1 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2 // -*- Mode: C++ -*-
3 //
4 // Copyright (C) 2020 Google, Inc.
5
6 /// @file
7 ///
8 /// This contains the definitions of the ELF utilities for the dwarf reader.
9
10 #include "abg-elf-helpers.h"
11
12 #include <elf.h>
13
14 #include "abg-tools-utils.h"
15
16 namespace abigail
17 {
18
19 namespace elf_helpers
20 {
21
22 /// Convert an elf symbol type (given by the ELF{32,64}_ST_TYPE
23 /// macros) into an elf_symbol::type value.
24 ///
25 /// Note that this function aborts when given an unexpected value.
26 ///
27 /// @param the symbol type value to convert.
28 ///
29 /// @return the converted value.
30 elf_symbol::type
stt_to_elf_symbol_type(unsigned char stt)31 stt_to_elf_symbol_type(unsigned char stt)
32 {
33 switch (stt)
34 {
35 case STT_NOTYPE:
36 return elf_symbol::NOTYPE_TYPE;
37 case STT_OBJECT:
38 return elf_symbol::OBJECT_TYPE;
39 case STT_FUNC:
40 return elf_symbol::FUNC_TYPE;
41 case STT_SECTION:
42 return elf_symbol::SECTION_TYPE;
43 case STT_FILE:
44 return elf_symbol::FILE_TYPE;
45 case STT_COMMON:
46 return elf_symbol::COMMON_TYPE;
47 case STT_TLS:
48 return elf_symbol::TLS_TYPE;
49 case STT_GNU_IFUNC:
50 return elf_symbol::GNU_IFUNC_TYPE;
51 default:
52 // An unknown value that probably ought to be supported? Let's
53 // abort right here rather than yielding garbage.
54 ABG_ASSERT_NOT_REACHED;
55 }
56 }
57
58 /// Convert an elf symbol binding (given by the ELF{32,64}_ST_BIND
59 /// macros) into an elf_symbol::binding value.
60 ///
61 /// Note that this function aborts when given an unexpected value.
62 ///
63 /// @param the symbol binding value to convert.
64 ///
65 /// @return the converted value.
66 elf_symbol::binding
stb_to_elf_symbol_binding(unsigned char stb)67 stb_to_elf_symbol_binding(unsigned char stb)
68 {
69 switch (stb)
70 {
71 case STB_LOCAL:
72 return elf_symbol::LOCAL_BINDING;
73 case STB_GLOBAL:
74 return elf_symbol::GLOBAL_BINDING;
75 case STB_WEAK:
76 return elf_symbol::WEAK_BINDING;
77 case STB_GNU_UNIQUE:
78 return elf_symbol::GNU_UNIQUE_BINDING;
79 default:
80 ABG_ASSERT_NOT_REACHED;
81 }
82 }
83
84 /// Convert an ELF symbol visiblity given by the symbols ->st_other
85 /// data member as returned by the GELF_ST_VISIBILITY macro into a
86 /// elf_symbol::visiblity value.
87 ///
88 /// @param stv the value of the ->st_other data member of the ELF
89 /// symbol.
90 ///
91 /// @return the converted elf_symbol::visiblity value.
92 elf_symbol::visibility
stv_to_elf_symbol_visibility(unsigned char stv)93 stv_to_elf_symbol_visibility(unsigned char stv)
94 {
95 switch (stv)
96 {
97 case STV_DEFAULT:
98 return elf_symbol::DEFAULT_VISIBILITY;
99 case STV_INTERNAL:
100 return elf_symbol::INTERNAL_VISIBILITY;
101 case STV_HIDDEN:
102 return elf_symbol::HIDDEN_VISIBILITY;
103 case STV_PROTECTED:
104 return elf_symbol::PROTECTED_VISIBILITY;
105 default:
106 ABG_ASSERT_NOT_REACHED;
107 }
108 }
109
110 /// Convert the value of the e_machine field of GElf_Ehdr into a
111 /// string. This is to get a string representing the architecture of
112 /// the elf file at hand.
113 ///
114 /// @param e_machine the value of GElf_Ehdr::e_machine.
115 ///
116 /// @return the string representation of GElf_Ehdr::e_machine.
117 std::string
e_machine_to_string(GElf_Half e_machine)118 e_machine_to_string(GElf_Half e_machine)
119 {
120 switch (e_machine)
121 {
122 case EM_NONE:
123 return "elf-no-arch";
124 case EM_M32:
125 return "elf-att-we-32100";
126 case EM_SPARC:
127 return "elf-sun-sparc";
128 case EM_386:
129 return "elf-intel-80386";
130 case EM_68K:
131 return "elf-motorola-68k";
132 case EM_88K:
133 return "elf-motorola-88k";
134 case EM_860:
135 return "elf-intel-80860";
136 case EM_MIPS:
137 return "elf-mips-r3000-be";
138 case EM_S370:
139 return "elf-ibm-s370";
140 case EM_MIPS_RS3_LE:
141 return "elf-mips-r3000-le";
142 case EM_PARISC:
143 return "elf-hp-parisc";
144 case EM_VPP500:
145 return "elf-fujitsu-vpp500";
146 case EM_SPARC32PLUS:
147 return "elf-sun-sparc-v8plus";
148 case EM_960:
149 return "elf-intel-80960";
150 case EM_PPC:
151 return "elf-powerpc";
152 case EM_PPC64:
153 return "elf-powerpc-64";
154 case EM_S390:
155 return "elf-ibm-s390";
156 case EM_V800:
157 return "elf-nec-v800";
158 case EM_FR20:
159 return "elf-fujitsu-fr20";
160 case EM_RH32:
161 return "elf-trw-rh32";
162 case EM_RCE:
163 return "elf-motorola-rce";
164 case EM_ARM:
165 return "elf-arm";
166 case EM_FAKE_ALPHA:
167 return "elf-digital-alpha";
168 case EM_SH:
169 return "elf-hitachi-sh";
170 case EM_SPARCV9:
171 return "elf-sun-sparc-v9-64";
172 case EM_TRICORE:
173 return "elf-siemens-tricore";
174 case EM_ARC:
175 return "elf-argonaut-risc-core";
176 case EM_H8_300:
177 return "elf-hitachi-h8-300";
178 case EM_H8_300H:
179 return "elf-hitachi-h8-300h";
180 case EM_H8S:
181 return "elf-hitachi-h8s";
182 case EM_H8_500:
183 return "elf-hitachi-h8-500";
184 case EM_IA_64:
185 return "elf-intel-ia-64";
186 case EM_MIPS_X:
187 return "elf-stanford-mips-x";
188 case EM_COLDFIRE:
189 return "elf-motorola-coldfire";
