1 /* 2 * Copyright 2022 Google LLC. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef skgpu_VulkanMemoryAllocator_DEFINED 9 #define skgpu_VulkanMemoryAllocator_DEFINED 10 11 #include "include/core/SkRefCnt.h" 12 #include "include/gpu/GpuTypes.h" 13 #include "include/gpu/vk/VulkanTypes.h" 14 15 namespace skgpu { 16 17 class VulkanMemoryAllocator : public SkRefCnt { 18 public: 19 enum AllocationPropertyFlags { 20 kNone_AllocationPropertyFlag = 0b0000, 21 // Allocation will be placed in its own VkDeviceMemory and not suballocated from some larger 22 // block. 23 kDedicatedAllocation_AllocationPropertyFlag = 0b0001, 24 // Says that the backing memory can only be accessed by the device. Additionally the device 25 // may lazily allocate the memory. This cannot be used with buffers that will be host 26 // visible. Setting this flag does not guarantee that we will allocate memory that respects 27 // it, but we will try to prefer memory that can respect it. 28 kLazyAllocation_AllocationPropertyFlag = 0b0010, 29 // The allocation will be mapped immediately and stay mapped until it is destroyed. This 30 // flag is only valid for buffers which are host visible (i.e. must have a usage other than 31 // BufferUsage::kGpuOnly). 32 kPersistentlyMapped_AllocationPropertyFlag = 0b0100, 33 // Allocation can only be accessed by the device using a protected context. 34 kProtected_AllocationPropertyFlag = 0b1000, 35 }; 36 37 enum class BufferUsage { 38 // Buffers that will only be accessed from the device (large const buffers) will always be 39 // in device local memory. 40 kGpuOnly, 41 // Buffers that typically will be updated multiple times by the host and read on the gpu 42 // (e.g. uniform or vertex buffers). CPU writes will generally be sequential in the buffer 43 // and will try to take advantage of the write-combined nature of the gpu buffers. Thus this 44 // will always be mappable and coherent memory, and it will prefer to be in device local 45 // memory. 46 kCpuWritesGpuReads, 47 // Buffers that will be accessed on the host and copied to another GPU resource (transfer 48 // buffers). Will always be mappable and coherent memory. 49 kTransfersFromCpuToGpu, 50 // Buffers which are typically writted to by the GPU and then read on the host. Will always 51 // be mappable memory, and will prefer cached memory. 52 kTransfersFromGpuToCpu, 53 }; 54 55 virtual VkResult allocateImageMemory(VkImage image, 56 uint32_t allocationPropertyFlags, 57 skgpu::VulkanBackendMemory* memory) = 0; 58 59 virtual VkResult allocateBufferMemory(VkBuffer buffer, 60 BufferUsage usage, 61 uint32_t allocationPropertyFlags, 62 skgpu::VulkanBackendMemory* memory) = 0; 63 64 // Fills out the passed in skgpu::VulkanAlloc struct for the passed in 65 // skgpu::VulkanBackendMemory. 66 virtual void getAllocInfo(const skgpu::VulkanBackendMemory&, skgpu::VulkanAlloc*) const = 0; 67 68 // Maps the entire allocation and returns a pointer to the start of the allocation. The 69 // implementation may map more memory than just the allocation, but the returned pointer must 70 // point at the start of the memory for the requested allocation. mapMemory(const skgpu::VulkanBackendMemory &)71 virtual void* mapMemory(const skgpu::VulkanBackendMemory&) { return nullptr; } mapMemory(const skgpu::VulkanBackendMemory & memory,void ** data)72 virtual VkResult mapMemory(const skgpu::VulkanBackendMemory& memory, void** data) { 73 *data = this->mapMemory(memory); 74 // VK_ERROR_INITIALIZATION_FAILED is a bogus result to return from this function, but it is 75 // just something to return that is not VK_SUCCESS and can't be interpreted by a caller to 76 // mean something specific happened like device lost or oom. This will be removed once we 77 // update clients to implement this virtual. 78 return *data ? VK_SUCCESS : VK_ERROR_INITIALIZATION_FAILED; 79 } 80 virtual void unmapMemory(const skgpu::VulkanBackendMemory&) = 0; 81 82 // The following two calls are used for managing non-coherent memory. The offset is relative to 83 // the start of the allocation and not the underlying VkDeviceMemory. Additionaly the client 84 // must make sure that the offset + size passed in is less that or equal to the allocation size. 85 // It is the responsibility of the implementation to make sure all alignment requirements are 86 // followed. The client should not have to deal with any sort of alignment issues. flushMappedMemory(const skgpu::VulkanBackendMemory &,VkDeviceSize,VkDeviceSize)87 virtual void flushMappedMemory(const skgpu::VulkanBackendMemory&, VkDeviceSize, VkDeviceSize) {} flushMemory(const skgpu::VulkanBackendMemory & memory,VkDeviceSize offset,VkDeviceSize size)88 virtual VkResult flushMemory(const skgpu::VulkanBackendMemory& memory, 89 VkDeviceSize offset, 90 VkDeviceSize size) { 91 this->flushMappedMemory(memory, offset, size); 92 return VK_SUCCESS; 93 } invalidateMappedMemory(const skgpu::VulkanBackendMemory &,VkDeviceSize,VkDeviceSize)94 virtual void invalidateMappedMemory(const skgpu::VulkanBackendMemory&, 95 VkDeviceSize, 96 VkDeviceSize) {} invalidateMemory(const skgpu::VulkanBackendMemory & memory,VkDeviceSize offset,VkDeviceSize size)97 virtual VkResult invalidateMemory(const skgpu::VulkanBackendMemory& memory, 98 VkDeviceSize offset, 99 VkDeviceSize size) { 100 this->invalidateMappedMemory(memory, offset, size); 101 return VK_SUCCESS; 102 } 103 104 virtual void freeMemory(const skgpu::VulkanBackendMemory&) = 0; 105 106 // Returns the total amount of memory that is allocated as well as total 107 // amount of memory in use by an allocation from this allocator. 108 // Return 1st param is total allocated memory, 2nd is total used memory. 109 virtual std::pair<uint64_t, uint64_t> totalAllocatedAndUsedMemory() const = 0; 110 }; 111 112 } // namespace skgpu 113 114 #endif // skgpu_VulkanMemoryAllocator_DEFINED 115