• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 /*****************************************************************************
17 *** Platform checks for aligned malloc functions                           ***
18 *****************************************************************************/
19 
20 #ifndef EIGEN_MEMORY_H
21 #define EIGEN_MEMORY_H
22 
23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
24 
25 // Try to determine automatically if malloc is already aligned.
26 
27 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
28 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
29 // This is true at least since glibc 2.8.
30 // This leaves the question how to detect 64-bit. According to this document,
31 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
32 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
33 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
35  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
36   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
37 #else
38   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
39 #endif
40 
41 // FreeBSD 6 seems to have 16-byte aligned malloc
42 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
43 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
44 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
46   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
47 #else
48   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
49 #endif
50 
51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16))     \
52  || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16))   \
53  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED              \
54  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
55   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
56 #else
57   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
58 #endif
59 
60 #endif
61 
62 namespace Eigen {
63 
64 namespace internal {
65 
66 EIGEN_DEVICE_FUNC
throw_std_bad_alloc()67 inline void throw_std_bad_alloc()
68 {
69   #ifdef EIGEN_EXCEPTIONS
70     throw std::bad_alloc();
71   #else
72     std::size_t huge = static_cast<std::size_t>(-1);
73     #if defined(EIGEN_HIPCC)
74     //
75     // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining),
76     // and as a consequence the code in the #else block triggers the hipcc warning :
77     // "no overloaded function has restriction specifiers that are compatible with the ambient context"
78     //
79     // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects
80     // the same on "operator new"
81     // Reverting code back to the old version in this #if block for the hipcc compiler
82     //
83     new int[huge];
84     #else
85     void* unused = ::operator new(huge);
86     EIGEN_UNUSED_VARIABLE(unused);
87     #endif
88   #endif
89 }
90 
91 /*****************************************************************************
92 *** Implementation of handmade aligned functions                           ***
93 *****************************************************************************/
94 
95 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
96 
97 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
98   * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
99   */
100 EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES)
101 {
102   eigen_assert(alignment >= sizeof(void*) && (alignment & (alignment-1)) == 0 && "Alignment must be at least sizeof(void*) and a power of 2");
103 
104   EIGEN_USING_STD(malloc)
105   void *original = malloc(size+alignment);
106 
107   if (original == 0) return 0;
108   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(alignment-1))) + alignment);
109   *(reinterpret_cast<void**>(aligned) - 1) = original;
110   return aligned;
111 }
112 
113 /** \internal Frees memory allocated with handmade_aligned_malloc */
handmade_aligned_free(void * ptr)114 EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void *ptr)
115 {
116   if (ptr) {
117     EIGEN_USING_STD(free)
118     free(*(reinterpret_cast<void**>(ptr) - 1));
119   }
120 }
121 
122 /** \internal
123   * \brief Reallocates aligned memory.
124   * Since we know that our handmade version is based on std::malloc
125   * we can use std::realloc to implement efficient reallocation.
126   */
127 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
128 {
129   if (ptr == 0) return handmade_aligned_malloc(size);
130   void *original = *(reinterpret_cast<void**>(ptr) - 1);
131   std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
132   original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
133   if (original == 0) return 0;
134   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
135   void *previous_aligned = static_cast<char *>(original)+previous_offset;
136   if(aligned!=previous_aligned)
137     std::memmove(aligned, previous_aligned, size);
138 
139   *(reinterpret_cast<void**>(aligned) - 1) = original;
140   return aligned;
141 }
142 
143 /*****************************************************************************
144 *** Implementation of portable aligned versions of malloc/free/realloc     ***
145 *****************************************************************************/
146 
147 #ifdef EIGEN_NO_MALLOC
check_that_malloc_is_allowed()148 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
149 {
150   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
151 }
152 #elif defined EIGEN_RUNTIME_NO_MALLOC
153 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
154 {
155   static bool value = true;
156   if (update == 1)
157     value = new_value;
158   return value;
159 }
is_malloc_allowed()160 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
set_is_malloc_allowed(bool new_value)161 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
check_that_malloc_is_allowed()162 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
163 {
164   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
165 }
166 #else
check_that_malloc_is_allowed()167 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
168 {}
169 #endif
170 
171 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements.