190 case EM_68HC12:
191 return "elf-motorola-68hc12";
192 case EM_MMA:
193 return "elf-fujitsu-mma";
194 case EM_PCP:
195 return "elf-siemens-pcp";
196 case EM_NCPU:
197 return "elf-sony-ncpu";
198 case EM_NDR1:
199 return "elf-denso-ndr1";
200 case EM_STARCORE:
201 return "elf-motorola-starcore";
202 case EM_ME16:
203 return "elf-toyota-me16";
204 case EM_ST100:
205 return "elf-stm-st100";
206 case EM_TINYJ:
207 return "elf-alc-tinyj";
208 case EM_X86_64:
209 return "elf-amd-x86_64";
210 case EM_PDSP:
211 return "elf-sony-pdsp";
212 case EM_FX66:
213 return "elf-siemens-fx66";
214 case EM_ST9PLUS:
215 return "elf-stm-st9+";
216 case EM_ST7:
217 return "elf-stm-st7";
218 case EM_68HC16:
219 return "elf-motorola-68hc16";
220 case EM_68HC11:
221 return "elf-motorola-68hc11";
222 case EM_68HC08:
223 return "elf-motorola-68hc08";
224 case EM_68HC05:
225 return "elf-motorola-68hc05";
226 case EM_SVX:
227 return "elf-sg-svx";
228 case EM_ST19:
229 return "elf-stm-st19";
230 case EM_VAX:
231 return "elf-digital-vax";
232 case EM_CRIS:
233 return "elf-axis-cris";
234 case EM_JAVELIN:
235 return "elf-infineon-javelin";
236 case EM_FIREPATH:
237 return "elf-firepath";
238 case EM_ZSP:
239 return "elf-lsi-zsp";
240 case EM_MMIX:
241 return "elf-don-knuth-mmix";
242 case EM_HUANY:
243 return "elf-harvard-huany";
244 case EM_PRISM:
245 return "elf-sitera-prism";
246 case EM_AVR:
247 return "elf-atmel-avr";
248 case EM_FR30:
249 return "elf-fujistu-fr30";
250 case EM_D10V:
251 return "elf-mitsubishi-d10v";
252 case EM_D30V:
253 return "elf-mitsubishi-d30v";
254 case EM_V850:
255 return "elf-nec-v850";
256 case EM_M32R:
257 return "elf-mitsubishi-m32r";
258 case EM_MN10300:
259 return "elf-matsushita-mn10300";
260 case EM_MN10200:
261 return "elf-matsushita-mn10200";
262 case EM_PJ:
263 return "elf-picojava";
264 case EM_OPENRISC:
265 return "elf-openrisc-32";
266 case EM_ARC_A5:
267 return "elf-arc-a5";
268 case EM_XTENSA:
269 return "elf-tensilica-xtensa";
270
271 #ifdef HAVE_EM_AARCH64_MACRO
272 case EM_AARCH64:
273 return "elf-arm-aarch64";
274 #endif
275
276 #ifdef HAVE_EM_TILEPRO_MACRO
277 case EM_TILEPRO:
278 return "elf-tilera-tilepro";
279 #endif
280
281 #ifdef HAVE_EM_TILEGX_MACRO
282 case EM_TILEGX:
283 return "elf-tilera-tilegx";
284 #endif
285
286 case EM_NUM:
287 return "elf-last-arch-number";
288 case EM_ALPHA:
289 return "elf-non-official-alpha";
290 default:
291 {
292 std::ostringstream o;
293 o << "elf-unknown-arch-value-" << e_machine;
294 return o.str();
295 }
296 }
297 }
298
299 /// Find and return a section by its name.
300 ///
301 /// @param elf_handle the elf handle to use.
302 ///
303 /// @param name the section name.
304 ///
305 /// @return the section found, nor nil if none was found.
306 Elf_Scn*
find_section_by_name(Elf * elf_handle,const std::string & name)307 find_section_by_name(Elf* elf_handle, const std::string& name)
308 {
309 size_t section_header_string_index = 0;
310 if (elf_getshdrstrndx (elf_handle, §ion_header_string_index) < 0)
311 return 0;
312
313 Elf_Scn* section = 0;
314 GElf_Shdr header_mem, *header;
315 while ((section = elf_nextscn(elf_handle, section)) != 0)
316 {
317 header = gelf_getshdr(section, &header_mem);
318 if (header == NULL)
319 continue;
320
321 const char* section_name =
322 elf_strptr(elf_handle, section_header_string_index, header->sh_name);
323 if (section_name && name == section_name)
324 return section;
325 }
326
327 return 0;
328 }
329
330 /// Find and return a section by its name and its type.
331 ///
332 /// @param elf_handle the elf handle to use.
333 ///
334 /// @param name the name of the section.
335 ///
336 /// @param section_type the type of the section. This is the
337 /// Elf32_Shdr::sh_type (or Elf64_Shdr::sh_type) data member.
338 /// Examples of values of this parameter are SHT_PROGBITS or SHT_NOBITS.
339 ///
340 /// @return the section found, nor nil if none was found.
341 Elf_Scn*
find_section(Elf * elf_handle,const std::string & name,Elf64_Word section_type)342 find_section(Elf* elf_handle, const std::string& name, Elf64_Word section_type)
343 {
344 size_t section_header_string_index = 0;
345 if (elf_getshdrstrndx (elf_handle, §ion_header_string_index) < 0)
346 return 0;
347
348 Elf_Scn* section = 0;
349 GElf_Shdr header_mem, *header;
350 while ((section = elf_nextscn(elf_handle, section)) != 0)
351 {
352 header = gelf_getshdr(section, &header_mem);
353 if (header == NULL || header->sh_type != section_type)
354 continue;
355
356 const char* section_name =
357 elf_strptr(elf_handle, section_header_string_index, header->sh_name);
358 if (section_name && name == section_name)
359 return section;
360 }
361
362 return 0;
363 }
364
365 /// Find and return a section by its type.
366 ///
367 /// @param elf_handle the elf handle to use.
368 ///
369 /// @param section_type the type of the section. This is the
370 /// Elf32_Shdr::sh_type (or Elf64_Shdr::sh_type) data member.
371 /// Examples of values of this parameter are SHT_PROGBITS or SHT_NOBITS.
372 ///
373 /// @return the section found, or nil if none was found.
