• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fs_mgr.h"
18 
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <libgen.h>
25 #include <selinux/selinux.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/ioctl.h>
30 #include <sys/mount.h>
31 #include <sys/stat.h>
32 #include <sys/swap.h>
33 #include <sys/types.h>
34 #include <sys/utsname.h>
35 #include <sys/wait.h>
36 #include <time.h>
37 #include <unistd.h>
38 
39 #include <array>
40 #include <chrono>
41 #include <functional>
42 #include <map>
43 #include <memory>
44 #include <string>
45 #include <string_view>
46 #include <thread>
47 #include <utility>
48 #include <vector>
49 
50 #include <android-base/chrono_utils.h>
51 #include <android-base/file.h>
52 #include <android-base/properties.h>
53 #include <android-base/stringprintf.h>
54 #include <android-base/strings.h>
55 #include <android-base/unique_fd.h>
56 #include <cutils/android_filesystem_config.h>
57 #include <cutils/android_reboot.h>
58 #include <cutils/partition_utils.h>
59 #include <cutils/properties.h>
60 #include <ext4_utils/ext4.h>
61 #include <ext4_utils/ext4_sb.h>
62 #include <ext4_utils/ext4_utils.h>
63 #include <ext4_utils/wipe.h>
64 #include <fs_avb/fs_avb.h>
65 #include <fs_mgr/file_wait.h>
66 #include <fs_mgr_overlayfs.h>
67 #include <fscrypt/fscrypt.h>
68 #include <libdm/dm.h>
69 #include <libdm/loop_control.h>
70 #include <liblp/metadata_format.h>
71 #include <linux/fs.h>
72 #include <linux/loop.h>
73 #include <linux/magic.h>
74 #include <log/log_properties.h>
75 #include <logwrap/logwrap.h>
76 
77 #include "blockdev.h"
78 #include "fs_mgr_priv.h"
79 
80 #define E2FSCK_BIN      "/system/bin/e2fsck"
81 #define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs"
82 #define MKSWAP_BIN      "/system/bin/mkswap"
83 #define TUNE2FS_BIN     "/system/bin/tune2fs"
84 #define RESIZE2FS_BIN "/system/bin/resize2fs"
85 
86 #define FSCK_LOG_FILE   "/dev/fscklogs/log"
87 
88 #define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
89 #define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams"
90 #define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev"
91 
92 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
93 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
94 
95 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
96 
97 using android::base::Basename;
98 using android::base::GetBoolProperty;
99 using android::base::GetUintProperty;
100 using android::base::Realpath;
101 using android::base::SetProperty;
102 using android::base::StartsWith;
103 using android::base::StringPrintf;
104 using android::base::Timer;
105 using android::base::unique_fd;
106 using android::dm::DeviceMapper;
107 using android::dm::DmDeviceState;
108 using android::dm::DmTargetLinear;
109 using android::dm::LoopControl;
110 
111 // Realistically, this file should be part of the android::fs_mgr namespace;
112 using namespace android::fs_mgr;
113 
114 using namespace std::literals;
115 
116 // record fs stat
117 enum FsStatFlags {
118     FS_STAT_IS_EXT4 = 0x0001,
119     FS_STAT_NEW_IMAGE_VERSION = 0x0002,
120     FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
121     FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
122     FS_STAT_QUOTA_ENABLED = 0x0010,
123     FS_STAT_RO_MOUNT_FAILED = 0x0040,
124     FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
125     FS_STAT_FULL_MOUNT_FAILED = 0x0100,
126     FS_STAT_FSCK_FAILED = 0x0200,
127     FS_STAT_FSCK_FS_FIXED = 0x0400,
128     FS_STAT_INVALID_MAGIC = 0x0800,
129     FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
130     FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
131     FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
132     FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
133     FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
134     FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
135 };
136 
log_fs_stat(const std::string & blk_device,int fs_stat)137 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
138     std::string msg =
139             android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
140     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
141                                                         O_APPEND | O_CREAT, 0664)));
142     if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
143         LWARNING << __FUNCTION__ << "() cannot log " << msg;
144     }
145 }
146 
is_extfs(const std::string & fs_type)147 static bool is_extfs(const std::string& fs_type) {
148     return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
149 }
150 
is_f2fs(const std::string & fs_type)151 static bool is_f2fs(const std::string& fs_type) {
152     return fs_type == "f2fs";
153 }
154 
realpath(const std::string & blk_device)155 static std::string realpath(const std::string& blk_device) {
156     std::string real_path;
157     if (!Realpath(blk_device, &real_path)) {
158         real_path = blk_device;
159     }
160     return real_path;
161 }
162 
should_force_check(int fs_stat)163 static bool should_force_check(int fs_stat) {
164     return fs_stat &
165            (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
166             FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
167             FS_STAT_FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
168             FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
169 }
170 
umount_retry(const std::string & mount_point)171 static bool umount_retry(const std::string& mount_point) {
172     int retry_count = 5;
173     bool umounted = false;
174 
175     while (retry_count-- > 0) {
176         umounted = umount(mount_point.c_str()) == 0;
177         if (umounted) {
178             LINFO << __FUNCTION__ << "(): unmount(" << mount_point << ") succeeded";
179             break;
180         }
181         PERROR << __FUNCTION__ << "(): umount(" << mount_point << ") failed";
182         if (retry_count) sleep(1);
183     }
184     return umounted;
185 }
186 
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)187 static void check_fs(const std::string& blk_device, const std::string& fs_type,
188                      const std::string& target, int* fs_stat) {
189     int status;
190     int ret;
191     long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
192     auto tmpmnt_opts = "errors=remount-ro"s;
193     const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
194     const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
195 
196     if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try
197         return;
198     }
199 
200     Timer t;
201     /* Check for the types of filesystems we know how to check */
202     if (is_extfs(fs_type)) {
203         /*
204          * First try to mount and unmount the filesystem.  We do this because
205          * the kernel is more efficient than e2fsck in running the journal and
206          * processing orphaned inodes, and on at least one device with a
207          * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
208          * to do what the kernel does in about a second.
209          *
210          * After mounting and unmounting the filesystem, run e2fsck, and if an
211          * error is recorded in the filesystem superblock, e2fsck will do a full
212          * check.  Otherwise, it does nothing.  If the kernel cannot mount the
213          * filesytsem due to an error, e2fsck is still run to do a full check
214          * fix the filesystem.
215          */
216         if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed
217             errno = 0;
218             if (fs_type == "ext4") {
219                 // This option is only valid with ext4
220                 tmpmnt_opts += ",nomblk_io_submit";
221             }
222             ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
223                         tmpmnt_opts.c_str());
224             PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
225                   << ")=" << ret;
226             if (ret) {
227                 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
228             } else if (!umount_retry(target)) {
229                 // boot may fail but continue and leave it to later stage for now.
230                 PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
231                 *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
232             }
233         }
234 
235         /*
236          * Some system images do not have e2fsck for licensing reasons
237          * (e.g. recent SDK system images). Detect these and skip the check.
238          */
239         if (access(E2FSCK_BIN, X_OK)) {
240             LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
241                   << " (executable not in system image)";
242         } else {
243             LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
244             if (should_force_check(*fs_stat)) {
245                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
246                                           &status, false, LOG_KLOG | LOG_FILE, false,
247                                           FSCK_LOG_FILE);
248             } else {
249                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
250                                           LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
251             }
252 
253             if (ret < 0) {
254                 /* No need to check for error in fork, we can't really handle it now */
255                 LERROR << "Failed trying to run " << E2FSCK_BIN;
256                 *fs_stat |= FS_STAT_FSCK_FAILED;
257             } else if (status != 0) {
258                 LINFO << "e2fsck returned status 0x" << std::hex << status;
259                 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
260             }
261         }
262     } else if (is_f2fs(fs_type)) {
263         const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN,     "-a", "-c", "10000", "--debug-cache",
264                                         blk_device.c_str()};
265         const char* f2fs_fsck_forced_argv[] = {
266                 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
267 
268         if (access(F2FS_FSCK_BIN, X_OK)) {
269             LINFO << "Not running " << F2FS_FSCK_BIN << " on " << realpath(blk_device)
270                   << " (executable not in system image)";
271         } else {
272             if (should_force_check(*fs_stat)) {
273                 LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache "
274                       << realpath(blk_device);
275                 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
276                                           &status, false, LOG_KLOG | LOG_FILE, false,
277                                           FSCK_LOG_FILE);
278             } else {
279                 LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache "
280                       << realpath(blk_device);
281                 ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status,
282                                           false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
283             }
284             if (ret < 0) {
285                 /* No need to check for error in fork, we can't really handle it now */
286                 LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
287                 *fs_stat |= FS_STAT_FSCK_FAILED;
288             } else if (status != 0) {
289                 LINFO << F2FS_FSCK_BIN << " returned status 0x" << std::hex << status;
290                 *fs_stat |= FS_STAT_FSCK_FS_FIXED;
291             }
292         }
293     }
294     android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
295                                std::to_string(t.duration().count()));
296     return;
297 }
298 
ext4_blocks_count(const struct ext4_super_block * es)299 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
300     return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
301            le32_to_cpu(es->s_blocks_count_lo);
302 }
303 
ext4_r_blocks_count(const struct ext4_super_block * es)304 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
305     return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
306            le32_to_cpu(es->s_r_blocks_count_lo);
307 }
308 
is_ext4_superblock_valid(const struct ext4_super_block * es)309 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
310     if (es->s_magic != EXT4_SUPER_MAGIC) return false;
311     if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
312     if (EXT4_INODES_PER_GROUP(es) == 0) return false;
313     return true;
314 }
315 
316 // Read the primary superblock from an ext4 filesystem.  On failure return
317 // false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,struct ext4_super_block * sb,int * fs_stat)318 static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
319                                  int* fs_stat) {
320     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
321 
322     if (fd < 0) {
323         PERROR << "Failed to open '" << blk_device << "'";
324         return false;
325     }
326 
327     if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
328         PERROR << "Can't read '" << blk_device << "' superblock";
329         return false;
330     }
331 
332     if (!is_ext4_superblock_valid(sb)) {
333         LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
334         // not a valid fs, tune2fs, fsck, and mount  will all fail.
