1
2 // This file is part of Eigen, a lightweight C++ template library
3 // for linear algebra.
4 //
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12 #include <cstdlib>
13 #include <cerrno>
14 #include <ctime>
15 #include <iostream>
16 #include <fstream>
17 #include <string>
18 #include <sstream>
19 #include <vector>
20 #include <typeinfo>
21 #include <functional>
22
23 // The following includes of STL headers have to be done _before_ the
24 // definition of macros min() and max(). The reason is that many STL
25 // implementations will not work properly as the min and max symbols collide
26 // with the STL functions std:min() and std::max(). The STL headers may check
27 // for the macro definition of min/max and issue a warning or undefine the
28 // macros.
29 //
30 // Still, Windows defines min() and max() in windef.h as part of the regular
31 // Windows system interfaces and many other Windows APIs depend on these
32 // macros being available. To prevent the macro expansion of min/max and to
33 // make Eigen compatible with the Windows environment all function calls of
34 // std::min() and std::max() have to be written with parenthesis around the
35 // function name.
36 //
37 // All STL headers used by Eigen should be included here. Because main.h is
38 // included before any Eigen header and because the STL headers are guarded
39 // against multiple inclusions, no STL header will see our own min/max macro
40 // definitions.
41 #include <limits>
42 #include <algorithm>
43 // Disable ICC's std::complex operator specializations so we can use our own.
44 #define _OVERRIDE_COMPLEX_SPECIALIZATION_ 1
45 #include <complex>
46 #include <deque>
47 #include <queue>
48 #include <cassert>
49 #include <list>
50 #if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
51 #include <random>
52 #include <chrono>
53 #ifdef EIGEN_USE_THREADS
54 #include <future>
55 #endif
56 #endif
57
58 // Same for cuda_fp16.h
59 #if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
60 // Means the compiler is either nvcc or clang with CUDA enabled
61 #define EIGEN_CUDACC __CUDACC__
62 #endif
63 #if defined(EIGEN_CUDACC)
64 #include <cuda.h>
65 #define EIGEN_CUDA_SDK_VER (CUDA_VERSION * 10)
66 #else
67 #define EIGEN_CUDA_SDK_VER 0
68 #endif
69 #if EIGEN_CUDA_SDK_VER >= 70500
70 #include <cuda_fp16.h>
71 #endif
72
73 // To test that all calls from Eigen code to std::min() and std::max() are
74 // protected by parenthesis against macro expansion, the min()/max() macros
75 // are defined here and any not-parenthesized min/max call will cause a
76 // compiler error.
77 #if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL)
78 //
79 // HIP header files include the following files
80 // <thread>
81 // <regex>
82 // <unordered_map>
83 // which seem to contain not-parenthesized calls to "max"/"min", triggering the following check and causing the compile to fail
84 //
85 // Including those header files before the following macro definition for "min" / "max", only partially resolves the issue
86 // This is because other HIP header files also define "isnan" / "isinf" / "isfinite" functions, which are needed in other
87 // headers.
88 //
89 // So instead choosing to simply disable this check for HIP
90 //
91 #define min(A,B) please_protect_your_min_with_parentheses
92 #define max(A,B) please_protect_your_max_with_parentheses
93 #define isnan(X) please_protect_your_isnan_with_parentheses
94 #define isinf(X) please_protect_your_isinf_with_parentheses
95 #define isfinite(X) please_protect_your_isfinite_with_parentheses
96 #endif
97
98
99 // test possible conflicts
100 struct real {};
101 struct imag {};
102
103 #ifdef M_PI
104 #undef M_PI
105 #endif
106 #define M_PI please_use_EIGEN_PI_instead_of_M_PI
107
108 #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
109 // B0 is defined in POSIX header termios.h
110 #define B0 FORBIDDEN_IDENTIFIER
111 // `I` may be defined by complex.h:
112 #define I FORBIDDEN_IDENTIFIER
113
114 // Unit tests calling Eigen's blas library must preserve the default blocking size
115 // to avoid troubles.
116 #ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
117 #define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
118 #endif
119
120 // shuts down ICC's remark #593: variable "XXX" was set but never used
121 #define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
122
123 #ifdef TEST_ENABLE_TEMPORARY_TRACKING
124
125 static long int nb_temporaries;
126 static long int nb_temporaries_on_assert = -1;
127
on_temporary_creation(long int size)128 inline void on_temporary_creation(long int size) {
129 // here's a great place to set a breakpoint when debugging failures in this test!