374 Elf_Scn*
find_section(Elf * elf_handle,Elf64_Word section_type)375 find_section(Elf* elf_handle, Elf64_Word section_type)
376 {
377 Elf_Scn* section = nullptr;
378 while ((section = elf_nextscn(elf_handle, section)) != 0)
379 {
380 GElf_Shdr header_mem, *header;
381 header = gelf_getshdr(section, &header_mem);
382 if (header->sh_type == section_type)
383 break;
384 }
385 return section;
386 }
387
388 /// Find and return the .symtab section
389 ///
390 /// @param elf_handle the elf handle to use.
391 ///
392 /// @return the section found, or nil if none was found
393 Elf_Scn*
find_symtab_section(Elf * elf_handle)394 find_symtab_section(Elf* elf_handle)
395 {
396 return find_section(elf_handle, SHT_SYMTAB);
397 }
398
399 /// Find and return the .symtab section
400 ///
401 /// @param elf_handle the elf handle to use.
402 ///
403 /// @return the section found, or nil if none was found
404 Elf_Scn*
find_dynsym_section(Elf * elf_handle)405 find_dynsym_section(Elf* elf_handle)
406 {
407 return find_section(elf_handle, SHT_DYNSYM);
408 }
409
410 /// Find the symbol table.
411 ///
412 /// If we are looking at a relocatable or executable file, this
413 /// function will return the .symtab symbol table (of type
414 /// SHT_SYMTAB). But if we are looking at a DSO it returns the
415 /// .dynsym symbol table (of type SHT_DYNSYM).
416 ///
417 /// @param elf_handle the elf handle to consider.
418 ///
419 /// @param symtab the symbol table found.
420 ///
421 /// @return the symbol table section
422 Elf_Scn*
find_symbol_table_section(Elf * elf_handle)423 find_symbol_table_section(Elf* elf_handle)
424 {
425 Elf_Scn *dynsym = find_dynsym_section(elf_handle),
426 *sym_tab = find_symtab_section(elf_handle);
427
428 if (dynsym || sym_tab)
429 {
430 GElf_Ehdr eh_mem;
431 GElf_Ehdr* elf_header = gelf_getehdr(elf_handle, &eh_mem);
432 if (elf_header->e_type == ET_REL
433 || elf_header->e_type == ET_EXEC)
434 return sym_tab ? sym_tab : dynsym;
435 else
436 return dynsym ? dynsym : sym_tab;
437 }
438 return nullptr;
439 }
440
441 /// Find the index (in the section headers table) of the symbol table
442 /// section.
443 ///
444 /// If we are looking at a relocatable or executable file, this
445 /// function will return the index for the .symtab symbol table (of
446 /// type SHT_SYMTAB). But if we are looking at a DSO it returns the
447 /// index for the .dynsym symbol table (of type SHT_DYNSYM).
448 ///
449 /// @param elf_handle the elf handle to use.
450 ///
451 /// @param symtab_index the index of the symbol_table, that was found.
452 ///
453 /// @return true iff the symbol table section index was found.
454 bool
find_symbol_table_section_index(Elf * elf_handle,size_t & symtab_index)455 find_symbol_table_section_index(Elf* elf_handle, size_t& symtab_index)
456 {
457 Elf_Scn* section = find_symbol_table_section(elf_handle);
458
459 if (!section)
460 return false;
461
462 symtab_index = elf_ndxscn(section);
463 return true;
464 }
465
466 /// Get the offset offset of the hash table section.
467 ///
468 /// @param elf_handle the elf handle to use.
469 ///
470 /// @param ht_section_offset this is set to the resulting offset
471 /// of the hash table section. This is set iff the function returns true.
472 ///
473 /// @param symtab_section_offset the offset of the section of the
474 /// symbol table the hash table refers to.
475 hash_table_kind
find_hash_table_section_index(Elf * elf_handle,size_t & ht_section_index,size_t & symtab_section_index)476 find_hash_table_section_index(Elf* elf_handle,
477 size_t& ht_section_index,
478 size_t& symtab_section_index)
479 {
480 if (!elf_handle)
481 return NO_HASH_TABLE_KIND;
482
483 GElf_Shdr header_mem, *section_header;
484 bool found_sysv_ht = false, found_gnu_ht = false;
485 for (Elf_Scn* section = elf_nextscn(elf_handle, 0);
486 section != 0;
487 section = elf_nextscn(elf_handle, section))
488 {
489 section_header= gelf_getshdr(section, &header_mem);
490 if (section_header->sh_type != SHT_HASH
491 && section_header->sh_type != SHT_GNU_HASH)
492 continue;
493
494 ht_section_index = elf_ndxscn(section);
495 symtab_section_index = section_header->sh_link;
496
497 if (section_header->sh_type == SHT_HASH)
498 found_sysv_ht = true;
499 else if (section_header->sh_type == SHT_GNU_HASH)
500 found_gnu_ht = true;
501 }
502
503 if (found_gnu_ht)
504 return GNU_HASH_TABLE_KIND;
505 else if (found_sysv_ht)
506 return SYSV_HASH_TABLE_KIND;
507 else
508 return NO_HASH_TABLE_KIND;
509 }
510
511 /// Find and return the .text section.
512 ///
513 /// @param elf_handle the elf handle to use.
514 ///
515 /// @return the .text section found.
516 Elf_Scn*
find_text_section(Elf * elf_handle)517 find_text_section(Elf* elf_handle)
518 {return find_section(elf_handle, ".text", SHT_PROGBITS);}
519
520 /// Find and return the .bss section.
521 ///
522 /// @param elf_handle.
523 ///
524 /// @return the .bss section found.
525 Elf_Scn*
find_bss_section(Elf * elf_handle)526 find_bss_section(Elf* elf_handle)
527 {return find_section(elf_handle, ".bss", SHT_NOBITS);}
528
529 /// Find and return the .rodata section.
530 ///
531 /// @param elf_handle.
532 ///
533 /// @return the .rodata section found.
534 Elf_Scn*
find_rodata_section(Elf * elf_handle)535 find_rodata_section(Elf* elf_handle)
536 {return find_section(elf_handle, ".rodata", SHT_PROGBITS);}
537
538 /// Find and return the .data section.
539 ///
540 /// @param elf_handle the elf handle to use.
541 ///
542 /// @return the .data section found.
543 Elf_Scn*
find_data_section(Elf * elf_handle)544 find_data_section(Elf* elf_handle)
545 {return find_section(elf_handle, ".data", SHT_PROGBITS);}
546
547 /// Find and return the .data1 section.
548 ///
549 /// @param elf_handle the elf handle to use.
550 ///
551 /// @return the .data1 section found.