335         *fs_stat |= FS_STAT_INVALID_MAGIC;
336         return false;
337     }
338     *fs_stat |= FS_STAT_IS_EXT4;
339     LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
340     if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4
341         *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
342     }
343     return true;
344 }
345 
346 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)347 bool fs_mgr_is_ext4(const std::string& blk_device) {
348     android::base::ErrnoRestorer restore;
349     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
350     if (fd < 0) return false;
351     ext4_super_block sb;
352     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
353     if (!is_ext4_superblock_valid(&sb)) return false;
354     return true;
355 }
356 
357 // Some system images do not have tune2fs for licensing reasons.
358 // Detect these and skip running it.
tune2fs_available(void)359 static bool tune2fs_available(void) {
360     return access(TUNE2FS_BIN, X_OK) == 0;
361 }
362 
run_command(const char * argv[],int argc)363 static bool run_command(const char* argv[], int argc) {
364     int ret;
365 
366     ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
367     return ret == 0;
368 }
369 
370 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)371 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
372                        const struct ext4_super_block* sb, int* fs_stat) {
373     bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
374     bool want_quota = entry.fs_mgr_flags.quota;
375     // Enable projid support by default
376     bool want_projid = true;
377     if (has_quota == want_quota) {
378         return;
379     }
380 
381     if (!tune2fs_available()) {
382         LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
383                << " because " TUNE2FS_BIN " is missing";
384         return;
385     }
386 
387     const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
388 
389     if (want_quota) {
390         LINFO << "Enabling quotas on " << blk_device;
391         argv[1] = "-Oquota";
392         // Once usr/grp unneeded, make just prjquota to save overhead
393         if (want_projid)
394             argv[2] = "-Qusrquota,grpquota,prjquota";
395         else
396             argv[2] = "-Qusrquota,grpquota";
397         *fs_stat |= FS_STAT_QUOTA_ENABLED;
398     } else {
399         LINFO << "Disabling quotas on " << blk_device;
400         argv[1] = "-O^quota";
401         argv[2] = "-Q^usrquota,^grpquota,^prjquota";
402     }
403 
404     if (!run_command(argv, ARRAY_SIZE(argv))) {
405         LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
406                << " quotas on " << blk_device;
407         *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
408     }
409 }
410 
411 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)412 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
413                                const struct ext4_super_block* sb, int* fs_stat) {
414     if (entry.reserved_size == 0) {
415         return;
416     }
417 
418     // The size to reserve is given in the fstab, but we won't reserve more
419     // than 2% of the filesystem.
420     const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
421     uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
422 
423     if (reserved_blocks > max_reserved_blocks) {
424         LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
425                  << "capping to " << max_reserved_blocks;
426         reserved_blocks = max_reserved_blocks;
427     }
428 
429     if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
430         return;
431     }
432 
433     if (!tune2fs_available()) {
434         LERROR << "Unable to set the number of reserved blocks on " << blk_device
435                << " because " TUNE2FS_BIN " is missing";
436         return;
437     }
438 
439     LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
440 
441     auto reserved_blocks_str = std::to_string(reserved_blocks);
442     auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
443     const char* argv[] = {
444             TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
445             blk_device.c_str()};
446     if (!run_command(argv, ARRAY_SIZE(argv))) {
447         LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
448                << blk_device;
449         *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
450     }
451 }
452 
453 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)454 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
455                          const struct ext4_super_block* sb, int* fs_stat) {
456     if (!entry.fs_mgr_flags.file_encryption) {
457         return;  // Nothing needs done.
458     }
459     std::vector<std::string> features_needed;
460     if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
461         features_needed.emplace_back("encrypt");
462     }
463     android::fscrypt::EncryptionOptions options;
464     if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
465         LERROR << "Unable to parse encryption options on " << blk_device << ": "
466                << entry.encryption_options;
467         return;
468     }
469     if ((options.flags &
470          (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
471         // We can only use this policy on ext4 if the "stable_inodes" feature
472         // is set on the filesystem, otherwise shrinking will break encrypted files.
473         if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
474             features_needed.emplace_back("stable_inodes");
475         }
476     }
477     if (features_needed.size() == 0) {
478         return;
479     }
480     if (!tune2fs_available()) {
481         LERROR << "Unable to enable ext4 encryption on " << blk_device
482                << " because " TUNE2FS_BIN " is missing";
483         return;
484     }
485 
486     auto flags = android::base::Join(features_needed, ',');
487     auto flag_arg = "-O"s + flags;
488     const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
489 
490     LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
491     if (!run_command(argv, ARRAY_SIZE(argv))) {
492         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
493                << "ext4 flags " << flags << " on " << blk_device;
494         *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
495     }
496 }
497 
498 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)499 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
500                         const struct ext4_super_block* sb, int* fs_stat) {
501     bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
502     bool want_verity = entry.fs_mgr_flags.fs_verity;
503 
504     if (has_verity || !want_verity) {
505         return;
506     }
507 
508     std::string verity_support;
509     if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
510         LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
511         return;
512     }
513 
514     if (!(android::base::Trim(verity_support) == "supported")) {
515         LERROR << "Current ext4 verity not supported by kernel";
516         return;
517     }
518 
519     if (!tune2fs_available()) {
520         LERROR << "Unable to enable ext4 verity on " << blk_device
521                << " because " TUNE2FS_BIN " is missing";
522         return;
523     }
524 
525     LINFO << "Enabling ext4 verity on " << blk_device;
526 
527     const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
528     if (!run_command(argv, ARRAY_SIZE(argv))) {
529         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
530                << "ext4 verity on " << blk_device;
531         *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
532     }
533 }
534 
535 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)536 static void tune_casefold(const std::string& blk_device, const FstabEntry& entry,
537                           const struct ext4_super_block* sb, int* fs_stat) {
538     bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
539     bool wants_casefold =
540             android::base::GetBoolProperty("external_storage.casefold.enabled", false);
541 
542     if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return;
543 
544     std::string casefold_support;
545     if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
546         LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
547         return;
548     }
549 
550     if (!(android::base::Trim(casefold_support) == "supported")) {
551         LERROR << "Current ext4 casefolding not supported by kernel";
552         return;
553     }
554 
555     if (!tune2fs_available()) {
556         LERROR << "Unable to enable ext4 casefold on " << blk_device
557                << " because " TUNE2FS_BIN " is missing";
558         return;
559     }
560 
561     LINFO << "Enabling ext4 casefold on " << blk_device;
562 
563     const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
564     if (!run_command(argv, ARRAY_SIZE(argv))) {
565         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
566                << "ext4 casefold on " << blk_device;
567         *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
568     }
569 }
570 
resize2fs_available(void)571 static bool resize2fs_available(void) {
572     return access(RESIZE2FS_BIN, X_OK) == 0;
573 }
574 
575 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)576 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
577                                const struct ext4_super_block* sb, int* fs_stat) {
578     bool has_meta_csum =
579             (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
580     bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
581 
582     if (has_meta_csum || !want_meta_csum) return;
583 
584     if (!tune2fs_available()) {
585         LERROR << "Unable to enable metadata_csum on " << blk_device
586                << " because " TUNE2FS_BIN " is missing";
587         return;
588     }
589     if (!resize2fs_available()) {
590         LERROR << "Unable to enable metadata_csum on " << blk_device
591                << " because " RESIZE2FS_BIN " is missing";
592         return;
593     }
594 
595     LINFO << "Enabling ext4 metadata_csum on " << blk_device;
596 
597     // Must give `-T now` to prevent last_fsck_time from growing too large,
598     // otherwise, tune2fs won't enable metadata_csum.
599     const char* tune2fs_args[] = {TUNE2FS_BIN, "-O",        "metadata_csum,64bit,extent",
600                                   "-T",        "now", blk_device.c_str()};
601     const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
602 
603     if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
604         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
605                << "ext4 metadata_csum on " << blk_device;
606         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
607     } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
608         LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
609                << "ext4 metadata_csum on " << blk_device;
610         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
611     }
612 }
613 
614 // Read the primary superblock from an f2fs filesystem.  On failure return
615 // false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
616 #define F2FS_BLKSIZE 4096
617 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)618 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
619     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
620     __le32 sb1, sb2;
621 
622     if (fd < 0) {
623         PERROR << "Failed to open '" << blk_device << "'";
624         return false;
625     }
626 
627     if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
628         PERROR << "Can't read '" << blk_device << "' superblock1";
629         return false;
630     }
631     if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
632         sizeof(sb2)) {
633         PERROR << "Can't read '" << blk_device << "' superblock2";
634         return false;
635     }
636 
637     if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
638         LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
639         *fs_stat |= FS_STAT_INVALID_MAGIC;
640         return false;
641     }
642     return true;
643 }
644 
645 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)646 bool fs_mgr_is_f2fs(const std::string& blk_device) {
647     android::base::ErrnoRestorer restore;
648     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
649     if (fd < 0) return false;
650     __le32 sb;
651     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
652         return false;
653     }
654     if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
655     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
656         sizeof(sb)) {
657         return false;
658     }
659     return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
660 }
661 
SetReadAheadSize(const std::string & entry_block_device,off64_t size_kb)662 static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) {
663     std::string block_device;
664     if (!Realpath(entry_block_device, &block_device)) {
665         PERROR << "Failed to realpath " << entry_block_device;
666         return;
667     }
668 
669     static constexpr std::string_view kDevBlockPrefix("/dev/block/");
670     if (!android::base::StartsWith(block_device, kDevBlockPrefix)) {
671         LWARNING << block_device << " is not a block device";
672         return;
673     }
674 
675     DeviceMapper& dm = DeviceMapper::Instance();
676     while (true) {
677         std::string block_name = block_device;
678         if (android::base::StartsWith(block_device, kDevBlockPrefix)) {
679             block_name = block_device.substr(kDevBlockPrefix.length());
680         }
681         std::string sys_partition =
682                 android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str());
683         struct stat info;
684         if (lstat(sys_partition.c_str(), &info) == 0) {
685             // it has a partition like "sda12".
