1 //! Generating UUIDs from timestamps.
2 //!
3 //! Timestamps are used in a few UUID versions as a source of decentralized
4 //! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
5 //! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
6 //! versions so this module provides a single [`Timestamp`] type that can
7 //! convert between them.
8 //!
9 //! # Timestamp representations in UUIDs
10 //!
11 //! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
12 //! number of 100ns ticks since `1582-10-15 00:00:00`, along with
13 //! a counter value to avoid duplicates.
14 //!
15 //! Version 7 UUIDs use a more standard timestamp that consists of the
16 //! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
17 //!
18 //! # References
19 //!
20 //! * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
21 //! * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
22
23 use crate::Uuid;
24
25 /// The number of 100 nanosecond ticks between the RFC4122 epoch
26 /// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
27 pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;
28
29 /// A timestamp that can be encoded into a UUID.
30 ///
31 /// This type abstracts the specific encoding, so versions 1, 6, and 7
32 /// UUIDs can both be supported through the same type, even
33 /// though they have a different representation of a timestamp.
34 ///
35 /// # References
36 ///
37 /// * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
38 /// * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
39 /// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
40 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
41 pub struct Timestamp {
42 pub(crate) seconds: u64,
43 pub(crate) nanos: u32,
44 #[cfg(any(feature = "v1", feature = "v6"))]
45 pub(crate) counter: u16,
46 }
47
48 impl Timestamp {
49 /// Get a timestamp representing the current system time.
50 ///
51 /// This method defers to the standard library's `SystemTime` type.
52 ///
53 /// # Panics
54 ///
55 /// This method will panic if calculating the elapsed time since the Unix epoch fails.
56 #[cfg(feature = "std")]
now(context: impl ClockSequence<Output = u16>) -> Self57 pub fn now(context: impl ClockSequence<Output = u16>) -> Self {
58 #[cfg(not(any(feature = "v1", feature = "v6")))]
59 {
60 let _ = context;
61 }
62
63 let (seconds, nanos) = now();
64
65 Timestamp {
66 seconds,
67 nanos,
68 #[cfg(any(feature = "v1", feature = "v6"))]
69 counter: context.generate_sequence(seconds, nanos),
70 }
71 }
72
73 /// Construct a `Timestamp` from an RFC4122 timestamp and counter, as used
74 /// in versions 1 and 6 UUIDs.
from_rfc4122(ticks: u64, counter: u16) -> Self75 pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
76 #[cfg(not(any(feature = "v1", feature = "v6")))]
77 {
78 let _ = counter;
79 }
80
81 let (seconds, nanos) = Self::rfc4122_to_unix(ticks);
82
83 Timestamp {
84 seconds,
85 nanos,
86 #[cfg(any(feature = "v1", feature = "v6"))]
87 counter,
88 }
89 }
90
91 /// Construct a `Timestamp` from a Unix timestamp, as used in version 7 UUIDs.
from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self92 pub fn from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self {
93 #[cfg(not(any(feature = "v1", feature = "v6")))]
94 {
95 let _ = context;
96
97 Timestamp { seconds, nanos }
98 }
99 #[cfg(any(feature = "v1", feature = "v6"))]
100 {
101 let counter = context.generate_sequence(seconds, nanos);
102
103 Timestamp {
104 seconds,
105 nanos,
106 counter,
107 }
108 }
109 }
110
111 /// Get the value of the timestamp as an RFC4122 timestamp and counter,
112 /// as used in versions 1 and 6 UUIDs.
113 #[cfg(any(feature = "v1", feature = "v6"))]
to_rfc4122(&self) -> (u64, u16)114 pub const fn to_rfc4122(&self) -> (u64, u16) {
115 (
116 Self::unix_to_rfc4122_ticks(self.seconds, self.nanos),
117 self.counter,
118 )
119 }
120
121 /// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
to_unix(&self) -> (u64, u32)122 pub const fn to_unix(&self) -> (u64, u32) {
123 (self.seconds, self.nanos)
124 }
125
126 #[cfg(any(feature = "v1", feature = "v6"))]
unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64127 const fn unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64 {
128 let ticks = UUID_TICKS_BETWEEN_EPOCHS + seconds * 10_000_000 + nanos as u64 / 100;
129
130 ticks
131 }
132
rfc4122_to_unix(ticks: u64) -> (u64, u32)133 const fn rfc4122_to_unix(ticks: u64) -> (u64, u32) {
134 (
135 (ticks - UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
136 ((ticks - UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
137 )
138 }
139
140 #[deprecated(note = "use `to_unix` instead")]
141 /// Get the number of fractional nanoseconds in the Unix timestamp.