552 Elf_Scn*
find_data1_section(Elf * elf_handle)553 find_data1_section(Elf* elf_handle)
554 {return find_section(elf_handle, ".data1", SHT_PROGBITS);}
555
556 /// Return the "Official Procedure descriptors section." This
557 /// section is named .opd, and is usually present only on PPC64
558 /// ELFv1 binaries.
559 ///
560 /// @param elf_handle the elf handle to consider.
561 ///
562 /// @return the .opd section, if found. Return nil otherwise.
563 Elf_Scn*
find_opd_section(Elf * elf_handle)564 find_opd_section(Elf* elf_handle)
565 {return find_section(elf_handle, ".opd", SHT_PROGBITS);}
566
567 /// Return the SHT_GNU_versym, SHT_GNU_verdef and SHT_GNU_verneed
568 /// sections that are involved in symbol versionning.
569 ///
570 /// @param elf_handle the elf handle to use.
571 ///
572 /// @param versym_section the SHT_GNU_versym section found. If the
573 /// section wasn't found, this is set to nil.
574 ///
575 /// @param verdef_section the SHT_GNU_verdef section found. If the
576 /// section wasn't found, this is set to nil.
577 ///
578 /// @param verneed_section the SHT_GNU_verneed section found. If the
579 /// section wasn't found, this is set to nil.
580 ///
581 /// @return true iff at least one of the sections where found.
582 bool
get_symbol_versionning_sections(Elf * elf_handle,Elf_Scn * & versym_section,Elf_Scn * & verdef_section,Elf_Scn * & verneed_section)583 get_symbol_versionning_sections(Elf* elf_handle,
584 Elf_Scn*& versym_section,
585 Elf_Scn*& verdef_section,
586 Elf_Scn*& verneed_section)
587 {
588 Elf_Scn* section = NULL;
589 GElf_Shdr mem;
590 Elf_Scn* versym = NULL, *verdef = NULL, *verneed = NULL;
591
592 while ((section = elf_nextscn(elf_handle, section)) != NULL)
593 {
594 GElf_Shdr* h = gelf_getshdr(section, &mem);
595 if (h->sh_type == SHT_GNU_versym)
596 versym = section;
597 else if (h->sh_type == SHT_GNU_verdef)
598 verdef = section;
599 else if (h->sh_type == SHT_GNU_verneed)
600 verneed = section;
601 }
602
603 if (versym || verdef || verneed)
604 {
605 // At least one the versionning sections was found. Return it.
606 versym_section = versym;
607 verdef_section = verdef;
608 verneed_section = verneed;
609 return true;
610 }
611
612 return false;
613 }
614
615 /// Return the __ksymtab section of a linux kernel ELF file (either
616 /// a vmlinux binary or a kernel module).
617 ///
618 /// @param elf_handle the elf handle to consider.
619 ///
620 /// @return the __ksymtab section if found, nil otherwise.
621 Elf_Scn*
find_ksymtab_section(Elf * elf_handle)622 find_ksymtab_section(Elf* elf_handle)
623 {return find_section(elf_handle, "__ksymtab", SHT_PROGBITS);}
624
625 /// Return the __ksymtab_gpl section of a linux kernel ELF file (either
626 /// a vmlinux binary or a kernel module).
627 ///
628 /// @param elf_handle the elf handle to consider.
629 ///
630 /// @return the __ksymtab section if found, nil otherwise.
631 Elf_Scn*
find_ksymtab_gpl_section(Elf * elf_handle)632 find_ksymtab_gpl_section(Elf* elf_handle)
633 {return find_section(elf_handle, "__ksymtab_gpl", SHT_PROGBITS);}
634
635 /// Find the __ksymtab_strings section of a Linux kernel binary.
636 ///
637 /// @param elf_handle the elf handle to use.
638 ///
639 /// @return the find_ksymtab_strings_section of the linux kernel
640 /// binary denoted by @p elf_handle, or nil if such a section could
641 /// not be found.
642 Elf_Scn*
find_ksymtab_strings_section(Elf * elf_handle)643 find_ksymtab_strings_section(Elf *elf_handle)
644 {
645 if (is_linux_kernel(elf_handle))
646 return find_section(elf_handle, "__ksymtab_strings", SHT_PROGBITS);
647 return 0;
648 }
649
650 /// Return the .rel{a,} section corresponding to a given section.
651 ///
652 /// @param elf_handle the elf handle to consider.
653 ///
654 /// @param target_section the section to search the relocation section for
655 ///
656 /// @return the .rel{a,} section if found, null otherwise.
657 Elf_Scn*
find_relocation_section(Elf * elf_handle,Elf_Scn * target_section)658 find_relocation_section(Elf* elf_handle, Elf_Scn* target_section)
659 {
660 if (target_section)
661 {
662 // the relo section we are searching for has this index as sh_info
663 size_t target_index = elf_ndxscn(target_section);
664
665 // now iterate over all the sections, look for relocation sections and
666 // find the one that points to the section we are searching for
667 Elf_Scn* section = 0;
668 GElf_Shdr header_mem, *header;
669 while ((section = elf_nextscn(elf_handle, section)) != 0)
670 {
671 header = gelf_getshdr(section, &header_mem);
672 if (header == NULL
673 || (header->sh_type != SHT_RELA && header->sh_type != SHT_REL))
674 continue;
675
676 if (header->sh_info == target_index)
677 return section;
678 }
679 }
680 return NULL;
681 }
682
683 /// Return the string table used by the given symbol table.
684 ///
685 /// @param elf_handle the elf handle to use.
686 ///
687 /// @param symtab_section section containing a symbol table.
688 ///
689 /// @return the string table linked by the symtab, if it is not NULL.
690 Elf_Scn*
find_strtab_for_symtab_section(Elf * elf_handle,Elf_Scn * symtab_section)691 find_strtab_for_symtab_section(Elf* elf_handle, Elf_Scn* symtab_section)
692 {
693 Elf_Scn *strtab_section = NULL;
694
695 if (symtab_section)
696 {
697 GElf_Shdr symtab_shdr_mem, *symtab_shdr;
698
699 symtab_shdr = gelf_getshdr(symtab_section, &symtab_shdr_mem);
700 strtab_section = elf_getscn(elf_handle, symtab_shdr->sh_link);
701 }
702
703 return strtab_section;
704 }
705
706 /// Get the version definition (from the SHT_GNU_verdef section) of a
707 /// given symbol represented by a pointer to GElf_Versym.
708 ///
709 /// @param elf_hande the elf handle to use.
710 ///
711 /// @param versym the symbol to get the version definition for.
712 ///
713 /// @param verdef_section the SHT_GNU_verdef section.
714 ///
715 /// @param version the resulting version definition. This is set iff
716 /// the function returns true.