686             block_name += "/..";
687         }
688         std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb",
689                                                          block_name.c_str());
690         std::string size = android::base::StringPrintf("%llu", (long long)size_kb);
691         android::base::WriteStringToFile(size, sys_ra.c_str());
692         LINFO << "Set readahead_kb: " << size << " on " << sys_ra;
693 
694         auto parent = dm.GetParentBlockDeviceByPath(block_device);
695         if (!parent) {
696             return;
697         }
698         block_device = *parent;
699     }
700 }
701 
702 //
703 // Mechanism to allow fsck to be triggered by setting ro.preventative_fsck
704 // Introduced to address b/305658663
705 // If the property value is not equal to the flag file contents, trigger
706 // fsck and store the property value in the flag file
707 // If we want to trigger again, simply change the property value
708 //
check_if_preventative_fsck_needed(const FstabEntry & entry)709 static bool check_if_preventative_fsck_needed(const FstabEntry& entry) {
710     const char* flag_file = "/metadata/vold/preventative_fsck";
711     if (entry.mount_point != "/data") return false;
712 
713     // Don't error check - both default to empty string, which is OK
714     std::string prop = android::base::GetProperty("ro.preventative_fsck", "");
715     std::string flag;
716     android::base::ReadFileToString(flag_file, &flag);
717     if (prop == flag) return false;
718     // fsck is run immediately, so assume it runs or there is some deeper problem
719     if (!android::base::WriteStringToFile(prop, flag_file))
720         PERROR << "Failed to write file " << flag_file;
721     LINFO << "Run preventative fsck on /data";
722     return true;
723 }
724 
725 //
726 // Prepare the filesystem on the given block device to be mounted.
727 //
728 // If the "check" option was given in the fstab record, or it seems that the
729 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
730 //
731 // If needed, we'll also enable (or disable) filesystem features as specified by
732 // the fstab record.
733 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry,const std::string & alt_mount_point="")734 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry,
735                                 const std::string& alt_mount_point = "") {
736     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
737     // We need this because sometimes we have legacy symlinks that are
738     // lingering around and need cleaning up.
739     struct stat info;
740     if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
741         unlink(mount_point.c_str());
742     }
743     mkdir(mount_point.c_str(), 0755);
744 
745     // Don't need to return error, since it's a salt
746     if (entry.readahead_size_kb != -1) {
747         SetReadAheadSize(blk_device, entry.readahead_size_kb);
748     }
749 
750     int fs_stat = 0;
751 
752     if (is_extfs(entry.fs_type)) {
753         struct ext4_super_block sb;
754 
755         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
756             if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
757                 (sb.s_state & EXT4_VALID_FS) == 0) {
758                 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
759                       << "state flags: 0x" << std::hex << sb.s_state << ", "
760                       << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
761                 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
762             }
763 
764             // Note: quotas should be enabled before running fsck.
765             tune_quota(blk_device, entry, &sb, &fs_stat);
766         } else {
767             return fs_stat;
768         }
769     } else if (is_f2fs(entry.fs_type)) {
770         if (!read_f2fs_superblock(blk_device, &fs_stat)) {
771             return fs_stat;
772         }
773     }
774 
775     if (check_if_preventative_fsck_needed(entry) || entry.fs_mgr_flags.check ||
776         (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
777         check_fs(blk_device, entry.fs_type, mount_point, &fs_stat);
778     }
779 
780     if (is_extfs(entry.fs_type) &&
781         (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
782          entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
783         struct ext4_super_block sb;
784 
785         if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
786             tune_reserved_size(blk_device, entry, &sb, &fs_stat);
787             tune_encrypt(blk_device, entry, &sb, &fs_stat);
788             tune_verity(blk_device, entry, &sb, &fs_stat);
789             tune_casefold(blk_device, entry, &sb, &fs_stat);
790             tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
791         }
792     }
793 
794     return fs_stat;
795 }
796 
797 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)798 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
799     unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
800     if (fd < 0) {
801         return false;
802     }
803 
804     int ON = readonly;
805     return ioctl(fd, BLKROSET, &ON) == 0;
806 }
807 
808 // Orange state means the device is unlocked, see the following link for details.
809 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()810 bool fs_mgr_is_device_unlocked() {
811     std::string verified_boot_state;
812     if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
813         return verified_boot_state == "orange";
814     }
815     return false;
816 }
817 
818 // __mount(): wrapper around the mount() system call which also
819 // sets the underlying block device to read-only if the mount is read-only.
820 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry)821 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
822     errno = 0;
823     unsigned long mountflags = entry.flags;
824     int ret = 0;
825     int save_errno = 0;
826     int gc_allowance = 0;
827     std::string opts;
828     std::string checkpoint_opts;
829     bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0;
830     bool try_f2fs_fallback = false;
831     Timer t;
832 
833     do {
834         if (save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)) {
835             PINFO << "Kernel does not support " << checkpoint_opts << ", trying without.";
836             try_f2fs_gc_allowance = false;
837             // Attempt without gc allowance before dropping.
838             try_f2fs_fallback = !try_f2fs_fallback;
839         }
840         if (try_f2fs_gc_allowance) {
841             checkpoint_opts = entry.fs_checkpoint_opts + ":" + std::to_string(gc_allowance) + "%";
842         } else if (try_f2fs_fallback) {
843             checkpoint_opts = entry.fs_checkpoint_opts;
844         } else {
845             checkpoint_opts = "";
846         }
847         opts = entry.fs_options + checkpoint_opts;
848         if (save_errno == EAGAIN) {
849             PINFO << "Retrying mount (source=" << source << ",target=" << target
850                   << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret
851                   << "(" << save_errno << ")";
852         }
853         ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
854                     opts.c_str());
855         save_errno = errno;
856         if (try_f2fs_gc_allowance) gc_allowance += 10;
857     } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) ||
858              (ret && save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)));
859     const char* target_missing = "";
860     const char* source_missing = "";
861     if (save_errno == ENOENT) {
862         if (access(target.c_str(), F_OK)) {
863             target_missing = "(missing)";
864         } else if (access(source.c_str(), F_OK)) {
865             source_missing = "(missing)";
866         }
867         errno = save_errno;
868     }
869     PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
870           << target_missing << ",type=" << entry.fs_type << ")=" << ret;
871     if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
872         fs_mgr_set_blk_ro(source);
873     }
874     if (ret == 0) {
875         android::base::SetProperty("ro.boottime.init.mount." + Basename(target),
876                                    std::to_string(t.duration().count()));
877     }
878     errno = save_errno;
879     return ret;
880 }
881 
fs_match(const std::string & in1,const std::string & in2)882 static bool fs_match(const std::string& in1, const std::string& in2) {
883     if (in1.empty() || in2.empty()) {
884         return false;
885     }
886 
887     auto in1_end = in1.size() - 1;
888     while (in1_end > 0 && in1[in1_end] == '/') {
889         in1_end--;
890     }
891 
892     auto in2_end = in2.size() - 1;
893     while (in2_end > 0 && in2[in2_end] == '/') {
894         in2_end--;
895     }
896 
897     if (in1_end != in2_end) {
898         return false;
899     }
900 
901     for (size_t i = 0; i <= in1_end; ++i) {
902         if (in1[i] != in2[i]) {
903             return false;
904         }
905     }
906 
907     return true;
908 }
909 
910 // Tries to mount any of the consecutive fstab entries that match
911 // the mountpoint of the one given by fstab[start_idx].
912 //
913 // end_idx: On return, will be the last entry that was looked at.
914 // attempted_idx: On return, will indicate which fstab entry
915 //     succeeded. In case of failure, it will be the start_idx.
916 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(Fstab & fstab,int start_idx,int * end_idx,int * attempted_idx)917 static bool mount_with_alternatives(Fstab& fstab, int start_idx, int* end_idx,
918                                     int* attempted_idx) {
919     unsigned long i;
920     int mount_errno = 0;
921     bool mounted = false;
922 
923     // Hunt down an fstab entry for the same mount point that might succeed.
924     for (i = start_idx;
925          // We required that fstab entries for the same mountpoint be consecutive.
926          i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
927         // Don't try to mount/encrypt the same mount point again.
928         // Deal with alternate entries for the same point which are required to be all following
929         // each other.
930         if (mounted) {
931             LINFO << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
932                   << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
933                   << fstab[*attempted_idx].fs_type;
934             continue;
935         }
936 
937         // fstab[start_idx].blk_device is already updated to /dev/dm-<N> by
938         // AVB related functions. Copy it from start_idx to the current index i.
939         if ((i != start_idx) && fstab[i].fs_mgr_flags.logical &&
940             fstab[start_idx].fs_mgr_flags.logical &&
941             (fstab[i].logical_partition_name == fstab[start_idx].logical_partition_name)) {
942             fstab[i].blk_device = fstab[start_idx].blk_device;
943         }
944 
945         int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
946         if (fs_stat & FS_STAT_INVALID_MAGIC) {
947             LERROR << __FUNCTION__
948                    << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
949                    << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
950                    << "].fs_type=" << fstab[i].fs_type;
951             mount_errno = EINVAL;  // continue bootup for metadata encryption
952             continue;
953         }
954 
955         int retry_count = 2;
956         while (retry_count-- > 0) {
957             if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
958                 *attempted_idx = i;
959                 mounted = true;
960                 if (i != start_idx) {
961                     LINFO << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
962                           << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
963                           << " instead of " << fstab[start_idx].fs_type;
964                 }
965                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
966                 mount_errno = 0;
967                 break;
968             } else {
969                 if (retry_count <= 0) break;  // run check_fs only once
970                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
971                 // back up the first errno for crypto decisions.