172   * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
173   */
aligned_malloc(std::size_t size)174 EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
175 {
176   check_that_malloc_is_allowed();
177 
178   void *result;
179   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
180 
181     EIGEN_USING_STD(malloc)
182     result = malloc(size);
183 
184     #if EIGEN_DEFAULT_ALIGN_BYTES==16
185     eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade aligned memory allocator.");
186     #endif
187   #else
188     result = handmade_aligned_malloc(size);
189   #endif
190 
191   if(!result && size)
192     throw_std_bad_alloc();
193 
194   return result;
195 }
196 
197 /** \internal Frees memory allocated with aligned_malloc. */
aligned_free(void * ptr)198 EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
199 {
200   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
201 
202     EIGEN_USING_STD(free)
203     free(ptr);
204 
205   #else
206     handmade_aligned_free(ptr);
207   #endif
208 }
209 
210 /**
211   * \internal
212   * \brief Reallocates an aligned block of memory.
213   * \throws std::bad_alloc on allocation failure
214   */
aligned_realloc(void * ptr,std::size_t new_size,std::size_t old_size)215 inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
216 {
217   EIGEN_UNUSED_VARIABLE(old_size)
218 
219   void *result;
220 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
221   result = std::realloc(ptr,new_size);
222 #else
223   result = handmade_aligned_realloc(ptr,new_size,old_size);
224 #endif
225 
226   if (!result && new_size)
227     throw_std_bad_alloc();
228 
229   return result;
230 }
231 
232 /*****************************************************************************
233 *** Implementation of conditionally aligned functions                      ***
234 *****************************************************************************/
235 
236 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
237   * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
238   */
conditional_aligned_malloc(std::size_t size)239 template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
240 {
241   return aligned_malloc(size);
242 }
243 
244 template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
245 {
246   check_that_malloc_is_allowed();
247 
248   EIGEN_USING_STD(malloc)
249   void *result = malloc(size);
250 
251   if(!result && size)
252     throw_std_bad_alloc();
253   return result;
254 }
255 
256 /** \internal Frees memory allocated with conditional_aligned_malloc */
conditional_aligned_free(void * ptr)257 template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
258 {
259   aligned_free(ptr);
260 }
261 
262 template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
263 {
264   EIGEN_USING_STD(free)
265   free(ptr);
266 }
267 
conditional_aligned_realloc(void * ptr,std::size_t new_size,std::size_t old_size)268 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
269 {
270   return aligned_realloc(ptr, new_size, old_size);
271 }
272 
273 template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
274 {
275   return std::realloc(ptr, new_size);
276 }
277 
278 /*****************************************************************************
279 *** Construction/destruction of array elements                             ***
280 *****************************************************************************/
281 
282 /** \internal Destructs the elements of an array.
283   * The \a size parameters tells on how many objects to call the destructor of T.
284   */
destruct_elements_of_array(T * ptr,std::size_t size)285 template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
286 {
287   // always destruct an array starting from the end.
288   if(ptr)
289     while(size) ptr[--size].~T();
290 }
291 
292 /** \internal Constructs the elements of an array.
293   * The \a size parameter tells on how many objects to call the constructor of T.
294   */
construct_elements_of_array(T * ptr,std::size_t size)295 template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
296 {
297   std::size_t i;
298   EIGEN_TRY
299   {
300       for (i = 0; i < size; ++i) ::new (ptr + i) T;
301       return ptr;
302   }
303   EIGEN_CATCH(...)
304   {
305     destruct_elements_of_array(ptr, i);
306     EIGEN_THROW;
307   }
308   return NULL;
309 }
310 
311 /*****************************************************************************
312 *** Implementation of aligned new/delete-like functions                    ***
313 *****************************************************************************/
314 
315 template<typename T>
check_size_for_overflow(std::size_t size)316 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
317 {
318   if(size > std::size_t(-1) / sizeof(T))
319     throw_std_bad_alloc();
320 }
321 
322 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
323   * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
324   * The default constructor of T is called.