130 if(size!=0) nb_temporaries++;
131 if(nb_temporaries_on_assert>0) assert(nb_temporaries<nb_temporaries_on_assert);
132 }
133
134 #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
135
136 #define VERIFY_EVALUATION_COUNT(XPR,N) {\
137 nb_temporaries = 0; \
138 XPR; \
139 if(nb_temporaries!=(N)) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\
140 VERIFY( (#XPR) && nb_temporaries==(N) ); \
141 }
142
143 #endif
144
145 #include "split_test_helper.h"
146
147 #ifdef NDEBUG
148 #undef NDEBUG
149 #endif
150
151 // On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
152 #ifndef DEBUG
153 #define DEBUG
154 #endif
155
156 // bounds integer values for AltiVec
157 #if defined(__ALTIVEC__) || defined(__VSX__)
158 #define EIGEN_MAKING_DOCS
159 #endif
160
161 #define DEFAULT_REPEAT 10
162
163 namespace Eigen
164 {
165 static std::vector<std::string> g_test_stack;
166 // level == 0 <=> abort if test fail
167 // level >= 1 <=> warning message to std::cerr if test fail
168 static int g_test_level = 0;
169 static int g_repeat = 1;
170 static unsigned int g_seed = 0;
171 static bool g_has_set_repeat = false, g_has_set_seed = false;
172
173 class EigenTest
174 {
175 public:
EigenTest()176 EigenTest() : m_func(0) {}
EigenTest(const char * a_name,void (* func)(void))177 EigenTest(const char* a_name, void (*func)(void))
178 : m_name(a_name), m_func(func)
179 {
180 get_registered_tests().push_back(this);
181 }
name()182 const std::string& name() const { return m_name; }
operator()183 void operator()() const { m_func(); }
184
all()185 static const std::vector<EigenTest*>& all() { return get_registered_tests(); }
186 protected:
get_registered_tests()187 static std::vector<EigenTest*>& get_registered_tests()
188 {
189 static std::vector<EigenTest*>* ms_registered_tests = new std::vector<EigenTest*>();
190 return *ms_registered_tests;
191 }
192 std::string m_name;
193 void (*m_func)(void);
194 };
195
196 // Declare and register a test, e.g.:
197 // EIGEN_DECLARE_TEST(mytest) { ... }
198 // will create a function:
199 // void test_mytest() { ... }
200 // that will be automatically called.
201 #define EIGEN_DECLARE_TEST(X) \
202 void EIGEN_CAT(test_,X) (); \
203 static EigenTest EIGEN_CAT(test_handler_,X) (EIGEN_MAKESTRING(X), & EIGEN_CAT(test_,X)); \
204 void EIGEN_CAT(test_,X) ()
205 }
206
207 #define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
208 // #define TRACK while()
209
210 #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
211
212 #if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && !defined(__SYCL_DEVICE_ONLY__)
213 #define EIGEN_EXCEPTIONS
214 #endif
215
216 #ifndef EIGEN_NO_ASSERTION_CHECKING
217
218 namespace Eigen
219 {
220 static const bool should_raise_an_assert = false;
221
222 // Used to avoid to raise two exceptions at a time in which
223 // case the exception is not properly caught.
224 // This may happen when a second exceptions is triggered in a destructor.
225 static bool no_more_assert = false;
226 static bool report_on_cerr_on_assert_failure = true;
227
228 struct eigen_assert_exception
229 {
eigen_assert_exceptioneigen_assert_exception230 eigen_assert_exception(void) {}
~eigen_assert_exceptioneigen_assert_exception231 ~eigen_assert_exception() { Eigen::no_more_assert = false; }
232 };
233
234 struct eigen_static_assert_exception
235 {
eigen_static_assert_exceptioneigen_static_assert_exception236 eigen_static_assert_exception(void) {}
~eigen_static_assert_exceptioneigen_static_assert_exception237 ~eigen_static_assert_exception() { Eigen::no_more_assert = false; }
238 };
239 }
240 // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
241 // one should have been, then the list of executed assertions is printed out.
242 //
243 // EIGEN_DEBUG_ASSERTS is not enabled by default as it
244 // significantly increases the compilation time
245 // and might even introduce side effects that would hide
246 // some memory errors.