142 ///
143 /// This method is deprecated and probably doesn't do what you're expecting it to.
144 /// It doesn't return the timestamp as nanoseconds since the Unix epoch, it returns
145 /// the fractional seconds of the timestamp.
to_unix_nanos(&self) -> u32146 pub const fn to_unix_nanos(&self) -> u32 {
147 // NOTE: This method never did what it said on the tin: instead of
148 // converting the timestamp into nanos it simply returned the nanoseconds
149 // part of the timestamp.
150 //
151 // We can't fix the behavior because the return type is too small to fit
152 // a useful value for nanoseconds since the epoch.
153 self.nanos
154 }
155 }
156
encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid157 pub(crate) const fn encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid {
158 let time_low = (ticks & 0xFFFF_FFFF) as u32;
159 let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
160 let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);
161
162 let mut d4 = [0; 8];
163
164 d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
165 d4[1] = (counter & 0xFF) as u8;
166 d4[2] = node_id[0];
167 d4[3] = node_id[1];
168 d4[4] = node_id[2];
169 d4[5] = node_id[3];
170 d4[6] = node_id[4];
171 d4[7] = node_id[5];
172
173 Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
174 }
175
decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16)176 pub(crate) const fn decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
177 let bytes = uuid.as_bytes();
178
179 let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
180 | (bytes[7] as u64) << 48
181 | (bytes[4] as u64) << 40
182 | (bytes[5] as u64) << 32
183 | (bytes[0] as u64) << 24
184 | (bytes[1] as u64) << 16
185 | (bytes[2] as u64) << 8
186 | (bytes[3] as u64);
187
188 let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
189
190 (ticks, counter)
191 }
192
193 #[cfg(uuid_unstable)]
encode_sorted_rfc4122_timestamp( ticks: u64, counter: u16, node_id: &[u8; 6], ) -> Uuid194 pub(crate) const fn encode_sorted_rfc4122_timestamp(
195 ticks: u64,
196 counter: u16,
197 node_id: &[u8; 6],
198 ) -> Uuid {
199 let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
200 let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
201 let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);
202
203 let mut d4 = [0; 8];
204
205 d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
206 d4[1] = (counter & 0xFF) as u8;
207 d4[2] = node_id[0];
208 d4[3] = node_id[1];
209 d4[4] = node_id[2];
210 d4[5] = node_id[3];
211 d4[6] = node_id[4];
212 d4[7] = node_id[5];
213
214 Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
215 }
216
217 #[cfg(uuid_unstable)]
decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16)218 pub(crate) const fn decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
219 let bytes = uuid.as_bytes();
220
221 let ticks: u64 = ((bytes[0]) as u64) << 52
222 | (bytes[1] as u64) << 44
223 | (bytes[2] as u64) << 36
224 | (bytes[3] as u64) << 28
225 | (bytes[4] as u64) << 20
226 | (bytes[5] as u64) << 12
227 | ((bytes[6] & 0xF) as u64) << 8
228 | (bytes[7] as u64);
229
230 let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
231
232 (ticks, counter)
233 }
234
235 #[cfg(uuid_unstable)]
encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid236 pub(crate) const fn encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid {
237 let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
238 let millis_low = (millis & 0xFFFF) as u16;
239
240 let random_and_version =
241 (random_bytes[0] as u16 | ((random_bytes[1] as u16) << 8) & 0x0FFF) | (0x7 << 12);
242
243 let mut d4 = [0; 8];
244
245 d4[0] = (random_bytes[2] & 0x3F) | 0x80;
246 d4[1] = random_bytes[3];
247 d4[2] = random_bytes[4];
248 d4[3] = random_bytes[5];
249 d4[4] = random_bytes[6];
250 d4[5] = random_bytes[7];
251 d4[6] = random_bytes[8];
252 d4[7] = random_bytes[9];
253
254 Uuid::from_fields(millis_high, millis_low, random_and_version, &d4)
255 }
256
257 #[cfg(uuid_unstable)]
decode_unix_timestamp_millis(uuid: &Uuid) -> u64258 pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
259 let bytes = uuid.as_bytes();
260
261 let millis: u64 = (bytes[0] as u64) << 40
262 | (bytes[1] as u64) << 32
263 | (bytes[2] as u64) << 24
264 | (bytes[3] as u64) << 16
265 | (bytes[4] as u64) << 8
266 | (bytes[5] as u64);
267
268 millis
269 }
270
271 #[cfg(all(feature = "std", feature = "js", target_arch = "wasm32"))]
now() -> (u64, u32)272 fn now() -> (u64, u32) {
273 use wasm_bindgen::prelude::*;
274
275 #[wasm_bindgen]
276 extern "C" {
277 #[wasm_bindgen(js_namespace = Date)]
278 fn now() -> f64;
279 }
280
281 let now = now();
282
283 let secs = (now / 1_000.0) as u64;
284 let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;
285
286 dbg!((secs, nanos))
287 }
288
289 #[cfg(all(feature = "std", any(not(feature = "js"), not(target_arch = "wasm32"))))]
now() -> (u64, u32)290 fn now() -> (u64, u32) {
291 let dur = std::time::SystemTime::UNIX_EPOCH
292 .elapsed()
293 .expect("Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality");
294
295 (dur.as_secs(), dur.subsec_nanos())
296 }
297
298 /// A counter that can be used by version 1 and version 6 UUIDs to support
299 /// the uniqueness of timestamps.