325   */
aligned_new(std::size_t size)326 template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
327 {
328   check_size_for_overflow<T>(size);
329   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
330   EIGEN_TRY
331   {
332     return construct_elements_of_array(result, size);
333   }
334   EIGEN_CATCH(...)
335   {
336     aligned_free(result);
337     EIGEN_THROW;
338   }
339   return result;
340 }
341 
conditional_aligned_new(std::size_t size)342 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
343 {
344   check_size_for_overflow<T>(size);
345   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
346   EIGEN_TRY
347   {
348     return construct_elements_of_array(result, size);
349   }
350   EIGEN_CATCH(...)
351   {
352     conditional_aligned_free<Align>(result);
353     EIGEN_THROW;
354   }
355   return result;
356 }
357 
358 /** \internal Deletes objects constructed with aligned_new
359   * The \a size parameters tells on how many objects to call the destructor of T.
360   */
aligned_delete(T * ptr,std::size_t size)361 template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
362 {
363   destruct_elements_of_array<T>(ptr, size);
364   Eigen::internal::aligned_free(ptr);
365 }
366 
367 /** \internal Deletes objects constructed with conditional_aligned_new
368   * The \a size parameters tells on how many objects to call the destructor of T.
369   */
conditional_aligned_delete(T * ptr,std::size_t size)370 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
371 {
372   destruct_elements_of_array<T>(ptr, size);
373   conditional_aligned_free<Align>(ptr);
374 }
375 
conditional_aligned_realloc_new(T * pts,std::size_t new_size,std::size_t old_size)376 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
377 {
378   check_size_for_overflow<T>(new_size);
379   check_size_for_overflow<T>(old_size);
380   if(new_size < old_size)
381     destruct_elements_of_array(pts+new_size, old_size-new_size);
382   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
383   if(new_size > old_size)
384   {
385     EIGEN_TRY
386     {
387       construct_elements_of_array(result+old_size, new_size-old_size);
388     }
389     EIGEN_CATCH(...)
390     {
391       conditional_aligned_free<Align>(result);
392       EIGEN_THROW;
393     }
394   }
395   return result;
396 }
397 
398 
conditional_aligned_new_auto(std::size_t size)399 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
400 {
401   if(size==0)
402     return 0; // short-cut. Also fixes Bug 884
403   check_size_for_overflow<T>(size);
404   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
405   if(NumTraits<T>::RequireInitialization)
406   {
407     EIGEN_TRY
408     {
409       construct_elements_of_array(result, size);
410     }
411     EIGEN_CATCH(...)
412     {
413       conditional_aligned_free<Align>(result);
414       EIGEN_THROW;
415     }
416   }
417   return result;
418 }
419 
conditional_aligned_realloc_new_auto(T * pts,std::size_t new_size,std::size_t old_size)420 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
421 {
422   check_size_for_overflow<T>(new_size);
423   check_size_for_overflow<T>(old_size);
424   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
425     destruct_elements_of_array(pts+new_size, old_size-new_size);
426   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
427   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
428   {
429     EIGEN_TRY
430     {
431       construct_elements_of_array(result+old_size, new_size-old_size);
432     }
433     EIGEN_CATCH(...)
434     {
435       conditional_aligned_free<Align>(result);
436       EIGEN_THROW;
437     }
438   }
439   return result;
440 }
441 
conditional_aligned_delete_auto(T * ptr,std::size_t size)442 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
443 {
444   if(NumTraits<T>::RequireInitialization)
445     destruct_elements_of_array<T>(ptr, size);
446   conditional_aligned_free<Align>(ptr);
447 }
448 
449 /****************************************************************************/
450 
451 /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment.
452   *
453   * \tparam Alignment requested alignment in Bytes.
454   * \param array the address of the start of the array
455   * \param size the size of the array
456   *
457   * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
458   * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
459   * packet size for the given scalar type is 1, then everything is considered well-aligned.