247 #ifdef EIGEN_DEBUG_ASSERTS
248
249 namespace Eigen
250 {
251 namespace internal
252 {
253 static bool push_assert = false;
254 }
255 static std::vector<std::string> eigen_assert_list;
256 }
257 #define eigen_assert(a) \
258 if( (!(a)) && (!no_more_assert) ) \
259 { \
260 if(report_on_cerr_on_assert_failure) \
261 std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
262 Eigen::no_more_assert = true; \
263 EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
264 } \
265 else if (Eigen::internal::push_assert) \
266 { \
267 eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING(__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a) ); \
268 }
269
270 #ifdef EIGEN_EXCEPTIONS
271 #define VERIFY_RAISES_ASSERT(a) \
272 { \
273 Eigen::no_more_assert = false; \
274 Eigen::eigen_assert_list.clear(); \
275 Eigen::internal::push_assert = true; \
276 Eigen::report_on_cerr_on_assert_failure = false; \
277 try { \
278 a; \
279 std::cerr << "One of the following asserts should have been triggered:\n"; \
280 for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \
281 std::cerr << " " << eigen_assert_list[ai] << "\n"; \
282 VERIFY(Eigen::should_raise_an_assert && # a); \
283 } catch (Eigen::eigen_assert_exception) { \
284 Eigen::internal::push_assert = false; VERIFY(true); \
285 } \
286 Eigen::report_on_cerr_on_assert_failure = true; \
287 Eigen::internal::push_assert = false; \
288 }
289 #endif //EIGEN_EXCEPTIONS
290
291 #elif !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY) // EIGEN_DEBUG_ASSERTS
292 // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
293 #define eigen_assert(a) \
294 if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
295 { \
296 Eigen::no_more_assert = true; \
297 if(report_on_cerr_on_assert_failure) \
298 eigen_plain_assert(a); \
299 else \
300 EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
301 }
302
303 #ifdef EIGEN_EXCEPTIONS
304 #define VERIFY_RAISES_ASSERT(a) { \
305 Eigen::no_more_assert = false; \
306 Eigen::report_on_cerr_on_assert_failure = false; \
307 try { \
308 a; \
309 VERIFY(Eigen::should_raise_an_assert && # a); \
310 } \
311 catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \
312 Eigen::report_on_cerr_on_assert_failure = true; \
313 }
314 #endif // EIGEN_EXCEPTIONS
315 #endif // EIGEN_DEBUG_ASSERTS
316
317 #if defined(TEST_CHECK_STATIC_ASSERTIONS) && defined(EIGEN_EXCEPTIONS)
318 #define EIGEN_STATIC_ASSERT(a,MSG) \
319 if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
320 { \
321 Eigen::no_more_assert = true; \
322 if(report_on_cerr_on_assert_failure) \
323 eigen_plain_assert((a) && #MSG); \
324 else \
325 EIGEN_THROW_X(Eigen::eigen_static_assert_exception()); \
326 }
327 #define VERIFY_RAISES_STATIC_ASSERT(a) { \
328 Eigen::no_more_assert = false; \
329 Eigen::report_on_cerr_on_assert_failure = false; \
330 try { \
331 a; \
332 VERIFY(Eigen::should_raise_an_assert && # a); \
333 } \
334 catch (Eigen::eigen_static_assert_exception&) { VERIFY(true); } \
335 Eigen::report_on_cerr_on_assert_failure = true; \
336 }
337 #endif // TEST_CHECK_STATIC_ASSERTIONS
338
339 #ifndef VERIFY_RAISES_ASSERT
340 #define VERIFY_RAISES_ASSERT(a) \
341 std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n";
342 #endif
343 #ifndef VERIFY_RAISES_STATIC_ASSERT
344 #define VERIFY_RAISES_STATIC_ASSERT(a) \
345 std::cout << "Can't VERIFY_RAISES_STATIC_ASSERT( " #a " ) with exceptions disabled\n";
346 #endif
347
348 #if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY)
349 #define EIGEN_USE_CUSTOM_ASSERT
350 #endif
351
352 #else // EIGEN_NO_ASSERTION_CHECKING
353
354 #define VERIFY_RAISES_ASSERT(a) {}
355 #define VERIFY_RAISES_STATIC_ASSERT(a) {}
356
357 #endif // EIGEN_NO_ASSERTION_CHECKING
358
359 #define EIGEN_INTERNAL_DEBUGGING
360 #include <Eigen/QR> // required for createRandomPIMatrixOfRank
361
verify_impl(bool condition,const char * testname,const char * file,int line,const char * condition_as_string)362 inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
363 {
364 if (!condition)
365 {
366 if(Eigen::g_test_level>0)
367 std::cerr << "WARNING: ";
368 std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
369 << std::endl << " " << condition_as_string << std::endl;
370 std::cerr << "Stack:\n";
371 const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
372 for(int i=test_stack_size-1; i>=0; --i)
373 std::cerr << " - " << Eigen::g_test_stack[i] << "\n";
374 std::cerr << "\n";
375 if(Eigen::g_test_level==0)
376 abort();
377 }
378 }
379
380 #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a))
381
382 #define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a >= b))
383 #define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a <= b))
384
385
386 #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true))
387 #define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false))