972                 if (mount_errno == 0) {
973                     mount_errno = errno;
974                 }
975                 // retry after fsck
976                 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
977             }
978         }
979         log_fs_stat(fstab[i].blk_device, fs_stat);
980     }
981 
982     /* Adjust i for the case where it was still withing the recs[] */
983     if (i < fstab.size()) --i;
984 
985     *end_idx = i;
986     if (!mounted) {
987         *attempted_idx = start_idx;
988         errno = mount_errno;
989         return false;
990     }
991     return true;
992 }
993 
TranslateExtLabels(FstabEntry * entry)994 static bool TranslateExtLabels(FstabEntry* entry) {
995     if (!StartsWith(entry->blk_device, "LABEL=")) {
996         return true;
997     }
998 
999     std::string label = entry->blk_device.substr(6);
1000     if (label.size() > 16) {
1001         LERROR << "FS label is longer than allowed by filesystem";
1002         return false;
1003     }
1004 
1005     auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
1006     if (!blockdir) {
1007         LERROR << "couldn't open /dev/block";
1008         return false;
1009     }
1010 
1011     struct dirent* ent;
1012     while ((ent = readdir(blockdir.get()))) {
1013         if (ent->d_type != DT_BLK)
1014             continue;
1015 
1016         unique_fd fd(TEMP_FAILURE_RETRY(
1017                 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
1018         if (fd < 0) {
1019             LERROR << "Cannot open block device /dev/block/" << ent->d_name;
1020             return false;
1021         }
1022 
1023         ext4_super_block super_block;
1024         if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
1025             TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
1026                     sizeof(super_block)) {
1027             // Probably a loopback device or something else without a readable superblock.
1028             continue;
1029         }
1030 
1031         if (super_block.s_magic != EXT4_SUPER_MAGIC) {
1032             LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
1033             continue;
1034         }
1035 
1036         if (label == super_block.s_volume_name) {
1037             std::string new_blk_device = "/dev/block/"s + ent->d_name;
1038 
1039             LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
1040 
1041             entry->blk_device = new_blk_device;
1042             return true;
1043         }
1044     }
1045 
1046     return false;
1047 }
1048 
should_use_metadata_encryption(const FstabEntry & entry)1049 static bool should_use_metadata_encryption(const FstabEntry& entry) {
1050     return !entry.metadata_key_dir.empty() && entry.fs_mgr_flags.file_encryption;
1051 }
1052 
1053 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)1054 static int handle_encryptable(const FstabEntry& entry) {
1055     if (should_use_metadata_encryption(entry)) {
1056         if (umount_retry(entry.mount_point)) {
1057             return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
1058         }
1059         PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
1060         return FS_MGR_MNTALL_FAIL;
1061     } else if (entry.fs_mgr_flags.file_encryption) {
1062         LINFO << entry.mount_point << " is file encrypted";
1063         return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
1064     } else {
1065         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1066     }
1067 }
1068 
set_type_property(int status)1069 static void set_type_property(int status) {
1070     switch (status) {
1071         case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED:
1072         case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED:
1073         case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION:
1074             SetProperty("ro.crypto.type", "file");
1075             break;
1076     }
1077 }
1078 
call_vdc(const std::vector<std::string> & args,int * ret)1079 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1080     std::vector<char const*> argv;
1081     argv.emplace_back("/system/bin/vdc");
1082     for (auto& arg : args) {
1083         argv.emplace_back(arg.c_str());
1084     }
1085     LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1086     int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1087     if (err != 0) {
1088         LOG(ERROR) << "vdc call failed with error code: " << err;
1089         return false;
1090     }
1091     LOG(DEBUG) << "vdc finished successfully";
1092     if (ret != nullptr) {
1093         *ret = WEXITSTATUS(*ret);
1094     }
1095     return true;
1096 }
1097 
fs_mgr_update_logical_partition(FstabEntry * entry)1098 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1099     // Logical partitions are specified with a named partition rather than a
1100     // block device, so if the block device is a path, then it has already
1101     // been updated.
1102     if (entry->blk_device[0] == '/') {
1103         return true;
1104     }
1105 
1106     DeviceMapper& dm = DeviceMapper::Instance();
1107     std::string device_name;
1108     if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1109         return false;
1110     }
1111 
1112     entry->blk_device = device_name;
1113     return true;
1114 }
1115 
SupportsCheckpoint(FstabEntry * entry)1116 static bool SupportsCheckpoint(FstabEntry* entry) {
1117     return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1118 }
1119 
1120 class CheckpointManager {
1121   public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false)1122     CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false)
1123         : needs_checkpoint_(needs_checkpoint), metadata_encrypted_(metadata_encrypted) {}
1124 
NeedsCheckpoint()1125     bool NeedsCheckpoint() {
1126         if (needs_checkpoint_ != UNKNOWN) {
1127             return needs_checkpoint_ == YES;
1128         }
1129         if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1130             LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1131             needs_checkpoint_ = NO;
1132         }
1133         return needs_checkpoint_ == YES;
1134     }
1135 
Update(FstabEntry * entry,const std::string & block_device=std::string ())1136     bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1137         if (!SupportsCheckpoint(entry)) {
1138             return true;
1139         }
1140 
1141         if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1142             call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1143         }
1144 
1145         if (!NeedsCheckpoint()) {
1146             return true;
1147         }
1148 
1149         if (!UpdateCheckpointPartition(entry, block_device)) {
1150             LERROR << "Could not set up checkpoint partition, skipping!";
1151             return false;
1152         }
1153 
1154         return true;
1155     }
1156 
Revert(FstabEntry * entry)1157     bool Revert(FstabEntry* entry) {
1158         if (!SupportsCheckpoint(entry)) {
1159             return true;
1160         }
1161 
1162         if (device_map_.find(entry->blk_device) == device_map_.end()) {
1163             return true;
1164         }
1165 
1166         std::string bow_device = entry->blk_device;
1167         entry->blk_device = device_map_[bow_device];
1168         device_map_.erase(bow_device);
1169 
1170         DeviceMapper& dm = DeviceMapper::Instance();
1171         if (!dm.DeleteDevice("bow")) {
1172             PERROR << "Failed to remove bow device";
1173         }
1174 
1175         return true;
1176     }
1177 
1178   private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1179     bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1180         if (entry->fs_mgr_flags.checkpoint_fs) {
1181             if (is_f2fs(entry->fs_type)) {
1182                 entry->fs_checkpoint_opts = ",checkpoint=disable";
1183             } else {
1184                 LERROR << entry->fs_type << " does not implement checkpoints.";
1185             }
1186         } else if (entry->fs_mgr_flags.checkpoint_blk) {
1187             auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1188             if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1189                 unique_fd fd(
1190                         TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1191                 if (fd < 0) {
1192                     PERROR << "Cannot open device " << entry->blk_device;
1193                     return false;
1194                 }
1195 
1196                 uint64_t size = get_block_device_size(fd) / 512;
1197                 if (!size) {
1198                     PERROR << "Cannot get device size";
1199                     return false;
1200                 }
1201 
1202                 // dm-bow will not load if size is not a multiple of 4096
1203                 // rounding down does not hurt, since ext4 will only use full blocks
1204                 size &= ~7;
1205 
1206                 android::dm::DmTable table;
1207                 auto bowTarget =
1208                         std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1209 
1210                 // dm-bow uses the first block as a log record, and relocates the real first block
1211                 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1212                 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1213                 // So if dm-bow's block size, which by default is the block size of the underlying
1214                 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1215                 // fail as it won't be data_unit_size aligned.
1216                 // However, since it is possible there is an already shipping non
1217                 // metadata-encrypted device with smaller blocks, we must not change this for
1218                 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1219                 // v2
1220                 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1221                         "ro.crypto.dm_default_key.options_format.version",
1222                         (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2));
1223                 if (options_format_version > 1) {
1224                     bowTarget->SetBlockSize(4096);
1225                 }
1226 
1227                 if (!table.AddTarget(std::move(bowTarget))) {
1228                     LERROR << "Failed to add bow target";
1229                     return false;
1230                 }
1231 
1232                 DeviceMapper& dm = DeviceMapper::Instance();
1233                 if (!dm.CreateDevice("bow", table)) {
1234                     PERROR << "Failed to create bow device";
1235                     return false;
1236                 }
1237 
1238                 std::string name;
1239                 if (!dm.GetDmDevicePathByName("bow", &name)) {
1240                     PERROR << "Failed to get bow device name";
1241                     return false;
1242                 }
1243 
1244                 device_map_[name] = entry->blk_device;
1245                 entry->blk_device = name;
1246             }
1247         }
1248         return true;
1249     }
1250 
1251     enum { UNKNOWN = -1, NO = 0, YES = 1 };
1252     int needs_checkpoint_;
1253     bool metadata_encrypted_;
1254     std::map<std::string, std::string> device_map_;
1255 };
1256 
fs_mgr_find_bow_device(const std::string & block_device)1257 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1258     if (block_device.substr(0, 5) != "/dev/") {
1259         LOG(ERROR) << "Expected block device, got " << block_device;
1260         return std::string();
1261     }
1262 
1263     std::string sys_dir = std::string("/sys/") + block_device.substr(5);
1264 
1265     for (;;) {
1266         std::string name;
1267         if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1268             PLOG(ERROR) << block_device << " is not dm device";
1269             return std::string();
1270         }
1271 
1272         if (name == "bow\n") return sys_dir;
1273 
1274         std::string slaves = sys_dir + "/slaves";
1275         std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1276         if (!directory) {
1277             PLOG(ERROR) << "Can't open slave directory " << slaves;
1278             return std::string();
1279         }
1280 
1281         int count = 0;
1282         for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1283             if (entry->d_type != DT_LNK) continue;
1284 
1285             if (count == 1) {
1286                 LOG(ERROR) << "Too many slaves in " << slaves;
1287                 return std::string();
1288             }
1289 
1290             ++count;
1291             sys_dir = std::string("/sys/block/") + entry->d_name;
1292         }
1293 
1294         if (count != 1) {
1295             LOG(ERROR) << "No slave in " << slaves;
1296             return std::string();
1297         }
1298     }
1299 }
1300 
1301 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1302 
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1303 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1304     DeviceMapper& dm = DeviceMapper::Instance();
1305     if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1306         // This will report failure for us. If we do fail to get the path,
1307         // we leave the device unwrapped.