460   *
461   * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
462   * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
463   * example with Scalar=double on certain 32-bit platforms, see bug #79.
464   *
465   * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
466   * \sa first_default_aligned()
467   */
468 template<int Alignment, typename Scalar, typename Index>
first_aligned(const Scalar * array,Index size)469 EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
470 {
471   const Index ScalarSize = sizeof(Scalar);
472   const Index AlignmentSize = Alignment / ScalarSize;
473   const Index AlignmentMask = AlignmentSize-1;
474 
475   if(AlignmentSize<=1)
476   {
477     // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
478     // so that all elements of the array have the same alignment.
479     return 0;
480   }
481   else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
482   {
483     // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
484     // Consequently, no element of the array is well aligned.
485     return size;
486   }
487   else
488   {
489     Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
490     return (first < size) ? first : size;
491   }
492 }
493 
494 /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement.
495    * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
496 template<typename Scalar, typename Index>
first_default_aligned(const Scalar * array,Index size)497 EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
498 {
499   typedef typename packet_traits<Scalar>::type DefaultPacketType;
500   return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
501 }
502 
503 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
504   */
505 template<typename Index>
first_multiple(Index size,Index base)506 inline Index first_multiple(Index size, Index base)
507 {
508   return ((size+base-1)/base)*base;
509 }
510 
511 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
512 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
513 template<typename T, bool UseMemcpy> struct smart_copy_helper;
514 
smart_copy(const T * start,const T * end,T * target)515 template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
516 {
517   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
518 }
519 
520 template<typename T> struct smart_copy_helper<T,true> {
521   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
522   {
523     IntPtr size = IntPtr(end)-IntPtr(start);
524     if(size==0) return;
525     eigen_internal_assert(start!=0 && end!=0 && target!=0);
526     EIGEN_USING_STD(memcpy)
527     memcpy(target, start, size);
528   }
529 };
530 
531 template<typename T> struct smart_copy_helper<T,false> {
532   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
533   { std::copy(start, end, target); }
534 };
535 
536 // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
537 template<typename T, bool UseMemmove> struct smart_memmove_helper;
538 
539 template<typename T> void smart_memmove(const T* start, const T* end, T* target)
540 {
541   smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
542 }
543 
544 template<typename T> struct smart_memmove_helper<T,true> {
545   static inline void run(const T* start, const T* end, T* target)
546   {
547     IntPtr size = IntPtr(end)-IntPtr(start);
548     if(size==0) return;
549     eigen_internal_assert(start!=0 && end!=0 && target!=0);
550     std::memmove(target, start, size);
551   }
552 };
553 
554 template<typename T> struct smart_memmove_helper<T,false> {
555   static inline void run(const T* start, const T* end, T* target)
556   {
557     if (UIntPtr(target) < UIntPtr(start))
558     {
559       std::copy(start, end, target);
560     }
561     else
562     {
563       std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
564       std::copy_backward(start, end, target + count);
565     }
566   }
567 };
568 
569 #if EIGEN_HAS_RVALUE_REFERENCES
570 template<typename T> EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target)
571 {
572   return std::move(start, end, target);
573 }
574 #else
575 template<typename T> EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target)
576 {
577   return std::copy(start, end, target);
578 }
579 #endif
580 
581 /*****************************************************************************
582 *** Implementation of runtime stack allocation (falling back to malloc)    ***
583 *****************************************************************************/
584 
585 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
586 // to the appropriate stack allocation function
587 #if ! defined EIGEN_ALLOCA && ! defined EIGEN_GPU_COMPILE_PHASE
588   #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
589     #define EIGEN_ALLOCA alloca
590   #elif EIGEN_COMP_MSVC
591     #define EIGEN_ALLOCA _alloca
592   #endif
593 #endif
594 
595 // With clang -Oz -mthumb, alloca changes the stack pointer in a way that is
596 // not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because
597 // the compiler still emits bad code because stack allocation checks use "<=".
598 // TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772
599 // is fixed.