388 #define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b))
389 #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
390 #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
391 #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
392 #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
393 #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
394
395 #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
396
397 #define STATIC_CHECK(COND) EIGEN_STATIC_ASSERT( (COND) , EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT )
398
399 #define CALL_SUBTEST(FUNC) do { \
400 g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \
401 FUNC; \
402 g_test_stack.pop_back(); \
403 } while (0)
404
405
406 namespace Eigen {
407
408 template<typename T1,typename T2>
409 typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type
is_same_type(const T1 &,const T2 &)410 is_same_type(const T1&, const T2&)
411 {
412 return true;
413 }
414
test_precision()415 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
416 template<> inline float test_precision<float>() { return 1e-3f; }
417 template<> inline double test_precision<double>() { return 1e-6; }
418 template<> inline long double test_precision<long double>() { return 1e-6l; }
419 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
420 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
421 template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); }
422
423 #define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \
424 inline bool test_isApprox(TYPE a, TYPE b) \
425 { return internal::isApprox(a, b, test_precision<TYPE>()); } \
426 inline bool test_isMuchSmallerThan(TYPE a, TYPE b) \
427 { return internal::isMuchSmallerThan(a, b, test_precision<TYPE>()); } \
428 inline bool test_isApproxOrLessThan(TYPE a, TYPE b) \
429 { return internal::isApproxOrLessThan(a, b, test_precision<TYPE>()); }
430
431 EIGEN_TEST_SCALAR_TEST_OVERLOAD(short)
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short)432 EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short)
433 EIGEN_TEST_SCALAR_TEST_OVERLOAD(int)
434 EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int)
435 EIGEN_TEST_SCALAR_TEST_OVERLOAD(long)
436 EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long)
437 #if EIGEN_HAS_CXX11
438 EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long)
439 EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long)
440 #endif
441 EIGEN_TEST_SCALAR_TEST_OVERLOAD(float)
442 EIGEN_TEST_SCALAR_TEST_OVERLOAD(double)
443 EIGEN_TEST_SCALAR_TEST_OVERLOAD(half)
444 EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16)
445
446 #undef EIGEN_TEST_SCALAR_TEST_OVERLOAD
447
448 #ifndef EIGEN_TEST_NO_COMPLEX
449 inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
450 { return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
test_isMuchSmallerThan(const std::complex<float> & a,const std::complex<float> & b)451 inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
452 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
453
test_isApprox(const std::complex<double> & a,const std::complex<double> & b)454 inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
455 { return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
test_isMuchSmallerThan(const std::complex<double> & a,const std::complex<double> & b)456 inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
457 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
458
459 #ifndef EIGEN_TEST_NO_LONGDOUBLE
test_isApprox(const std::complex<long double> & a,const std::complex<long double> & b)460 inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b)
461 { return internal::isApprox(a, b, test_precision<std::complex<long double> >()); }
test_isMuchSmallerThan(const std::complex<long double> & a,const std::complex<long double> & b)462 inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b)
463 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); }
464 #endif
465 #endif
466
467 #ifndef EIGEN_TEST_NO_LONGDOUBLE
test_isApprox(const long double & a,const long double & b)468 inline bool test_isApprox(const long double& a, const long double& b)
469 {
470 bool ret = internal::isApprox(a, b, test_precision<long double>());
471 if (!ret) std::cerr
472 << std::endl << " actual = " << a
473 << std::endl << " expected = " << b << std::endl << std::endl;
474 return ret;
475 }
476
test_isMuchSmallerThan(const long double & a,const long double & b)477 inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
478 { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
test_isApproxOrLessThan(const long double & a,const long double & b)479 inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
480 { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
481 #endif // EIGEN_TEST_NO_LONGDOUBLE
482
483 // test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox.
