 1.f / radii.fX};
775 } else {
776 invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
777 invRYSqd = 1.f;
778 scale = {radii.fY, 1.f / radii.fY};
779 }
780 } else {
781 invRXSqd = 1.f / (radii.fX * radii.fX);
782 invRYSqd = 1.f / (radii.fY * radii.fY);
783 }
784 SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
785
786 auto ellipseFP = GrSkSLFP::Make(effect, "Ellipse", /*inputFP=*/nullptr,
787 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
788 "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
789 "medPrecision", GrSkSLFP::Specialize<int>(medPrecision),
790 "ellipse", ellipse,
791 "scale", scale);
792 return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(ellipseFP),
793 std::move(inputFP)));
794 }
795
796 //////////////////////////////////////////////////////////////////////////////
797
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)798 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
799 std::unique_ptr<GrFragmentProcessor> fp) {
800 class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
801 public:
802 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
803 return std::unique_ptr<GrFragmentProcessor>(
804 new HighPrecisionFragmentProcessor(std::move(fp)));
805 }
806
807 const char* name() const override { return "HighPrecision"; }
808
809 std::unique_ptr<GrFragmentProcessor> clone() const override {
810 return Make(this->childProcessor(0)->clone());
811 }
812
813 private:
814 HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
815 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
816 ProcessorOptimizationFlags(fp.get())) {
817 this->registerChild(std::move(fp));
818 }
819
820 std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
821 class Impl : public ProgramImpl {
822 public:
823 void emitCode(EmitArgs& args) override {
824 SkString childColor = this->invokeChild(0, args);
825
826 args.fFragBuilder->forceHighPrecision();
827 args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
828 }
829 };
830 return std::make_unique<Impl>();
831 }
832
833 void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
834 bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
835
836 SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
837 return ConstantOutputForConstantInput(this->childProcessor(0), input);
838 }
839
840 using INHERITED = GrFragmentProcessor;
841 };
842
843 return HighPrecisionFragmentProcessor::Make(std::move(fp));
844 }
845
846 //////////////////////////////////////////////////////////////////////////////
847
848 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
849
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)850 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
851 const GrFragmentProcessor& processor) {
852 this->onSetData(pdman, processor);
853 }
854
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,std::string_view skslCoords)855 SkString ProgramImpl::invokeChild(int childIndex,
856 const char* inputColor,
857 const char* destColor,
858 EmitArgs& args,
859 std::string_view skslCoords) {
860 SkASSERT(childIndex >= 0);
861
862 if (!inputColor) {
863 inputColor = args.fInputColor;
864 }
865
866 const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
867 if (!childProc) {
868 // If no child processor is provided, return the input color as-is.
869 return SkString(inputColor);
870 }
871
872 auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
873 inputColor);
874
875 if (childProc->isBlendFunction()) {
876 if (!destColor) {
877 destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
878 }
879 invocation.appendf(", %s", destColor);
880 }
881
882 // Assert that the child has no sample matrix. A uniform matrix sample call would go through
883 // invokeChildWithMatrix, not here.
884 SkASSERT(!childProc->sampleUsage().isUniformMatrix());
885
886 if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
887 SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
888 // The child's function takes a half4 color and a float2 coordinate
889 if (!skslCoords.empty()) {
890 invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data());
891 } else {
892 invocation.appendf(", %s", args.fSampleCoord);
893 }
894 }
895
896 invocation.append(")");
897 return invocation;
898 }
899
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)900 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
901 const char* inputColor,
902 const char* destColor,
903 EmitArgs& args) {
904 SkASSERT(childIndex >= 0);
905
906 if (!inputColor) {
907 inputColor = args.fInputColor;
908 }
909
910 const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
911 if (!childProc) {
912 // If no child processor is provided, return the input color as-is.
913 return SkString(inputColor);
914 }
915
916 SkASSERT(childProc->sampleUsage().isUniformMatrix());
917
918 // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
919 GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
920 args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
921 SkASSERT(uniform.getType() == SkSLType::kFloat3x3);
922 const SkString& matrixName(uniform.getName());
923
924 auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
925 inputColor);
926
927 if (childProc->isBlendFunction()) {
928 if (!destColor) {
929 destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
930 }
931 invocation.appendf(", %s", destColor);
932 }
933
934 // Produce a string containing the call to the helper function. We have a uniform variable
935 // containing our transform (matrixName). If the parent coords were produced by uniform
936 // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
937 // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
938 // function signature will not take in coords.
939 //
940 // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
941 // the function.
942 if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
943 // Only check perspective for this specific matrix transform, not the aggregate FP property.
944 // Any parent perspective will have already been applied when evaluated in the FS.
945 if (childProc->sampleUsage().hasPerspective()) {
946 invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
947 } else if (args.fShaderCaps->fNonsquareMatrixSupport) {
948 invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
949 } else {
950 invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
951 }
952 }
953
954 invocation.append(")");
955 return invocation;
956 }
957