600 #if defined(__clang__) && defined(__thumb__)
601   #undef EIGEN_ALLOCA
602 #endif
603 
604 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
605 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
606 template<typename T> class aligned_stack_memory_handler : noncopyable
607 {
608   public:
609     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
610      * Note that \a ptr can be 0 regardless of the other parameters.
611      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
612      * In this case, the buffer elements will also be destructed when this handler will be destructed.
613      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
614      **/
615     EIGEN_DEVICE_FUNC
616     aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
617       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
618     {
619       if(NumTraits<T>::RequireInitialization && m_ptr)
620         Eigen::internal::construct_elements_of_array(m_ptr, size);
621     }
622     EIGEN_DEVICE_FUNC
623     ~aligned_stack_memory_handler()
624     {
625       if(NumTraits<T>::RequireInitialization && m_ptr)
626         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
627       if(m_deallocate)
628         Eigen::internal::aligned_free(m_ptr);
629     }
630   protected:
631     T* m_ptr;
632     std::size_t m_size;
633     bool m_deallocate;
634 };
635 
636 #ifdef EIGEN_ALLOCA
637 
638 template<typename Xpr, int NbEvaluations,
639          bool MapExternalBuffer = nested_eval<Xpr,NbEvaluations>::Evaluate && Xpr::MaxSizeAtCompileTime==Dynamic
640          >
641 struct local_nested_eval_wrapper
642 {
643   static const bool NeedExternalBuffer = false;
644   typedef typename Xpr::Scalar Scalar;
645   typedef typename nested_eval<Xpr,NbEvaluations>::type ObjectType;
646   ObjectType object;
647 
648   EIGEN_DEVICE_FUNC
649   local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr)
650   {
651     EIGEN_UNUSED_VARIABLE(ptr);
652     eigen_internal_assert(ptr==0);
653   }
654 };
655 
656 template<typename Xpr, int NbEvaluations>
657 struct local_nested_eval_wrapper<Xpr,NbEvaluations,true>
658 {
659   static const bool NeedExternalBuffer = true;
660   typedef typename Xpr::Scalar Scalar;
661   typedef typename plain_object_eval<Xpr>::type PlainObject;
662   typedef Map<PlainObject,EIGEN_DEFAULT_ALIGN_BYTES> ObjectType;
663   ObjectType object;
664 
665   EIGEN_DEVICE_FUNC
666   local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr)
667     : object(ptr==0 ? reinterpret_cast<Scalar*>(Eigen::internal::aligned_malloc(sizeof(Scalar)*xpr.size())) : ptr, xpr.rows(), xpr.cols()),
668       m_deallocate(ptr==0)
669   {
670     if(NumTraits<Scalar>::RequireInitialization && object.data())
671       Eigen::internal::construct_elements_of_array(object.data(), object.size());
672     object = xpr;
673   }
674 
675   EIGEN_DEVICE_FUNC
676   ~local_nested_eval_wrapper()
677   {
678     if(NumTraits<Scalar>::RequireInitialization && object.data())
679       Eigen::internal::destruct_elements_of_array(object.data(), object.size());
680     if(m_deallocate)
681       Eigen::internal::aligned_free(object.data());
682   }
683 
684 private:
685   bool m_deallocate;
686 };
687 
688 #endif // EIGEN_ALLOCA
689 
690 template<typename T> class scoped_array : noncopyable
691 {
692   T* m_ptr;
693 public:
694   explicit scoped_array(std::ptrdiff_t size)
695   {
696     m_ptr = new T[size];
697   }
698   ~scoped_array()
699   {
700     delete[] m_ptr;
701   }
702   T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
703   const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
704   T* &ptr() { return m_ptr; }
705   const T* ptr() const { return m_ptr; }
706   operator const T*() const { return m_ptr; }
707 };
708 
709 template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
710 {
711   std::swap(a.ptr(),b.ptr());
712 }
713 
714 } // end namespace internal
715 
716 /** \internal
717   *
718   * The macro ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) declares, allocates,
719   * and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
720   * if the size in bytes is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
721   * (currently, this is Linux, OSX and Visual Studio only). Otherwise the memory is allocated on the heap.