484 template<typename T1,typename T2>
test_relative_error(const EigenBase<T1> & a,const EigenBase<T2> & b)485 typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b)
486 {
487 using std::sqrt;
488 typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar;
489 typename internal::nested_eval<T1,2>::type ea(a.derived());
490 typename internal::nested_eval<T2,2>::type eb(b.derived());
491 return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum())));
492 }
493
494 template<typename T1,typename T2>
495 typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0)
496 {
497 return test_relative_error(a.coeffs(), b.coeffs());
498 }
499
500 template<typename T1,typename T2>
501 typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0)
502 {
503 return test_relative_error(a.matrix(), b.matrix());
504 }
505
506 template<typename S, int D>
test_relative_error(const Translation<S,D> & a,const Translation<S,D> & b)507 S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b)
508 {
509 return test_relative_error(a.vector(), b.vector());
510 }
511
512 template <typename S, int D, int O>
test_relative_error(const ParametrizedLine<S,D,O> & a,const ParametrizedLine<S,D,O> & b)513 S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b)
514 {
515 return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin()));
516 }
517
518 template <typename S, int D>
test_relative_error(const AlignedBox<S,D> & a,const AlignedBox<S,D> & b)519 S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b)
520 {
521 return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)()));
522 }
523
524 template<typename Derived> class SparseMatrixBase;
525 template<typename T1,typename T2>
test_relative_error(const MatrixBase<T1> & a,const SparseMatrixBase<T2> & b)526 typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
527 {
528 return test_relative_error(a,b.toDense());
529 }
530
531 template<typename Derived> class SparseMatrixBase;
532 template<typename T1,typename T2>
test_relative_error(const SparseMatrixBase<T1> & a,const MatrixBase<T2> & b)533 typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b)
534 {
535 return test_relative_error(a.toDense(),b);
536 }
537
538 template<typename Derived> class SparseMatrixBase;
539 template<typename T1,typename T2>
test_relative_error(const SparseMatrixBase<T1> & a,const SparseMatrixBase<T2> & b)540 typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b)
541 {
542 return test_relative_error(a.toDense(),b.toDense());
543 }
544
545 template<typename T1,typename T2>
546 typename NumTraits<typename NumTraits<T1>::Real>::NonInteger test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0)
547 {
548 typedef typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar;
549 return numext::sqrt(RealScalar(numext::abs2(a-b))/(numext::mini)(RealScalar(numext::abs2(a)),RealScalar(numext::abs2(b))));
550 }
551
552 template<typename T>
test_relative_error(const Rotation2D<T> & a,const Rotation2D<T> & b)553 T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b)
554 {
555 return test_relative_error(a.angle(), b.angle());
556 }
557
558 template<typename T>
test_relative_error(const AngleAxis<T> & a,const AngleAxis<T> & b)559 T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b)
560 {
561 return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis()));
562 }
563
564 template<typename Type1, typename Type2>
565 inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
566 {
567 return a.isApprox(b, test_precision<typename Type1::Scalar>());
568 }
569
570 // get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions
571 template<typename T>
572 typename NumTraits<typename T::Scalar>::Real get_test_precision(const T&, const typename T::Scalar* = 0)
573 {
574 return test_precision<typename NumTraits<typename T::Scalar>::Real>();
575 }
576
577 template<typename T>
578 typename NumTraits<T>::Real get_test_precision(const T&,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0)
579 {
580 return test_precision<typename NumTraits<T>::Real>();
581 }
582
583 // verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails.
584 template<typename Type1, typename Type2>
verifyIsApprox(const Type1 & a,const Type2 & b)585 inline bool verifyIsApprox(const Type1& a, const Type2& b)
586 {
587 bool ret = test_isApprox(a,b);
588 if(!ret)
589 {
590 std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a,b) << std::endl;
591 }
592 return ret;
593 }
594
595 // The idea behind this function is to compare the two scalars a and b where
596 // the scalar ref is a hint about the expected order of magnitude of a and b.
597 // WARNING: the scalar a and b must be positive
598 // Therefore, if for some reason a and b are very small compared to ref,
599 // we won't issue a false negative.