1308         dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1309         return;
1310     }
1311 
1312     unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1313     if (fd < 0) {
1314         PLOG(ERROR) << "open failed: " << entry->blk_device;
1315         return;
1316     }
1317 
1318     auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1319     uint64_t sectors = get_block_device_size(fd) / 512;
1320 
1321     android::dm::DmTable table;
1322     table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1323 
1324     std::string dm_path;
1325     if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1326         LOG(ERROR) << "Failed to create userdata wrapper device";
1327         return;
1328     }
1329     entry->blk_device = dm_path;
1330 }
1331 
1332 // When using Virtual A/B, partitions can be backed by /data and mapped with
1333 // device-mapper in first-stage init. This can happen when merging an OTA or
1334 // when using adb remount to house "scratch". In this case, /data cannot be
1335 // mounted directly off the userdata block device, and e2fsck will refuse to
1336 // scan it, because the kernel reports the block device as in-use.
1337 //
1338 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1339 // if the underlying block device already has dependencies. Note that we make
1340 // an exception for metadata-encrypted devices, since dm-default-key is already
1341 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1342 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1343     const auto& block_device =
1344             actual_block_device.empty() ? entry->blk_device : actual_block_device;
1345     if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1346         android::base::StartsWith(block_device, "/dev/block/dm-")) {
1347         return;
1348     }
1349 
1350     struct stat st;
1351     if (stat(block_device.c_str(), &st) < 0) {
1352         PLOG(ERROR) << "stat failed: " << block_device;
1353         return;
1354     }
1355 
1356     std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1357                                                    major(st.st_rdev), minor(st.st_rdev));
1358     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1359     if (!dir) {
1360         PLOG(ERROR) << "opendir failed: " << path;
1361         return;
1362     }
1363 
1364     struct dirent* d;
1365     bool has_holders = false;
1366     while ((d = readdir(dir.get())) != nullptr) {
1367         if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1368             has_holders = true;
1369             break;
1370         }
1371     }
1372 
1373     if (has_holders) {
1374         WrapUserdata(entry, st.st_rdev, block_device);
1375     }
1376 }
1377 
IsMountPointMounted(const std::string & mount_point)1378 static bool IsMountPointMounted(const std::string& mount_point) {
1379     // Check if this is already mounted.
1380     Fstab fstab;
1381     if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1382         return false;
1383     }
1384     return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1385 }
1386 
1387 // When multiple fstab records share the same mount_point, it will try to mount each
1388 // one in turn, and ignore any duplicates after a first successful mount.
1389 // Returns -1 on error, and  FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1390 MountAllResult fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1391     int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1392     int error_count = 0;
1393     CheckpointManager checkpoint_manager;
1394     AvbUniquePtr avb_handle(nullptr);
1395     bool wiped = false;
1396 
1397     bool userdata_mounted = false;
1398     if (fstab->empty()) {
1399         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1400     }
1401 
1402     // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1403     // where top_idx is 0. It will give SIGABRT
1404     for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1405         auto& current_entry = (*fstab)[i];
1406 
1407         // If a filesystem should have been mounted in the first stage, we
1408         // ignore it here. With one exception, if the filesystem is
1409         // formattable, then it can only be formatted in the second stage,
1410         // so we allow it to mount here.
1411         if (current_entry.fs_mgr_flags.first_stage_mount &&
1412             (!current_entry.fs_mgr_flags.formattable ||
1413              IsMountPointMounted(current_entry.mount_point))) {
1414             continue;
1415         }
1416 
1417         // Don't mount entries that are managed by vold or not for the mount mode.
1418         if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1419             ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1420             ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1421             continue;
1422         }
1423 
1424         // Skip swap and raw partition entries such as boot, recovery, etc.
1425         if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1426             current_entry.fs_type == "mtd") {
1427             continue;
1428         }
1429 
1430         // Skip mounting the root partition, as it will already have been mounted.
1431         if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1432             if ((current_entry.flags & MS_RDONLY) != 0) {
1433                 fs_mgr_set_blk_ro(current_entry.blk_device);
1434             }
1435             continue;
1436         }
1437 
1438         // Terrible hack to make it possible to remount /data.
1439         // TODO: refactor fs_mgr_mount_all and get rid of this.
1440         if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1441             continue;
1442         }
1443 
1444         // Translate LABEL= file system labels into block devices.
1445         if (is_extfs(current_entry.fs_type)) {
1446             if (!TranslateExtLabels(&current_entry)) {
1447                 LERROR << "Could not translate label to block device";
1448                 continue;
1449             }
1450         }
1451 
1452         if (current_entry.fs_mgr_flags.logical) {
1453             if (!fs_mgr_update_logical_partition(&current_entry)) {
1454                 LERROR << "Could not set up logical partition, skipping!";
1455                 continue;
1456             }
1457         }
1458 
1459         WrapUserdataIfNeeded(&current_entry);
1460 
1461         if (!checkpoint_manager.Update(&current_entry)) {
1462             continue;
1463         }
1464 
1465         if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1466             LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1467             continue;
1468         }
1469 
1470         if (current_entry.fs_mgr_flags.avb) {
1471             if (!avb_handle) {
1472                 avb_handle = AvbHandle::Open();
1473                 if (!avb_handle) {
1474                     LERROR << "Failed to open AvbHandle";
1475                     set_type_property(encryptable);
1476                     return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1477                 }
1478             }
1479             if (avb_handle->SetUpAvbHashtree(&current_entry, true /* wait_for_verity_dev */) ==
1480                 AvbHashtreeResult::kFail) {
1481                 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1482                        << ", skipping!";
1483                 // Skips mounting the device.
1484                 continue;
1485             }
1486         } else if (!current_entry.avb_keys.empty()) {
1487             if (AvbHandle::SetUpStandaloneAvbHashtree(&current_entry) == AvbHashtreeResult::kFail) {
1488                 LERROR << "Failed to set up AVB on standalone partition: "
1489                        << current_entry.mount_point << ", skipping!";
1490                 // Skips mounting the device.
1491                 continue;
1492             }
1493         }
1494 
1495         int last_idx_inspected;
1496         int top_idx = i;
1497         int attempted_idx = -1;
1498 
1499         bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
1500         auto& attempted_entry = (*fstab)[attempted_idx];
1501         i = last_idx_inspected;
1502         int mount_errno = errno;
1503 
1504         // Handle success and deal with encryptability.
1505         if (mret) {
1506             int status = handle_encryptable(attempted_entry);
1507 
1508             if (status == FS_MGR_MNTALL_FAIL) {
1509                 // Fatal error - no point continuing.
1510                 return {status, userdata_mounted};
1511             }
1512 
1513             if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1514                 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1515                     // Log and continue
1516                     LERROR << "Only one encryptable/encrypted partition supported";
1517                 }
1518                 encryptable = status;
1519                 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1520                     if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1521                                    attempted_entry.mount_point, wiped ? "true" : "false",
1522                                    attempted_entry.fs_type, attempted_entry.zoned_device},
1523                                   nullptr)) {
1524                         LERROR << "Encryption failed";
1525                         set_type_property(encryptable);
1526                         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1527                     }
1528                 }
1529             }
1530 
1531             if (current_entry.mount_point == "/data") {
1532                 userdata_mounted = true;
1533             }
1534             // Success!  Go get the next one.
1535             continue;
1536         }
1537 
1538         // Mounting failed, understand why and retry.
1539         wiped = partition_wiped(current_entry.blk_device.c_str());
1540         if (mount_errno != EBUSY && mount_errno != EACCES &&
1541             current_entry.fs_mgr_flags.formattable && wiped) {
1542             // current_entry and attempted_entry point at the same partition, but sometimes
1543             // at two different lines in the fstab.  Use current_entry for formatting
1544             // as that is the preferred one.
1545             LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1546                    << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
1547                    << " is formattable. Format it.";
1548 
1549             checkpoint_manager.Revert(&current_entry);
1550 
1551             // EncryptInplace will be used when vdc gives an error or needs to format partitions
1552             // other than /data
1553             if (should_use_metadata_encryption(current_entry) &&
1554                 current_entry.mount_point == "/data") {
1555 
1556                 // vdc->Format requires "ro.crypto.type" to set an encryption flag
1557                 encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1558                 set_type_property(encryptable);
1559 
1560                 if (!call_vdc({"cryptfs", "encryptFstab", current_entry.blk_device,
1561                                current_entry.mount_point, "true" /* shouldFormat */,
1562                                current_entry.fs_type, current_entry.zoned_device},
1563                               nullptr)) {
1564                     LERROR << "Encryption failed";
1565                 } else {
1566                     userdata_mounted = true;
1567                     continue;
1568                 }
1569             }
1570 
1571             if (fs_mgr_do_format(current_entry) == 0) {
1572                 // Let's replay the mount actions.
1573                 i = top_idx - 1;
1574                 continue;
1575             } else {
1576                 LERROR << __FUNCTION__ << "(): Format failed. "
1577                        << "Suggest recovery...";
1578                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1579                 continue;
1580             }
1581         }
1582 
1583         // mount(2) returned an error, handle the encryptable/formattable case.
1584         if (mount_errno != EBUSY && mount_errno != EACCES &&
1585             should_use_metadata_encryption(attempted_entry)) {
1586             if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1587                            attempted_entry.mount_point, attempted_entry.zoned_device},
1588                           nullptr)) {
1589                 ++error_count;
1590             } else if (current_entry.mount_point == "/data") {
1591                 userdata_mounted = true;
1592             }
1593             encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1594             continue;
1595         } else {
1596             // fs_options might be null so we cannot use PERROR << directly.
1597             // Use StringPrintf to output "(null)" instead.