722   * The allocated buffer is automatically deleted when exiting the scope of this declaration.
723   * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
724   * Here is an example:
725   * \code
726   * {
727   *   ei_declare_aligned_stack_constructed_variable(float,data,size,0);
728   *   // use data[0] to data[size-1]
729   * }
730   * \endcode
731   * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
732   *
733   * The macro ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) is analogue to
734   * \code
735   *   typename internal::nested_eval<XPRT_T,N>::type NAME(XPR);
736   * \endcode
737   * with the advantage of using aligned stack allocation even if the maximal size of XPR at compile time is unknown.
738   * This is accomplished through alloca if this later is supported and if the required number of bytes
739   * is below EIGEN_STACK_ALLOCATION_LIMIT.
740   */
741 #ifdef EIGEN_ALLOCA
742 
743   #if EIGEN_DEFAULT_ALIGN_BYTES>0
744     // We always manually re-align the result of EIGEN_ALLOCA.
745     // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
746     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
747   #else
748     #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
749   #endif
750 
751   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
752     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
753     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
754                : reinterpret_cast<TYPE*>( \
755                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
756                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
757     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
758 
759 
760   #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) \
761     Eigen::internal::local_nested_eval_wrapper<XPR_T,N> EIGEN_CAT(NAME,_wrapper)(XPR, reinterpret_cast<typename XPR_T::Scalar*>( \
762       ( (Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::NeedExternalBuffer) && ((sizeof(typename XPR_T::Scalar)*XPR.size())<=EIGEN_STACK_ALLOCATION_LIMIT) ) \
763         ? EIGEN_ALIGNED_ALLOCA( sizeof(typename XPR_T::Scalar)*XPR.size() ) : 0 ) ) ; \
764     typename Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::ObjectType NAME(EIGEN_CAT(NAME,_wrapper).object)
765 
766 #else
767 
768   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
769     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
770     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
771     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
772 
773 
774 #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) typename Eigen::internal::nested_eval<XPR_T,N>::type NAME(XPR)
775 
776 #endif
777 
778 
779 /*****************************************************************************
780 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
781 *****************************************************************************/
782 
783 #if EIGEN_HAS_CXX17_OVERALIGN
784 
785 // C++17 -> no need to bother about alignment anymore :)
786 
787 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign)
788 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
789 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
790 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size)
791 
792 #else
793 
794 // HIP does not support new/delete on device.
795 #if EIGEN_MAX_ALIGN_BYTES!=0 && !defined(EIGEN_HIP_DEVICE_COMPILE)
796   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
797       EIGEN_DEVICE_FUNC \
798       void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
799         EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
800         EIGEN_CATCH (...) { return 0; } \
801       }
802   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
803       EIGEN_DEVICE_FUNC \
804       void *operator new(std::size_t size) { \
805         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
806       } \
807       EIGEN_DEVICE_FUNC \
808       void *operator new[](std::size_t size) { \
809         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
810       } \
811       EIGEN_DEVICE_FUNC \
812       void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
813       EIGEN_DEVICE_FUNC \
814       void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
815       EIGEN_DEVICE_FUNC \
816       void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
817       EIGEN_DEVICE_FUNC \
818       void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
819       /* in-place new and delete. since (at least afaik) there is no actual   */ \
820       /* memory allocated we can safely let the default implementation handle */ \
821       /* this particular case. */ \
822       EIGEN_DEVICE_FUNC \
823       static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
824       EIGEN_DEVICE_FUNC \
825       static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
826       EIGEN_DEVICE_FUNC \
827       void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
828       EIGEN_DEVICE_FUNC \
829       void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
830       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
831       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
832       EIGEN_DEVICE_FUNC \
833       void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
834         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
835       } \
836       typedef void eigen_aligned_operator_new_marker_type;
837 #else
838   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
839 #endif
840 
841 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
842 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size)                        \
843   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(                                                             \
844         ((Size)!=Eigen::Dynamic) &&                                                                    \
845         (((EIGEN_MAX_ALIGN_BYTES>=16) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES  )==0)) ||    \
846          ((EIGEN_MAX_ALIGN_BYTES>=32) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/2)==0)) ||    \
847          ((EIGEN_MAX_ALIGN_BYTES>=64) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/4)==0))   )))
848 
849 #endif
850 
851 /****************************************************************************/
852 
853 /** \class aligned_allocator
854 * \ingroup Core_Module
855 *
856 * \brief STL compatible allocator to use with types requiring a non standrad alignment.