717 ///
718 /// @return true upon successful completion, false otherwise.
719 bool
get_version_definition_for_versym(Elf * elf_handle,GElf_Versym * versym,Elf_Scn * verdef_section,elf_symbol::version & version)720 get_version_definition_for_versym(Elf* elf_handle,
721 GElf_Versym* versym,
722 Elf_Scn* verdef_section,
723 elf_symbol::version& version)
724 {
725 Elf_Data* verdef_data = elf_getdata(verdef_section, NULL);
726 GElf_Verdef verdef_mem;
727 GElf_Verdef* verdef = gelf_getverdef(verdef_data, 0, &verdef_mem);
728 size_t vd_offset = 0;
729
730 for (;; vd_offset += verdef->vd_next)
731 {
732 for (;verdef != 0;)
733 {
734 if (verdef->vd_ndx == (*versym & 0x7fff))
735 // Found the version of the symbol.
736 break;
737 vd_offset += verdef->vd_next;
738 verdef = (verdef->vd_next == 0
739 ? 0
740 : gelf_getverdef(verdef_data, vd_offset, &verdef_mem));
741 }
742
743 if (verdef != 0)
744 {
745 GElf_Verdaux verdaux_mem;
746 GElf_Verdaux *verdaux = gelf_getverdaux(verdef_data,
747 vd_offset + verdef->vd_aux,
748 &verdaux_mem);
749 GElf_Shdr header_mem;
750 GElf_Shdr* verdef_section_header = gelf_getshdr(verdef_section,
751 &header_mem);
752 size_t verdef_stridx = verdef_section_header->sh_link;
753 version.str(elf_strptr(elf_handle, verdef_stridx, verdaux->vda_name));
754 if (*versym & 0x8000)
755 version.is_default(false);
756 else
757 version.is_default(true);
758 return true;
759 }
760 if (!verdef || verdef->vd_next == 0)
761 break;
762 }
763 return false;
764 }
765
766 /// Get the version needed (from the SHT_GNU_verneed section) to
767 /// resolve an undefined symbol represented by a pointer to
768 /// GElf_Versym.
769 ///
770 /// @param elf_hande the elf handle to use.
771 ///
772 /// @param versym the symbol to get the version definition for.
773 ///
774 /// @param verneed_section the SHT_GNU_verneed section.
775 ///
776 /// @param version the resulting version definition. This is set iff
777 /// the function returns true.
778 ///
779 /// @return true upon successful completion, false otherwise.
780 bool
get_version_needed_for_versym(Elf * elf_handle,GElf_Versym * versym,Elf_Scn * verneed_section,elf_symbol::version & version)781 get_version_needed_for_versym(Elf* elf_handle,
782 GElf_Versym* versym,
783 Elf_Scn* verneed_section,
784 elf_symbol::version& version)
785 {
786 if (versym == 0 || elf_handle == 0 || verneed_section == 0)
787 return false;
788
789 size_t vn_offset = 0;
790 Elf_Data* verneed_data = elf_getdata(verneed_section, NULL);
791 GElf_Verneed verneed_mem;
792 GElf_Verneed* verneed = gelf_getverneed(verneed_data, 0, &verneed_mem);
793
794 for (;verneed; vn_offset += verneed->vn_next)
795 {
796 size_t vna_offset = vn_offset;
797 GElf_Vernaux vernaux_mem;
798 GElf_Vernaux *vernaux = gelf_getvernaux(verneed_data,
799 vn_offset + verneed->vn_aux,
800 &vernaux_mem);
801 for (;vernaux != 0 && verneed;)
802 {
803 if (vernaux->vna_other == *versym)
804 // Found the version of the symbol.
805 break;
806 vna_offset += verneed->vn_next;
807 verneed = (verneed->vn_next == 0
808 ? 0
809 : gelf_getverneed(verneed_data, vna_offset, &verneed_mem));
810 }
811
812 if (verneed != 0 && vernaux != 0 && vernaux->vna_other == *versym)
813 {
814 GElf_Shdr header_mem;
815 GElf_Shdr* verneed_section_header = gelf_getshdr(verneed_section,
816 &header_mem);
817 size_t verneed_stridx = verneed_section_header->sh_link;
818 version.str(elf_strptr(elf_handle,
819 verneed_stridx,
820 vernaux->vna_name));
821 if (*versym & 0x8000)
822 version.is_default(false);
823 else
824 version.is_default(true);
825 return true;
826 }
827
828 if (!verneed || verneed->vn_next == 0)
829 break;
830 }
831 return false;
832 }
833
834 /// Return the version for a symbol that is at a given index in its
835 /// SHT_SYMTAB section.
836 ///
837 /// @param elf_handle the elf handle to use.
838 ///
839 /// @param symbol_index the index of the symbol to consider.
840 ///
841 /// @param get_def_version if this is true, it means that that we want
842 /// the version for a defined symbol; in that case, the version is
843 /// looked for in a section of type SHT_GNU_verdef. Otherwise, if
844 /// this parameter is false, this means that we want the version for
845 /// an undefined symbol; in that case, the version is the needed one
846 /// for the symbol to be resolved; so the version is looked fo in a
847 /// section of type SHT_GNU_verneed.
848 ///
849 /// @param version the version found for symbol at @p symbol_index.
850 ///
851 /// @return true iff a version was found for symbol at index @p
852 /// symbol_index.
853 bool
get_version_for_symbol(Elf * elf_handle,size_t symbol_index,bool get_def_version,elf_symbol::version & version)854 get_version_for_symbol(Elf* elf_handle,
855 size_t symbol_index,
856 bool get_def_version,
857 elf_symbol::version& version)
858 {
859 Elf_Scn *versym_section = NULL,
860 *verdef_section = NULL,
861 *verneed_section = NULL;
862
863 if (!get_symbol_versionning_sections(elf_handle,
864 versym_section,
865 verdef_section,
866 verneed_section))
867 return false;
868
869 GElf_Versym versym_mem;
870 Elf_Data* versym_data = (versym_section)
871 ? elf_getdata(versym_section, NULL)
872 : NULL;
873 GElf_Versym* versym = (versym_data)
874 ? gelf_getversym(versym_data, symbol_index, &versym_mem)
875 : NULL;
876
877 if (versym == 0 || *versym <= 1)
878 // I got these value from the code of readelf.c in elfutils.
879 // Apparently, if the symbol version entry has these values, the
880 // symbol must be discarded. This is not documented in the
881 // official specification.
882 return false;
883
884 if (get_def_version)
885 {
886 if (*versym == 0x8001)
887 // I got this value from the code of readelf.c in elfutils
888 // too. It's not really documented in the official
889 // specification.