1598             if (attempted_entry.fs_mgr_flags.no_fail) {
1599                 PERROR << android::base::StringPrintf(
1600                         "Ignoring failure to mount an un-encryptable or wiped "
1601                         "partition on %s at %s options: %s",
1602                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1603                         attempted_entry.fs_options.c_str());
1604             } else {
1605                 PERROR << android::base::StringPrintf(
1606                         "Failed to mount an un-encryptable or wiped partition "
1607                         "on %s at %s options: %s",
1608                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1609                         attempted_entry.fs_options.c_str());
1610                 ++error_count;
1611             }
1612             continue;
1613         }
1614     }
1615 
1616     set_type_property(encryptable);
1617 
1618 #if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build
1619     fs_mgr_overlayfs_mount_all(fstab);
1620 #endif
1621 
1622     if (error_count) {
1623         return {FS_MGR_MNTALL_FAIL, userdata_mounted};
1624     } else {
1625         return {encryptable, userdata_mounted};
1626     }
1627 }
1628 
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1629 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1630     AvbUniquePtr avb_handle(nullptr);
1631     int ret = FsMgrUmountStatus::SUCCESS;
1632     for (auto& current_entry : *fstab) {
1633         if (!IsMountPointMounted(current_entry.mount_point)) {
1634             continue;
1635         }
1636 
1637         if (umount(current_entry.mount_point.c_str()) == -1) {
1638             PERROR << "Failed to umount " << current_entry.mount_point;
1639             ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1640             continue;
1641         }
1642 
1643         if (current_entry.fs_mgr_flags.logical) {
1644             if (!fs_mgr_update_logical_partition(&current_entry)) {
1645                 LERROR << "Could not get logical partition blk_device, skipping!";
1646                 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1647                 continue;
1648             }
1649         }
1650 
1651         if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1652             if (!AvbHandle::TearDownAvbHashtree(&current_entry, true /* wait */)) {
1653                 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1654                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1655                 continue;
1656             }
1657         }
1658     }
1659     return ret;
1660 }
1661 
GetMillisProperty(const std::string & name,std::chrono::milliseconds default_value)1662 static std::chrono::milliseconds GetMillisProperty(const std::string& name,
1663                                                    std::chrono::milliseconds default_value) {
1664     auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count()));
1665     return std::chrono::milliseconds(std::move(value));
1666 }
1667 
fs_mgr_unmount_all_data_mounts(const std::string & data_block_device)1668 static bool fs_mgr_unmount_all_data_mounts(const std::string& data_block_device) {
1669     LINFO << __FUNCTION__ << "(): about to umount everything on top of " << data_block_device;
1670     Timer t;
1671     auto timeout = GetMillisProperty("init.userspace_reboot.userdata_remount.timeoutmillis", 5s);
1672     while (true) {
1673         bool umount_done = true;
1674         Fstab proc_mounts;
1675         if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1676             LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1677             return false;
1678         }
1679         // Now proceed with other bind mounts on top of /data.
1680         for (const auto& entry : proc_mounts) {
1681             std::string block_device;
1682             if (StartsWith(entry.blk_device, "/dev/block") &&
1683                 !Realpath(entry.blk_device, &block_device)) {
1684                 PWARNING << __FUNCTION__ << "(): failed to realpath " << entry.blk_device;
1685                 block_device = entry.blk_device;
1686             }
1687             if (data_block_device == block_device) {
1688                 if (umount2(entry.mount_point.c_str(), 0) != 0) {
1689                     PERROR << __FUNCTION__ << "(): Failed to umount " << entry.mount_point;
1690                     umount_done = false;
1691                 }
1692             }
1693         }
1694         if (umount_done) {
1695             LINFO << __FUNCTION__ << "(): Unmounting /data took " << t;
1696             return true;
1697         }
1698         if (t.duration() > timeout) {
1699             LERROR << __FUNCTION__ << "(): Timed out unmounting all mounts on "
1700                    << data_block_device;
1701             Fstab remaining_mounts;
1702             if (!ReadFstabFromFile("/proc/mounts", &remaining_mounts)) {
1703                 LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1704             } else {
1705                 LERROR << __FUNCTION__ << "(): Following mounts remaining";
1706                 for (const auto& e : remaining_mounts) {
1707                     LERROR << __FUNCTION__ << "(): mount point: " << e.mount_point
1708                            << " block device: " << e.blk_device;
1709                 }
1710             }
1711             return false;
1712         }
1713         std::this_thread::sleep_for(50ms);
1714     }
1715 }
1716 
UnwindDmDeviceStack(const std::string & block_device,std::vector<std::string> * dm_stack)1717 static bool UnwindDmDeviceStack(const std::string& block_device,
1718                                 std::vector<std::string>* dm_stack) {
1719     if (!StartsWith(block_device, "/dev/block/")) {
1720         LWARNING << block_device << " is not a block device";
1721         return false;
1722     }
1723     std::string current = block_device;
1724     DeviceMapper& dm = DeviceMapper::Instance();
1725     while (true) {
1726         dm_stack->push_back(current);
1727         if (!dm.IsDmBlockDevice(current)) {
1728             break;
1729         }
1730         auto parent = dm.GetParentBlockDeviceByPath(current);
1731         if (!parent) {
1732             return false;
1733         }
1734         current = *parent;
1735     }
1736     return true;
1737 }
1738 
fs_mgr_get_mounted_entry_for_userdata(Fstab * fstab,const std::string & data_block_device)1739 FstabEntry* fs_mgr_get_mounted_entry_for_userdata(Fstab* fstab,
1740                                                   const std::string& data_block_device) {
1741     std::vector<std::string> dm_stack;
1742     if (!UnwindDmDeviceStack(data_block_device, &dm_stack)) {
1743         LERROR << "Failed to unwind dm-device stack for " << data_block_device;
1744         return nullptr;
1745     }
1746     for (auto& entry : *fstab) {
1747         if (entry.mount_point != "/data") {
1748             continue;
1749         }
1750         std::string block_device;
1751         if (entry.fs_mgr_flags.logical) {
1752             if (!fs_mgr_update_logical_partition(&entry)) {
1753                 LERROR << "Failed to update logic partition " << entry.blk_device;
1754                 continue;
1755             }
1756             block_device = entry.blk_device;
1757         } else if (!Realpath(entry.blk_device, &block_device)) {
1758             PWARNING << "Failed to realpath " << entry.blk_device;
1759             block_device = entry.blk_device;
1760         }
1761         if (std::find(dm_stack.begin(), dm_stack.end(), block_device) != dm_stack.end()) {
1762             return &entry;
1763         }
1764     }
1765     LERROR << "Didn't find entry that was used to mount /data onto " << data_block_device;
1766     return nullptr;
1767 }
1768 
1769 // TODO(b/143970043): return different error codes based on which step failed.
fs_mgr_remount_userdata_into_checkpointing(Fstab * fstab)1770 int fs_mgr_remount_userdata_into_checkpointing(Fstab* fstab) {
1771     Fstab proc_mounts;
1772     if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1773         LERROR << "Can't read /proc/mounts";
1774         return -1;
1775     }
1776     auto mounted_entry = GetEntryForMountPoint(&proc_mounts, "/data");
1777     if (mounted_entry == nullptr) {
1778         LERROR << "/data is not mounted";
1779         return -1;
1780     }
1781     std::string block_device;
1782     if (!Realpath(mounted_entry->blk_device, &block_device)) {
1783         PERROR << "Failed to realpath " << mounted_entry->blk_device;
1784         return -1;
1785     }
1786     auto fstab_entry = fs_mgr_get_mounted_entry_for_userdata(fstab, block_device);
1787     if (fstab_entry == nullptr) {
1788         LERROR << "Can't find /data in fstab";
1789         return -1;
1790     }
1791     bool force_umount = GetBoolProperty("sys.init.userdata_remount.force_umount", false);
1792     if (force_umount) {
1793         LINFO << "Will force an umount of userdata even if it's not required";
1794     }
1795     if (!force_umount && !SupportsCheckpoint(fstab_entry)) {
1796         LINFO << "Userdata doesn't support checkpointing. Nothing to do";
1797         return 0;
1798     }
1799     CheckpointManager checkpoint_manager;
1800     if (!force_umount && !checkpoint_manager.NeedsCheckpoint()) {
1801         LINFO << "Checkpointing not needed. Don't remount";
1802         return 0;
1803     }
1804     if (!force_umount && fstab_entry->fs_mgr_flags.checkpoint_fs) {
1805         // Userdata is f2fs, simply remount it.
1806         if (!checkpoint_manager.Update(fstab_entry)) {
1807             LERROR << "Failed to remount userdata in checkpointing mode";
1808             return -1;
1809         }
1810         if (mount(block_device.c_str(), fstab_entry->mount_point.c_str(), "none",
1811                   MS_REMOUNT | fstab_entry->flags, fstab_entry->fs_options.c_str()) != 0) {
1812             PERROR << "Failed to remount userdata in checkpointing mode";
1813             return -1;
1814         }
1815     } else {
1816         LINFO << "Unmounting /data before remounting into checkpointing mode";
1817         if (!fs_mgr_unmount_all_data_mounts(block_device)) {
1818             LERROR << "Failed to umount /data";
1819             return -1;
1820         }
1821         DeviceMapper& dm = DeviceMapper::Instance();
1822         while (dm.IsDmBlockDevice(block_device)) {
1823             auto next_device = dm.GetParentBlockDeviceByPath(block_device);
1824             auto name = dm.GetDmDeviceNameByPath(block_device);
1825             if (!name) {
1826                 LERROR << "Failed to get dm-name for " << block_device;
1827                 return -1;
1828             }
1829             LINFO << "Deleting " << block_device << " named " << *name;
1830             if (!dm.DeleteDevice(*name, 3s)) {
1831                 return -1;
1832             }
1833             if (!next_device) {
1834                 LERROR << "Failed to find parent device for " << block_device;
1835             }
1836             block_device = *next_device;
1837         }
1838         LINFO << "Remounting /data";
1839         // TODO(b/143970043): remove this hack after fs_mgr_mount_all is refactored.
1840         auto result = fs_mgr_mount_all(fstab, MOUNT_MODE_ONLY_USERDATA);
1841         return result.code == FS_MGR_MNTALL_FAIL ? -1 : 0;
1842     }
1843     return 0;
1844 }
1845 
1846 // wrapper to __mount() and expects a fully prepared fstab_rec,
1847 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & alt_mount_point)1848 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) {
1849     // First check the filesystem if requested.
1850     if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1851         LERROR << "Skipping mounting '" << entry.blk_device << "'";
1852     }
1853 
1854     auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point;
1855 
1856     // Run fsck if needed
1857     int ret = prepare_fs_for_mount(entry.blk_device, entry, mount_point);
1858     // Wiped case doesn't require to try __mount below.