857 *
858 * The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd.
859 * By default, it will thus provide at least 16 bytes alignment and more in following cases:
860 *  - 32 bytes alignment if AVX is enabled.
861 *  - 64 bytes alignment if AVX512 is enabled.
862 *
863 * This can be controlled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented
864 * \link TopicPreprocessorDirectivesPerformance there \endlink.
865 *
866 * Example:
867 * \code
868 * // Matrix4f requires 16 bytes alignment:
869 * std::map< int, Matrix4f, std::less<int>,
870 *           aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
871 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
872 * std::map< int, Vector3f > my_map_vec3;
873 * \endcode
874 *
875 * \sa \blank \ref TopicStlContainers.
876 */
877 template<class T>
878 class aligned_allocator : public std::allocator<T>
879 {
880 public:
881   typedef std::size_t     size_type;
882   typedef std::ptrdiff_t  difference_type;
883   typedef T*              pointer;
884   typedef const T*        const_pointer;
885   typedef T&              reference;
886   typedef const T&        const_reference;
887   typedef T               value_type;
888 
889   template<class U>
890   struct rebind
891   {
892     typedef aligned_allocator<U> other;
893   };
894 
895   aligned_allocator() : std::allocator<T>() {}
896 
897   aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
898 
899   template<class U>
900   aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
901 
902   ~aligned_allocator() {}
903 
904   #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0)
905   // In gcc std::allocator::max_size() is bugged making gcc triggers a warning:
906   // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807
907   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
908   size_type max_size() const {
909     return (std::numeric_limits<std::ptrdiff_t>::max)()/sizeof(T);
910   }
911   #endif
912 
913   pointer allocate(size_type num, const void* /*hint*/ = 0)
914   {
915     internal::check_size_for_overflow<T>(num);
916     return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
917   }
918 
919   void deallocate(pointer p, size_type /*num*/)
920   {
921     internal::aligned_free(p);
922   }
923 };
924 
925 //---------- Cache sizes ----------
926 
927 #if !defined(EIGEN_NO_CPUID)
928 #  if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
929 #    if defined(__PIC__) && EIGEN_ARCH_i386
930        // Case for x86 with PIC
931 #      define EIGEN_CPUID(abcd,func,id) \
932          __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
933 #    elif defined(__PIC__) && EIGEN_ARCH_x86_64
934        // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
935        // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
936 #      define EIGEN_CPUID(abcd,func,id) \
937         __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
938 #    else
939        // Case for x86_64 or x86 w/o PIC
940 #      define EIGEN_CPUID(abcd,func,id) \
941          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
942 #    endif
943 #  elif EIGEN_COMP_MSVC
944 #    if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
945 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
946 #    endif
947 #  endif
948 #endif
949 
950 namespace internal {
951 
952 #ifdef EIGEN_CPUID
953 
954 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
955 {
956   return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
957 }
958 
959 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
960 {
961   int abcd[4];
962   l1 = l2 = l3 = 0;
963   int cache_id = 0;
964   int cache_type = 0;
965   do {
966     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
967     EIGEN_CPUID(abcd,0x4,cache_id);
968     cache_type  = (abcd[0] & 0x0F) >> 0;
969     if(cache_type==1||cache_type==3) // data or unified cache
970     {
971       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
972       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
973       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
974       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
975       int sets        = (abcd[2]);                    // C[31:0]
976 
977       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
978 
979       switch(cache_level)
980       {
981         case 1: l1 = cache_size; break;
982         case 2: l2 = cache_size; break;
983         case 3: l3 = cache_size; break;
984         default: break;
985       }
986     }
987     cache_id++;
988   } while(cache_type>0 && cache_id<16);
989 }
990 
991 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
992 {
993   int abcd[4];
994   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
995   l1 = l2 = l3 = 0;
996   EIGEN_CPUID(abcd,0x00000002,0);
997   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
998   bool check_for_p2_core2 = false;
999   for(int i=0; i<14; ++i)
1000   {
1001     switch(bytes[i])
1002     {
1003       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
1004       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
1005       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
1006       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1007       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1008       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
1009       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
1010       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
1011       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
1012       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
1013       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
1014       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
1015       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
1016       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1017       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
1018       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