300 ///
301 /// # References
302 ///
303 /// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
304 pub trait ClockSequence {
305 /// The type of sequence returned by this counter.
306 type Output;
307
308 /// Get the next value in the sequence to feed into a timestamp.
309 ///
310 /// This method will be called each time a [`Timestamp`] is constructed.
generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output311 fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;
312 }
313
314 impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
315 type Output = T::Output;
generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output316 fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
317 (**self).generate_sequence(seconds, subsec_nanos)
318 }
319 }
320
321 /// Default implementations for the [`ClockSequence`] trait.
322 pub mod context {
323 use super::ClockSequence;
324
325 #[cfg(any(feature = "v1", feature = "v6"))]
326 use atomic::{Atomic, Ordering};
327
328 /// An empty counter that will always return the value `0`.
329 ///
330 /// This type should be used when constructing timestamps for version 7 UUIDs,
331 /// since they don't need a counter for uniqueness.
332 #[derive(Debug, Clone, Copy, Default)]
333 pub struct NoContext;
334
335 impl ClockSequence for NoContext {
336 type Output = u16;
337
generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output338 fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
339 0
340 }
341 }
342
343 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
344 static CONTEXT: Context = Context {
345 count: Atomic::new(0),
346 };
347
348 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
349 static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);
350
351 #[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
shared_context() -> &'static Context352 pub(crate) fn shared_context() -> &'static Context {
353 // If the context is in its initial state then assign it to a random value
354 // It doesn't matter if multiple threads observe `false` here and initialize the context
355 if CONTEXT_INITIALIZED
356 .compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
357 .is_ok()
358 {
359 CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
360 }
361
362 &CONTEXT
363 }
364
365 /// A thread-safe, wrapping counter that produces 14-bit numbers.
366 ///
367 /// This type should be used when constructing version 1 and version 6 UUIDs.
368 #[derive(Debug)]
369 #[cfg(any(feature = "v1", feature = "v6"))]
370 pub struct Context {
371 count: Atomic<u16>,
372 }
373
374 #[cfg(any(feature = "v1", feature = "v6"))]
375 impl Context {
376 /// Construct a new context that's initialized with the given value.
377 ///
378 /// The starting value should be a random number, so that UUIDs from
379 /// different systems with the same timestamps are less likely to collide.
380 /// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
new(count: u16) -> Self381 pub const fn new(count: u16) -> Self {
382 Self {
383 count: Atomic::<u16>::new(count),
384 }
385 }
386
387 /// Construct a new context that's initialized with a random value.
388 #[cfg(feature = "rng")]
new_random() -> Self389 pub fn new_random() -> Self {
390 Self {
391 count: Atomic::<u16>::new(crate::rng::u16()),
392 }
393 }
394 }
395
396 #[cfg(any(feature = "v1", feature = "v6"))]
397 impl ClockSequence for Context {
398 type Output = u16;
399
generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output400 fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
401 // RFC4122 reserves 2 bits of the clock sequence so the actual
402 // maximum value is smaller than `u16::MAX`. Since we unconditionally
403 // increment the clock sequence we want to wrap once it becomes larger
404 // than what we can represent in a "u14". Otherwise there'd be patches
405 // where the clock sequence doesn't change regardless of the timestamp
406 self.count.fetch_add(1, Ordering::AcqRel) % (u16::MAX >> 2)
407 }
408 }
409 }
410