890 return false;
891
892 if (verdef_section
893 && get_version_definition_for_versym(elf_handle, versym,
894 verdef_section, version))
895 return true;
896 }
897 else
898 {
899 if (verneed_section
900 && get_version_needed_for_versym(elf_handle, versym,
901 verneed_section, version))
902 return true;
903 }
904
905 return false;
906 }
907
908 /// Return the CRC from the "__crc_" symbol.
909 ///
910 /// @param elf_handle the elf handle to use.
911 ///
912 /// @param crc_symbol symbol containing CRC value.
913 ///
914 /// @param crc_value the CRC found for @p crc_symbol.
915 ///
916 /// @return true iff a CRC was found for given @p crc_symbol.
917 bool
get_crc_for_symbol(Elf * elf_handle,GElf_Sym * crc_symbol,uint32_t & crc_value)918 get_crc_for_symbol(Elf* elf_handle, GElf_Sym* crc_symbol, uint32_t& crc_value)
919 {
920 size_t crc_section_index = crc_symbol->st_shndx;
921 GElf_Addr crc_symbol_address =
922 maybe_adjust_et_rel_sym_addr_to_abs_addr(elf_handle, crc_symbol);
923 if (crc_section_index == SHN_ABS)
924 {
925 crc_value = crc_symbol_address;
926 return true;
927 }
928
929 Elf_Scn* kcrctab_section = elf_getscn(elf_handle, crc_section_index);
930 if (kcrctab_section == NULL)
931 return false;
932
933 GElf_Shdr sheader_mem;
934 GElf_Shdr* sheader = gelf_getshdr(kcrctab_section, &sheader_mem);
935 if (sheader == NULL)
936 return false;
937
938 Elf_Data* kcrctab_data = elf_rawdata(kcrctab_section, NULL);
939 if (kcrctab_data == NULL)
940 return false;
941
942 if (crc_symbol_address < sheader->sh_addr)
943 return false;
944
945 size_t offset = crc_symbol_address - sheader->sh_addr;
946 if (offset + sizeof(uint32_t) > kcrctab_data->d_size
947 || offset + sizeof(uint32_t) > sheader->sh_size)
948 return false;
949
950 crc_value = *reinterpret_cast<uint32_t*>(
951 reinterpret_cast<char*>(kcrctab_data->d_buf) + offset);
952
953 return true;
954 }
955
956 /// Test if the architecture of the current binary is ppc64.
957 ///
958 /// @param elf_handle the ELF handle to consider.
959 ///
960 /// @return true iff the architecture of the current binary is ppc64.
961 bool
architecture_is_ppc64(Elf * elf_handle)962 architecture_is_ppc64(Elf* elf_handle)
963 {
964 GElf_Ehdr eh_mem;
965 GElf_Ehdr* elf_header = gelf_getehdr(elf_handle, &eh_mem);
966 return (elf_header && elf_header->e_machine == EM_PPC64);
967 }
968
969 /// Test if the architecture of the current binary is ppc32.
970 ///
971 /// @param elf_handle the ELF handle to consider.
972 ///
973 /// @return true iff the architecture of the current binary is ppc32.
974 bool
architecture_is_ppc32(Elf * elf_handle)975 architecture_is_ppc32(Elf* elf_handle)
976 {
977 GElf_Ehdr eh_mem;
978 GElf_Ehdr* elf_header = gelf_getehdr(elf_handle, &eh_mem);
979 return (elf_header && elf_header->e_machine == EM_PPC);
980 }
981
982 /// Test if the architecture of the current binary is arm32.
983 ///
984 /// @param elf_handle the ELF handle to consider.
985 ///
986 /// @return true iff the architecture of the current binary is arm32.
987 bool
architecture_is_arm32(Elf * elf_handle)988 architecture_is_arm32(Elf* elf_handle)
989 {
990 GElf_Ehdr eh_mem;
991 GElf_Ehdr* elf_header = gelf_getehdr(elf_handle, &eh_mem);
992 return (elf_header && elf_header->e_machine == EM_ARM);
993 }
994
995 /// Test if the architecture of the current binary is arm64.
996 ///
997 /// @param elf_handle the ELF handle to consider.
998 ///
999 /// @return true iff the architecture of the current binary is arm64.
1000 bool
architecture_is_arm64(Elf * elf_handle)1001 architecture_is_arm64(Elf* elf_handle)
1002 {
1003 #ifdef HAVE_EM_AARCH64_MACRO
1004 GElf_Ehdr eh_mem;
1005 GElf_Ehdr* elf_header = gelf_getehdr(elf_handle, &eh_mem);
1006 return (elf_header && elf_header->e_machine == EM_AARCH64);
1007 #else
1008 return false;
1009 #endif
1010 }
1011
1012 /// Test if the endianness of the current binary is Big Endian.
1013 ///
1014 /// https://en.wikipedia.org/wiki/Endianness.
1015 ///
1016 /// @param elf_handle the ELF handle to consider.
1017 ///
1018 /// @return true iff the current binary is Big Endian.
1019 bool
architecture_is_big_endian(Elf * elf_handle)1020 architecture_is_big_endian(Elf* elf_handle)
1021 {
1022 GElf_Ehdr elf_header;
1023 gelf_getehdr(elf_handle, &elf_header);
1024
1025 bool is_big_endian = (elf_header.e_ident[EI_DATA] == ELFDATA2MSB);
1026
1027 if (!is_big_endian)
1028 ABG_ASSERT(elf_header.e_ident[EI_DATA] == ELFDATA2LSB);
1029
1030 return is_big_endian;
1031 }
1032
1033 /// Read N bytes and convert their value into an integer type T.
1034 ///
1035 /// Note that N cannot be bigger than 8 for now. The type passed needs to be at
1036 /// least of the size of number_of_bytes.
1037 ///
1038 /// @param bytes the array of bytes to read the next 8 bytes from.
1039 /// Note that this array must be at least 8 bytes long.
1040 ///
1041 /// @param number_of_bytes the number of bytes to read. This number
1042 /// cannot be bigger than 8.
1043 ///
1044 /// @param is_big_endian if true, read the 8 bytes in Big Endian
1045 /// mode, otherwise, read them in Little Endian.
1046 ///
1047 /// @param result where to store the resuting integer that was read.
1048 ///
1049 ///
1050 /// @param true if the 8 bytes could be read, false otherwise.