1859     if (ret & FS_STAT_INVALID_MAGIC) {
1860       return FS_MGR_DOMNT_FAILED;
1861     }
1862 
1863     ret = __mount(entry.blk_device, mount_point, entry);
1864     if (ret) {
1865       ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1866     }
1867 
1868     return ret;
1869 }
1870 
1871 // If tmp_mount_point is non-null, mount the filesystem there.  This is for the
1872 // tmp mount we do to check the user password
1873 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1874 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount_helper(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,const char * tmp_mount_point,int needs_checkpoint,bool metadata_encrypted)1875 static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
1876                                   const std::string& n_blk_device, const char* tmp_mount_point,
1877                                   int needs_checkpoint, bool metadata_encrypted) {
1878     int mount_errors = 0;
1879     int first_mount_errno = 0;
1880     std::string mount_point;
1881     CheckpointManager checkpoint_manager(needs_checkpoint, metadata_encrypted);
1882     AvbUniquePtr avb_handle(nullptr);
1883 
1884     if (!fstab) {
1885         return FS_MGR_DOMNT_FAILED;
1886     }
1887 
1888     for (auto& fstab_entry : *fstab) {
1889         if (!fs_match(fstab_entry.mount_point, n_name)) {
1890             continue;
1891         }
1892 
1893         // We found our match.
1894         // If this swap or a raw partition, report an error.
1895         if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1896             fstab_entry.fs_type == "mtd") {
1897             LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1898                    << n_blk_device;
1899             return FS_MGR_DOMNT_FAILED;
1900         }
1901 
1902         if (fstab_entry.fs_mgr_flags.logical) {
1903             if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1904                 LERROR << "Could not set up logical partition, skipping!";
1905                 continue;
1906             }
1907         }
1908 
1909         WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1910 
1911         if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1912             LERROR << "Could not set up checkpoint partition, skipping!";
1913             continue;
1914         }
1915 
1916         // First check the filesystem if requested.
1917         if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1918             LERROR << "Skipping mounting '" << n_blk_device << "'";
1919             continue;
1920         }
1921 
1922         // Now mount it where requested */
1923         if (tmp_mount_point) {
1924             mount_point = tmp_mount_point;
1925         } else {
1926             mount_point = fstab_entry.mount_point;
1927         }
1928 
1929         int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point);
1930 
1931         if (fstab_entry.fs_mgr_flags.avb) {
1932             if (!avb_handle) {
1933                 avb_handle = AvbHandle::Open();
1934                 if (!avb_handle) {
1935                     LERROR << "Failed to open AvbHandle";
1936                     return FS_MGR_DOMNT_FAILED;
1937                 }
1938             }
1939             if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1940                 AvbHashtreeResult::kFail) {
1941                 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1942                        << ", skipping!";
1943                 // Skips mounting the device.
1944                 continue;
1945             }
1946         } else if (!fstab_entry.avb_keys.empty()) {
1947             if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1948                 LERROR << "Failed to set up AVB on standalone partition: "
1949                        << fstab_entry.mount_point << ", skipping!";
1950                 // Skips mounting the device.
1951                 continue;
1952             }
1953         }
1954 
1955         int retry_count = 2;
1956         while (retry_count-- > 0) {
1957             if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1958                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1959                 log_fs_stat(fstab_entry.blk_device, fs_stat);
1960                 return FS_MGR_DOMNT_SUCCESS;
1961             } else {
1962                 if (retry_count <= 0) break;  // run check_fs only once
1963                 if (!first_mount_errno) first_mount_errno = errno;
1964                 mount_errors++;
1965                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1966                 // try again after fsck
1967                 check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat);
1968             }
1969         }
1970         log_fs_stat(fstab_entry.blk_device, fs_stat);
1971     }
1972 
1973     // Reach here means the mount attempt fails.
1974     if (mount_errors) {
1975         PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
1976         if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
1977     } else {
1978         // We didn't find a match, say so and return an error.
1979         LERROR << "Cannot find mount point " << n_name << " in fstab";
1980     }
1981     return FS_MGR_DOMNT_FAILED;
1982 }
1983 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point)1984 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
1985     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1, false);
1986 }
1987 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point,bool needs_checkpoint,bool metadata_encrypted)1988 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
1989                     bool needs_checkpoint, bool metadata_encrypted) {
1990     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint,
1991                                   metadata_encrypted);
1992 }
1993 
1994 /*
1995  * mount a tmpfs filesystem at the given point.
1996  * return 0 on success, non-zero on failure.
1997  */
fs_mgr_do_tmpfs_mount(const char * n_name)1998 int fs_mgr_do_tmpfs_mount(const char *n_name)
1999 {
2000     int ret;
2001 
2002     ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
2003                 CRYPTO_TMPFS_OPTIONS);
2004     if (ret < 0) {
2005         LERROR << "Cannot mount tmpfs filesystem at " << n_name;
2006         return -1;
2007     }
2008 
2009     /* Success */
2010     return 0;
2011 }
2012 
ConfigureIoScheduler(const std::string & device_path)2013 static bool ConfigureIoScheduler(const std::string& device_path) {
2014     if (!StartsWith(device_path, "/dev/")) {
2015         LERROR << __func__ << ": invalid argument " << device_path;
2016         return false;
2017     }
2018 
2019     const std::string iosched_path =
2020             StringPrintf("/sys/block/%s/queue/scheduler", Basename(device_path).c_str());
2021     unique_fd iosched_fd(open(iosched_path.c_str(), O_RDWR | O_CLOEXEC));
2022     if (iosched_fd.get() == -1) {
2023         PERROR << __func__ << ": failed to open " << iosched_path;
2024         return false;
2025     }
2026 
2027     // Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support
2028     // 'noop' and 'none'. Kernels v5.0 and later only support 'none'.
2029     static constexpr const std::array<std::string_view, 2> kNoScheduler = {"none", "noop"};
2030 
2031     for (const std::string_view& scheduler : kNoScheduler) {
2032         int ret = write(iosched_fd.get(), scheduler.data(), scheduler.size());
2033         if (ret > 0) {
2034             return true;
2035         }
2036     }
2037 
2038     PERROR << __func__ << ": failed to write to " << iosched_path;
2039     return false;
2040 }
2041 
InstallZramDevice(const std::string & device)2042 static bool InstallZramDevice(const std::string& device) {
2043     if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
2044         PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
2045         return false;
2046     }
2047     LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
2048     return true;
2049 }
2050 
PrepareZramBackingDevice(off64_t size)2051 static bool PrepareZramBackingDevice(off64_t size) {
2052 
2053     constexpr const char* file_path = "/data/per_boot/zram_swap";
2054     if (size == 0) return true;
2055 
2056     // Prepare target path
2057     unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
2058     if (target_fd.get() == -1) {
2059         PERROR << "Cannot open target path: " << file_path;
2060         return false;
2061     }
2062     if (fallocate(target_fd.get(), 0, 0, size) < 0) {
2063         PERROR << "Cannot truncate target path: " << file_path;
2064         return false;
2065     }
2066 
2067     // Allocate loop device and attach it to file_path.
2068     LoopControl loop_control;
2069     std::string loop_device;
2070     if (!loop_control.Attach(target_fd.get(), 5s, &loop_device)) {
2071         return false;
2072     }
2073 
2074     ConfigureIoScheduler(loop_device);
2075 
2076     if (auto ret = ConfigureQueueDepth(loop_device, "/"); !ret.ok()) {
2077         LOG(DEBUG) << "Failed to config queue depth: " << ret.error().message();
2078     }
2079 
2080     // set block size & direct IO
2081     unique_fd loop_fd(TEMP_FAILURE_RETRY(open(loop_device.c_str(), O_RDWR | O_CLOEXEC)));
2082     if (loop_fd.get() == -1) {
2083         PERROR << "Cannot open " << loop_device;
2084         return false;
2085     }
2086     if (!LoopControl::SetAutoClearStatus(loop_fd.get())) {
2087         PERROR << "Failed set LO_FLAGS_AUTOCLEAR for " << loop_device;
2088     }
2089     if (!LoopControl::EnableDirectIo(loop_fd.get())) {
2090         return false;
2091     }
2092 
2093     return InstallZramDevice(loop_device);
2094 }
2095 
fs_mgr_swapon_all(const Fstab & fstab)2096 bool fs_mgr_swapon_all(const Fstab& fstab) {
2097     bool ret = true;
2098     for (const auto& entry : fstab) {
2099         // Skip non-swap entries.
2100         if (entry.fs_type != "swap") {
2101             continue;
2102         }
2103 
2104         if (entry.zram_size > 0) {
2105             if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) {
2106                 LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'";
2107             }
2108             // A zram_size was specified, so we need to configure the
2109             // device.  There is no point in having multiple zram devices
2110             // on a system (all the memory comes from the same pool) so
2111             // we can assume the device number is 0.
2112             if (entry.max_comp_streams >= 0) {
2113                 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2114                         fopen(ZRAM_CONF_MCS, "re"), fclose};
2115                 if (zram_mcs_fp == nullptr) {
2116                     LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2117                     ret = false;
2118                     continue;
2119                 }
2120                 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2121             }
2122 
2123             auto zram_fp =
2124                     std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2125             if (zram_fp == nullptr) {
2126                 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2127                 ret = false;
2128                 continue;
2129             }
2130             fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2131         }
2132 
2133         if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2134             LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2135             ret = false;
2136             continue;
2137         }
2138 
2139         // Initialize the swap area.