1019       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
1020       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
1021       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
1022       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
1023       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
1024       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
1025       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
1026       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
1027       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
1028       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
1029       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
1030       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
1031       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
1032       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
1033       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
1034       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
1035       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
1036       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
1037       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
1038       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
1039       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
1040       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
1041       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
1042       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
1043       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
1044       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1045       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
1046       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
1047       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
1048       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
1049       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
1050       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
1051       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
1052       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
1053       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
1054       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
1055       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
1056       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
1057       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
1058       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
1059       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
1060 
1061       default: break;
1062     }
1063   }
1064   if(check_for_p2_core2 && l2 == l3)
1065     l3 = 0;
1066   l1 *= 1024;
1067   l2 *= 1024;
1068   l3 *= 1024;
1069 }
1070 
1071 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
1072 {
1073   if(max_std_funcs>=4)
1074     queryCacheSizes_intel_direct(l1,l2,l3);
1075   else if(max_std_funcs>=2)
1076     queryCacheSizes_intel_codes(l1,l2,l3);
1077   else
1078     l1 = l2 = l3 = 0;
1079 }
1080 
1081 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
1082 {
1083   int abcd[4];
1084   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1085 
1086   // First query the max supported function.
1087   EIGEN_CPUID(abcd,0x80000000,0);
1088   if(static_cast<numext::uint32_t>(abcd[0]) >= static_cast<numext::uint32_t>(0x80000006))
1089   {
1090     EIGEN_CPUID(abcd,0x80000005,0);
1091     l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
1092     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1093     EIGEN_CPUID(abcd,0x80000006,0);
1094     l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
1095     l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
1096   }
1097   else
1098   {
1099     l1 = l2 = l3 = 0;
1100   }
1101 }
1102 #endif
1103 
1104 /** \internal
1105  * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
1106 inline void queryCacheSizes(int& l1, int& l2, int& l3)
1107 {
1108   #ifdef EIGEN_CPUID
1109   int abcd[4];
1110   const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
1111   const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
1112   const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
1113 
1114   // identify the CPU vendor
1115   EIGEN_CPUID(abcd,0x0,0);
1116   int max_std_funcs = abcd[0];
1117   if(cpuid_is_vendor(abcd,GenuineIntel))
1118     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1119   else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
1120     queryCacheSizes_amd(l1,l2,l3);
1121   else
1122     // by default let's use Intel's API
1123     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
1124 
1125   // here is the list of other vendors:
1126 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
1127 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
1128 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
1129 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
1130 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
1131 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
1132 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
1133 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
1134 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
1135 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
1136   #else
1137   l1 = l2 = l3 = -1;
1138   #endif
1139 }
1140 
1141 /** \internal
1142  * \returns the size in Bytes of the L1 data cache */
1143 inline int queryL1CacheSize()
1144 {
1145   int l1(-1), l2, l3;
1146   queryCacheSizes(l1,l2,l3);
1147   return l1;
1148 }
1149 
1150 /** \internal
1151  * \returns the size in Bytes of the L2 or L3 cache if this later is present */
1152 inline int queryTopLevelCacheSize()
1153 {
1154   int l1, l2(-1), l3(-1);
1155   queryCacheSizes(l1,l2,l3);
1156   return (std::max)(l2,l3);
1157 }
1158 
1159 } // end namespace internal
1160 
1161 } // end namespace Eigen
1162 
1163 #endif // EIGEN_MEMORY_H
1164