1051 template <typename T>
1052 bool
read_int_from_array_of_bytes(const uint8_t * bytes,unsigned char number_of_bytes,bool is_big_endian,T & result)1053 read_int_from_array_of_bytes(const uint8_t* bytes,
1054 unsigned char number_of_bytes,
1055 bool is_big_endian,
1056 T& result)
1057 {
1058 if (!bytes)
1059 return false;
1060
1061 ABG_ASSERT(number_of_bytes <= 8);
1062 ABG_ASSERT(number_of_bytes <= sizeof(T));
1063
1064 T res = 0;
1065
1066 const uint8_t* cur = bytes;
1067 if (is_big_endian)
1068 {
1069 // In Big Endian, the most significant byte is at the lowest
1070 // address.
1071 const uint8_t* msb = cur;
1072 res = *msb;
1073
1074 // Now read the remaining least significant bytes.
1075 for (uint i = 1; i < number_of_bytes; ++i)
1076 res = (res << 8) | ((T)msb[i]);
1077 }
1078 else
1079 {
1080 // In Little Endian, the least significant byte is at the
1081 // lowest address.
1082 const uint8_t* lsb = cur;
1083 res = *lsb;
1084 // Now read the remaining most significant bytes.
1085 for (uint i = 1; i < number_of_bytes; ++i)
1086 res = res | (((T)lsb[i]) << i * 8);
1087 }
1088
1089 result = res;
1090 return true;
1091 }
1092
1093 /// Read 8 bytes and convert their value into an uint64_t.
1094 ///
1095 /// @param bytes the array of bytes to read the next 8 bytes from.
1096 /// Note that this array must be at least 8 bytes long.
1097 ///
1098 /// @param result where to store the resuting uint64_t that was read.
1099 ///
1100 /// @param is_big_endian if true, read the 8 bytes in Big Endian
1101 /// mode, otherwise, read them in Little Endian.
1102 ///
1103 /// @param true if the 8 bytes could be read, false otherwise.
1104 bool
read_uint64_from_array_of_bytes(const uint8_t * bytes,bool is_big_endian,uint64_t & result)1105 read_uint64_from_array_of_bytes(const uint8_t* bytes,
1106 bool is_big_endian,
1107 uint64_t& result)
1108 {
1109 return read_int_from_array_of_bytes(bytes, 8, is_big_endian, result);
1110 }
1111
1112
1113 /// Lookup the address of the function entry point that corresponds
1114 /// to the address of a given function descriptor.
1115 ///
1116 /// On PPC64, a function pointer is the address of a function
1117 /// descriptor. Function descriptors are located in the .opd
1118 /// section. Each function descriptor is a triplet of three
1119 /// addresses, each one on 64 bits. Among those three address only
1120 /// the first one is of any interest to us: the address of the entry
1121 /// point of the function.
1122 ///
1123 /// This function returns the address of the entry point of the
1124 /// function whose descriptor's address is given.
1125 ///
1126 /// http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#FUNC-DES
1127 ///
1128 /// https://www.ibm.com/developerworks/community/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/deeply_understand_64_bit_powerpc_elf_abi_function_descriptors?lang=en
1129 ///
1130 /// @param fn_desc_address the address of the function descriptor to
1131 /// consider.
1132 ///
1133 /// @return the address of the entry point of the function whose
1134 /// descriptor has the address @p fn_desc_address. If there is no
1135 /// .opd section (e.g because we are not on ppc64) or more generally
1136 /// if the function descriptor could not be found then this function
1137 /// just returns the address of the fuction descriptor.
1138 GElf_Addr
lookup_ppc64_elf_fn_entry_point_address(Elf * elf_handle,GElf_Addr fn_desc_address)1139 lookup_ppc64_elf_fn_entry_point_address(Elf* elf_handle, GElf_Addr fn_desc_address)
1140 {
1141 if (!elf_handle)
1142 return fn_desc_address;
1143
1144 if (!architecture_is_ppc64(elf_handle))
1145 return fn_desc_address;
1146
1147 bool is_big_endian = architecture_is_big_endian(elf_handle);
1148
1149 Elf_Scn* opd_section = find_opd_section(elf_handle);
1150 if (!opd_section)
1151 return fn_desc_address;
1152
1153 GElf_Shdr header_mem;
1154 // The section header of the .opd section.
1155 GElf_Shdr* opd_sheader = gelf_getshdr(opd_section, &header_mem);
1156
1157 // The offset of the function descriptor entry, in the .opd
1158 // section.
1159 size_t fn_desc_offset = fn_desc_address - opd_sheader->sh_addr;
1160 Elf_Data* elf_data = elf_rawdata(opd_section, 0);
1161
1162 // Ensure that the opd_section has at least 8 bytes, starting from
1163 // the offset we want read the data from.
1164 if (elf_data->d_size <= fn_desc_offset + 8)
1165 return fn_desc_address;
1166
1167 // A pointer to the data of the .opd section, that we can actually
1168 // do something with.
1169 uint8_t* bytes = (uint8_t*)elf_data->d_buf;
1170
1171 // The resulting address we are looking for is going to be formed
1172 // in this variable.
1173 GElf_Addr result = 0;
1174 ABG_ASSERT(read_uint64_from_array_of_bytes(bytes + fn_desc_offset,
1175 is_big_endian, result));
1176
1177 return result;
1178 }
1179
1180 /// Test if the ELF binary denoted by a given ELF handle is a Linux
1181 /// Kernel Module.
1182 ///
1183 /// @param elf_handle the ELF handle to consider.
1184 ///
1185 /// @return true iff the binary denoted by @p elf_handle is a Linux
1186 /// kernel module.
1187 bool
is_linux_kernel_module(Elf * elf_handle)1188 is_linux_kernel_module(Elf *elf_handle)
1189 {
1190 return (find_section(elf_handle, ".modinfo", SHT_PROGBITS)
1191 && find_section(elf_handle,
1192 ".gnu.linkonce.this_module",
1193 SHT_PROGBITS));
1194 }
1195
1196 /// Test if the ELF binary denoted by a given ELF handle is a Linux
1197 /// Kernel binary (either vmlinux or a kernel module).
1198 ///
1199 /// @param elf_handle the ELF handle to consider.
1200 ///
1201 /// @return true iff the binary denoted by @p elf_handle is a Linux
1202 /// kernel binary
1203 bool
is_linux_kernel(Elf * elf_handle)1204 is_linux_kernel(Elf *elf_handle)
1205 {
1206 return (find_section(elf_handle,
1207 "__ksymtab_strings",
1208 SHT_PROGBITS)
1209 || is_linux_kernel_module(elf_handle));
1210 }
1211
1212 /// Get the address at which a given binary is loaded in memory.
1213 ///
1214 /// @param elf_handle the elf handle for the binary to consider.
