1 /*
2 * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28
29 #include "mpdecimal.h"
30 #include "bits.h"
31 #include "constants.h"
32 #include "convolute.h"
33 #include "fnt.h"
34 #include "fourstep.h"
35 #include "numbertheory.h"
36 #include "sixstep.h"
37 #include "umodarith.h"
38
39
40 /* Bignum: Fast convolution using the Number Theoretic Transform. Used for
41 the multiplication of very large coefficients. */
42
43
44 /* Convolute the data in c1 and c2. Result is in c1. */
45 int
fnt_convolute(mpd_uint_t * c1,mpd_uint_t * c2,mpd_size_t n,int modnum)46 fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
47 {
48 int (*fnt)(mpd_uint_t *, mpd_size_t, int);
49 int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
50 #ifdef PPRO
51 double dmod;
52 uint32_t dinvmod[3];
53 #endif
54 mpd_uint_t n_inv, umod;
55 mpd_size_t i;
56
57
58 SETMODULUS(modnum);
59 n_inv = POWMOD(n, (umod-2));
60
61 if (ispower2(n)) {
62 if (n > SIX_STEP_THRESHOLD) {
63 fnt = six_step_fnt;
64 inv_fnt = inv_six_step_fnt;
65 }
66 else {
67 fnt = std_fnt;
68 inv_fnt = std_inv_fnt;
69 }
70 }
71 else {
72 fnt = four_step_fnt;
73 inv_fnt = inv_four_step_fnt;
74 }
75
76 if (!fnt(c1, n, modnum)) {
77 return 0;
78 }
79 if (!fnt(c2, n, modnum)) {
80 return 0;
81 }
82 for (i = 0; i < n-1; i += 2) {
83 mpd_uint_t x0 = c1[i];
84 mpd_uint_t y0 = c2[i];
85 mpd_uint_t x1 = c1[i+1];
86 mpd_uint_t y1 = c2[i+1];
87 MULMOD2(&x0, y0, &x1, y1);
88 c1[i] = x0;
89 c1[i+1] = x1;
90 }
91
92 if (!inv_fnt(c1, n, modnum)) {
93 return 0;
94 }
95 for (i = 0; i < n-3; i += 4) {
96 mpd_uint_t x0 = c1[i];
97 mpd_uint_t x1 = c1[i+1];
98 mpd_uint_t x2 = c1[i+2];
99 mpd_uint_t x3 = c1[i+3];
100 MULMOD2C(&x0, &x1, n_inv);
101 MULMOD2C(&x2, &x3, n_inv);
102 c1[i] = x0;
103 c1[i+1] = x1;
104 c1[i+2] = x2;
105 c1[i+3] = x3;
106 }
107
108 return 1;
109 }
110
111 /* Autoconvolute the data in c1. Result is in c1. */
112 int
fnt_autoconvolute(mpd_uint_t * c1,mpd_size_t n,int modnum)113 fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
114 {
115 int (*fnt)(mpd_uint_t *, mpd_size_t, int);
116 int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
117 #ifdef PPRO
118 double dmod;
119 uint32_t dinvmod[3];
120 #endif
121 mpd_uint_t n_inv, umod;
122 mpd_size_t i;
123
124
125 SETMODULUS(modnum);
126 n_inv = POWMOD(n, (umod-2));
127
128 if (ispower2(n)) {
129 if (n > SIX_STEP_THRESHOLD) {
130 fnt = six_step_fnt;
131 inv_fnt = inv_six_step_fnt;
132 }
133 else {
134 fnt = std_fnt;
135 inv_fnt = std_inv_fnt;
136 }
137 }
138 else {
139 fnt = four_step_fnt;
140 inv_fnt = inv_four_step_fnt;
141 }
142
143 if (!fnt(c1, n, modnum)) {
144 return 0;
145 }
146 for (i = 0; i < n-1; i += 2) {
147 mpd_uint_t x0 = c1[i];
148 mpd_uint_t x1 = c1[i+1];
149 MULMOD2(&x0, x0, &x1, x1);
150 c1[i] = x0;
151 c1[i+1] = x1;
152 }
153
154 if (!inv_fnt(c1, n, modnum)) {
155 return 0;
156 }
157 for (i = 0; i < n-3; i += 4) {
158 mpd_uint_t x0 = c1[i];
159 mpd_uint_t x1 = c1[i+1];
160 mpd_uint_t x2 = c1[i+2];
161 mpd_uint_t x3 = c1[i+3];
162 MULMOD2C(&x0, &x1, n_inv);
163 MULMOD2C(&x2, &x3, n_inv);
164 c1[i] = x0;
165 c1[i+1] = x1;
166 c1[i+2] = x2;
167 c1[i+3] = x3;
168 }
169
170 return 1;
171 }
172