2140         const char* mkswap_argv[2] = {
2141                 MKSWAP_BIN,
2142                 entry.blk_device.c_str(),
2143         };
2144         int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2145                                       LOG_KLOG, false, nullptr);
2146         if (err) {
2147             LERROR << "mkswap failed for " << entry.blk_device;
2148             ret = false;
2149             continue;
2150         }
2151 
2152         /* If -1, then no priority was specified in fstab, so don't set
2153          * SWAP_FLAG_PREFER or encode the priority */
2154         int flags = 0;
2155         if (entry.swap_prio >= 0) {
2156             flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2157             flags |= SWAP_FLAG_PREFER;
2158         } else {
2159             flags = 0;
2160         }
2161         err = swapon(entry.blk_device.c_str(), flags);
2162         if (err) {
2163             LERROR << "swapon failed for " << entry.blk_device;
2164             ret = false;
2165         }
2166     }
2167 
2168     return ret;
2169 }
2170 
fs_mgr_is_verity_enabled(const FstabEntry & entry)2171 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2172     if (!entry.fs_mgr_flags.avb) {
2173         return false;
2174     }
2175 
2176     DeviceMapper& dm = DeviceMapper::Instance();
2177 
2178     std::string mount_point = GetVerityDeviceName(entry);
2179     if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2180         return false;
2181     }
2182 
2183     std::vector<DeviceMapper::TargetInfo> table;
2184     if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2185         return false;
2186     }
2187 
2188     auto status = table[0].data.c_str();
2189     if (*status == 'C' || *status == 'V') {
2190         return true;
2191     }
2192 
2193     return false;
2194 }
2195 
fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry & entry)2196 std::optional<HashtreeInfo> fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry& entry) {
2197     if (!entry.fs_mgr_flags.avb) {
2198         return {};
2199     }
2200     DeviceMapper& dm = DeviceMapper::Instance();
2201     std::string device = GetVerityDeviceName(entry);
2202 
2203     std::vector<DeviceMapper::TargetInfo> table;
2204     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2205         return {};
2206     }
2207     for (const auto& target : table) {
2208         if (strcmp(target.spec.target_type, "verity") != 0) {
2209             continue;
2210         }
2211 
2212         // The format is stable for dm-verity version 0 & 1. And the data is expected to have
2213         // the fixed format:
2214         // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks>
2215         // <hash_start_block> <algorithm> <digest> <salt>
2216         // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
2217 
2218         std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n");
2219         if (tokens[0] != "0" && tokens[0] != "1") {
2220             LOG(WARNING) << "Unrecognized device mapper version in " << target.data;
2221         }
2222 
2223         // Hashtree algorithm & root digest are the 8th & 9th token in the output.
2224         return HashtreeInfo{
2225                 .algorithm = android::base::Trim(tokens[7]),
2226                 .root_digest = android::base::Trim(tokens[8]),
2227                 .check_at_most_once = target.data.find("check_at_most_once") != std::string::npos};
2228     }
2229 
2230     return {};
2231 }
2232 
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2233 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2234     auto hashtree_info = fs_mgr_get_hashtree_info(entry);
2235     if (!hashtree_info) return false;
2236     return hashtree_info->check_at_most_once;
2237 }
2238 
fs_mgr_get_super_partition_name(int slot)2239 std::string fs_mgr_get_super_partition_name(int slot) {
2240     // Devices upgrading to dynamic partitions are allowed to specify a super
2241     // partition name. This includes cuttlefish, which is a non-A/B device.
2242     std::string super_partition;
2243     if (fs_mgr_get_boot_config("force_super_partition", &super_partition)) {
2244         return super_partition;
2245     }
2246     if (fs_mgr_get_boot_config("super_partition", &super_partition)) {
2247         if (fs_mgr_get_slot_suffix().empty()) {
2248             return super_partition;
2249         }
2250         std::string suffix;
2251         if (slot == 0) {
2252             suffix = "_a";
2253         } else if (slot == 1) {
2254             suffix = "_b";
2255         } else if (slot == -1) {
2256             suffix = fs_mgr_get_slot_suffix();
2257         }
2258         return super_partition + suffix;
2259     }
2260     return LP_METADATA_DEFAULT_PARTITION_NAME;
2261 }
2262 
fs_mgr_create_canonical_mount_point(const std::string & mount_point)2263 bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) {
2264     auto saved_errno = errno;
2265     auto ok = true;
2266     auto created_mount_point = !mkdir(mount_point.c_str(), 0755);
2267     std::string real_mount_point;
2268     if (!Realpath(mount_point, &real_mount_point)) {
2269         ok = false;
2270         PERROR << "failed to realpath(" << mount_point << ")";
2271     } else if (mount_point != real_mount_point) {
2272         ok = false;
2273         LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> "
2274                << real_mount_point;
2275     }
2276     if (!ok && created_mount_point) {
2277         rmdir(mount_point.c_str());
2278     }
2279     errno = saved_errno;
2280     return ok;
2281 }
2282 
fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry & entry)2283 bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) {
2284     auto overlayfs_valid_result = fs_mgr_overlayfs_valid();
2285     if (overlayfs_valid_result == OverlayfsValidResult::kNotSupported) {
2286         LERROR << __FUNCTION__ << "(): kernel does not support overlayfs";
2287         return false;
2288     }
2289 
2290 #if ALLOW_ADBD_DISABLE_VERITY == 0
2291     // Allowlist the mount point if user build.
2292     static const std::vector<const std::string> kAllowedPaths = {
2293             "/odm",         "/odm_dlkm",   "/oem",    "/product",
2294             "/system_dlkm", "/system_ext", "/vendor", "/vendor_dlkm",
2295     };
2296     static const std::vector<const std::string> kAllowedPrefixes = {
2297             "/mnt/product/",
2298             "/mnt/vendor/",
2299     };
2300     if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(),
2301                      [&entry](const auto& path) -> bool {
2302                          return entry.mount_point == path ||
2303                                 StartsWith(entry.mount_point, path + "/");
2304                      }) &&
2305         std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(),
2306                      [&entry](const auto& prefix) -> bool {
2307                          return entry.mount_point != prefix &&
2308                                 StartsWith(entry.mount_point, prefix);
2309                      })) {
2310         LERROR << __FUNCTION__
2311                << "(): mount point is forbidden on user build: " << entry.mount_point;
2312         return false;
2313     }
2314 #endif  // ALLOW_ADBD_DISABLE_VERITY == 0
2315 
2316     if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) {
2317         return false;
2318     }
2319 
2320     auto lowerdir = entry.lowerdir;
2321     if (entry.fs_mgr_flags.overlayfs_remove_missing_lowerdir) {
2322         bool removed_any = false;
2323         std::vector<std::string> lowerdirs;
2324         for (const auto& dir : android::base::Split(entry.lowerdir, ":")) {
2325             if (access(dir.c_str(), F_OK)) {
2326                 PWARNING << __FUNCTION__ << "(): remove missing lowerdir '" << dir << "'";
2327                 removed_any = true;
2328             } else {
2329                 lowerdirs.push_back(dir);
2330             }
2331         }
2332         if (removed_any) {
2333             lowerdir = android::base::Join(lowerdirs, ":");
2334         }
2335     }
2336 
2337     auto options = "lowerdir=" + lowerdir;
2338     if (overlayfs_valid_result == OverlayfsValidResult::kOverrideCredsRequired) {
2339         options += ",override_creds=off";
2340     }
2341 
2342     // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't
2343     // confuse this with adb remount overlay, whose device name is "overlay".
2344     // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to
2345     // back the filesystem. However the device name would be shown in /proc/mounts.
2346     auto source = "overlay-" + entry.blk_device;
2347     auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," +
2348                   options + ")=";
2349     auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME,
2350                      options.c_str());
2351     if (ret) {
2352         PERROR << report << ret;
2353         return false;
2354     }
2355     LINFO << report << ret;
2356     return true;
2357 }
2358 
fs_mgr_load_verity_state(int * mode)2359 bool fs_mgr_load_verity_state(int* mode) {
2360     // unless otherwise specified, use EIO mode.
2361     *mode = VERITY_MODE_EIO;
2362 
2363     // The bootloader communicates verity mode via the kernel commandline
2364     std::string verity_mode;
2365     if (!fs_mgr_get_boot_config("veritymode", &verity_mode)) {
2366         return false;
2367     }
2368 
2369     if (verity_mode == "enforcing") {
2370         *mode = VERITY_MODE_DEFAULT;
2371     } else if (verity_mode == "logging") {
2372         *mode = VERITY_MODE_LOGGING;
2373     }
2374 
2375     return true;
2376 }
2377 
fs_mgr_filesystem_available(const std::string & filesystem)2378 bool fs_mgr_filesystem_available(const std::string& filesystem) {
2379     std::string filesystems;
2380     if (!android::base::ReadFileToString("/proc/filesystems", &filesystems)) return false;
2381     return filesystems.find("\t" + filesystem + "\n") != std::string::npos;
2382 }
2383 
fs_mgr_get_context(const std::string & mount_point)2384 std::string fs_mgr_get_context(const std::string& mount_point) {
2385     char* ctx = nullptr;
2386     if (getfilecon(mount_point.c_str(), &ctx) == -1) {
2387         PERROR << "getfilecon " << mount_point;
2388         return "";
2389     }
2390 
2391     std::string context(ctx);
2392     free(ctx);
2393     return context;
2394 }
2395 
fs_mgr_overlayfs_valid()2396 OverlayfsValidResult fs_mgr_overlayfs_valid() {
2397     // Overlayfs available in the kernel, and patched for override_creds?
2398     if (access("/sys/module/overlay/parameters/override_creds", F_OK) == 0) {
2399         return OverlayfsValidResult::kOverrideCredsRequired;
2400     }
2401     if (!fs_mgr_filesystem_available("overlay")) {
2402         return OverlayfsValidResult::kNotSupported;
2403     }
2404     struct utsname uts;
2405     if (uname(&uts) == -1) {
2406         return OverlayfsValidResult::kNotSupported;
2407     }
2408     int major, minor;
2409     if (sscanf(uts.release, "%d.%d", &major, &minor) != 2) {
2410         return OverlayfsValidResult::kNotSupported;
2411     }
2412     if (major < 4) {
2413         return OverlayfsValidResult::kOk;
2414     }
2415     if (major > 4) {
2416         return OverlayfsValidResult::kNotSupported;
2417     }
2418     if (minor > 3) {
2419         return OverlayfsValidResult::kNotSupported;
2420     }
2421     return OverlayfsValidResult::kOk;
2422 }
2423