1215 ///
1216 /// @param load_address the address where the binary is loaded. This
1217 /// is set by the function iff it returns true.
1218 ///
1219 /// @return true if the function could get the binary load address
1220 /// and assign @p load_address to it.
1221 bool
get_binary_load_address(Elf * elf_handle,GElf_Addr & load_address)1222 get_binary_load_address(Elf* elf_handle, GElf_Addr& load_address)
1223 {
1224 GElf_Ehdr elf_header;
1225 gelf_getehdr(elf_handle, &elf_header);
1226 size_t num_segments = elf_header.e_phnum;
1227 GElf_Phdr *program_header = NULL;
1228 GElf_Addr result;
1229 bool found_loaded_segment = false;
1230 GElf_Phdr ph_mem;
1231
1232 for (unsigned i = 0; i < num_segments; ++i)
1233 {
1234 program_header = gelf_getphdr(elf_handle, i, &ph_mem);
1235 if (program_header && program_header->p_type == PT_LOAD)
1236 {
1237 if (!found_loaded_segment)
1238 {
1239 result = program_header->p_vaddr;
1240 found_loaded_segment = true;
1241 }
1242
1243 if (program_header->p_vaddr < result)
1244 // The resulting load address we want is the lowest
1245 // load address of all the loaded segments.
1246 result = program_header->p_vaddr;
1247 }
1248 }
1249
1250 if (found_loaded_segment)
1251 {
1252 load_address = result;
1253 return true;
1254 }
1255 return false;
1256 }
1257
1258 /// Return the size of a word for the current architecture.
1259 ///
1260 /// @param elf_handle the ELF handle to consider.
1261 ///
1262 /// @return the size of a word.
1263 unsigned char
get_architecture_word_size(Elf * elf_handle)1264 get_architecture_word_size(Elf* elf_handle)
1265 {
1266 unsigned char word_size = 0;
1267 GElf_Ehdr elf_header;
1268 gelf_getehdr(elf_handle, &elf_header);
1269 if (elf_header.e_ident[EI_CLASS] == ELFCLASS32)
1270 word_size = 4;
1271 else if (elf_header.e_ident[EI_CLASS] == ELFCLASS64)
1272 word_size = 8;
1273 else
1274 ABG_ASSERT_NOT_REACHED;
1275 return word_size;
1276 }
1277
1278 /// Test if the elf file being read is an executable.
1279 ///
1280 /// @param elf_handle the ELF handle to consider.
1281 ///
1282 /// @return true iff the elf file being read is an / executable.
1283 bool
is_executable(Elf * elf_handle)1284 is_executable(Elf* elf_handle)
1285 {
1286 GElf_Ehdr elf_header;
1287 gelf_getehdr(elf_handle, &elf_header);
1288 return elf_header.e_type == ET_EXEC;
1289 }
1290
1291 /// Test if the elf file being read is a dynamic shared / object.
1292 ///
1293 /// @param elf_handle the ELF handle to consider.
1294 ///
1295 /// @return true iff the elf file being read is a / dynamic shared object.
1296 bool
is_dso(Elf * elf_handle)1297 is_dso(Elf* elf_handle)
1298 {
1299 GElf_Ehdr elf_header;
1300 gelf_getehdr(elf_handle, &elf_header);
1301 return elf_header.e_type == ET_DYN;
1302 }
1303
1304 /// Translate a section-relative symbol address (i.e, symbol value)
1305 /// into an absolute symbol address by adding the address of the
1306 /// section the symbol belongs to, to the address value.
1307 ///
1308 /// This is useful when looking at symbol values coming from
1309 /// relocatable files (of ET_REL kind). If the binary is not
1310 /// ET_REL, then the function does nothing and returns the input
1311 /// address unchanged.
1312 ///
1313 /// @param elf_handle the elf handle for the binary to consider.
1314 ///
1315 /// @param sym the symbol whose address to possibly needs to be
1316 /// translated.
1317 ///
1318 /// @return the section-relative address, translated into an
1319 /// absolute address, if @p sym is from an ET_REL binary.
1320 /// Otherwise, return the address of @p sym, unchanged.
1321 GElf_Addr
maybe_adjust_et_rel_sym_addr_to_abs_addr(Elf * elf_handle,GElf_Sym * sym)1322 maybe_adjust_et_rel_sym_addr_to_abs_addr(Elf* elf_handle, GElf_Sym* sym)
1323 {
1324 Elf_Scn* symbol_section = elf_getscn(elf_handle, sym->st_shndx);
1325 GElf_Addr addr = sym->st_value;
1326
1327 if (!symbol_section)
1328 return addr;
1329
1330 GElf_Ehdr elf_header;
1331 if (!gelf_getehdr(elf_handle, &elf_header))
1332 return addr;
1333
1334 if (elf_header.e_type != ET_REL)
1335 return addr;
1336
1337 GElf_Shdr section_header;
1338 if (!gelf_getshdr(symbol_section, §ion_header))
1339 return addr;
1340
1341 return addr + section_header.sh_addr;
1342 }
1343
1344 /// Test if a given address is in a given section.
1345 ///
1346 /// @param addr the address to consider.
1347 ///
1348 /// @param section the section to consider.
1349 ///
1350 /// @return true iff @p addr is in section @p section.
1351 bool
address_is_in_section(Dwarf_Addr addr,Elf_Scn * section)1352 address_is_in_section(Dwarf_Addr addr, Elf_Scn* section)
1353 {
1354 if (!section)
1355 return false;
1356
1357 GElf_Shdr sheader_mem;
1358 GElf_Shdr* sheader = gelf_getshdr(section, &sheader_mem);
1359
1360 if (sheader->sh_addr <= addr && addr <= sheader->sh_addr + sheader->sh_size)
1361 return true;
1362
1363 return false;
1364 }
1365
1366 /// Return true if an address is in the ".opd" section that is
1367 /// present on the ppc64 platform.
1368 ///
1369 /// @param addr the address to consider.
1370 ///
1371 /// @return true iff @p addr designates a word that is in the ".opd"
1372 /// section.
1373 bool
address_is_in_opd_section(Elf * elf_handle,Dwarf_Addr addr)1374 address_is_in_opd_section(Elf* elf_handle, Dwarf_Addr addr)
1375 {
1376 Elf_Scn * opd_section = find_opd_section(elf_handle);
1377 if (!opd_section)
1378 return false;
1379 if (address_is_in_section(addr, opd_section))
1380 return true;
1381 return false;
1382 }
1383
1384
1385 } // end namespace elf_helpers
1386 } // end namespace abigail
1387