600 // This test could be: abs(a-b) <= eps * ref
601 // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
602 template<typename Scalar,typename ScalarRef>
test_isApproxWithRef(const Scalar & a,const Scalar & b,const ScalarRef & ref)603 inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
604 {
605 return test_isApprox(a+ref, b+ref);
606 }
607
608 template<typename Derived1, typename Derived2>
test_isMuchSmallerThan(const MatrixBase<Derived1> & m1,const MatrixBase<Derived2> & m2)609 inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
610 const MatrixBase<Derived2>& m2)
611 {
612 return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
613 }
614
615 template<typename Derived>
test_isMuchSmallerThan(const MatrixBase<Derived> & m,const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real & s)616 inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
617 const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
618 {
619 return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
620 }
621
622 template<typename Derived>
test_isUnitary(const MatrixBase<Derived> & m)623 inline bool test_isUnitary(const MatrixBase<Derived>& m)
624 {
625 return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
626 }
627
628 // Forward declaration to avoid ICC warning
629 template<typename T, typename U>
630 bool test_is_equal(const T& actual, const U& expected, bool expect_equal=true);
631
632 template<typename T, typename U>
test_is_equal(const T & actual,const U & expected,bool expect_equal)633 bool test_is_equal(const T& actual, const U& expected, bool expect_equal)
634 {
635 if ((actual==expected) == expect_equal)
636 return true;
637 // false:
638 std::cerr
639 << "\n actual = " << actual
640 << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n";
641 return false;
642 }
643
644 /** Creates a random Partial Isometry matrix of given rank.
645 *
646 * A partial isometry is a matrix all of whose singular values are either 0 or 1.
647 * This is very useful to test rank-revealing algorithms.
648 */
649 // Forward declaration to avoid ICC warning
650 template<typename MatrixType>
651 void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m);
652 template<typename MatrixType>
createRandomPIMatrixOfRank(Index desired_rank,Index rows,Index cols,MatrixType & m)653 void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m)
654 {
655 typedef typename internal::traits<MatrixType>::Scalar Scalar;
656 enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
657
658 typedef Matrix<Scalar, Dynamic, 1> VectorType;
659 typedef Matrix<Scalar, Rows, Rows> MatrixAType;
660 typedef Matrix<Scalar, Cols, Cols> MatrixBType;
661
662 if(desired_rank == 0)
663 {
664 m.setZero(rows,cols);
665 return;
666 }
667
668 if(desired_rank == 1)
669 {
670 // here we normalize the vectors to get a partial isometry
671 m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
672 return;
673 }
674
675 MatrixAType a = MatrixAType::Random(rows,rows);
676 MatrixType d = MatrixType::Identity(rows,cols);
677 MatrixBType b = MatrixBType::Random(cols,cols);
678
679 // set the diagonal such that only desired_rank non-zero entries reamain
680 const Index diag_size = (std::min)(d.rows(),d.cols());
681 if(diag_size != desired_rank)
682 d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
683
684 HouseholderQR<MatrixAType> qra(a);
685 HouseholderQR<MatrixBType> qrb(b);
686 m = qra.householderQ() * d * qrb.householderQ();
687 }
688
689 // Forward declaration to avoid ICC warning
690 template<typename PermutationVectorType>
691 void randomPermutationVector(PermutationVectorType& v, Index size);
692 template<typename PermutationVectorType>
randomPermutationVector(PermutationVectorType & v,Index size)693 void randomPermutationVector(PermutationVectorType& v, Index size)
694 {
695 typedef typename PermutationVectorType::Scalar Scalar;
696 v.resize(size);
697 for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
698 if(size == 1) return;
699 for(Index n = 0; n < 3 * size; ++n)
700 {
701 Index i = internal::random<Index>(0, size-1);
702 Index j;
703 do j = internal::random<Index>(0, size-1); while(j==i);
704 std::swap(v(i), v(j));
705 }
706 }
707
isNotNaN(const T & x)708 template<typename T> bool isNotNaN(const T& x)
709 {
710 return x==x;
711 }
712
isPlusInf(const T & x)713 template<typename T> bool isPlusInf(const T& x)
714 {
715 return x > NumTraits<T>::highest();
716 }
717
isMinusInf(const T & x)718 template<typename T> bool isMinusInf(const T& x)
719 {
720 return x < NumTraits<T>::lowest();
721 }
722
723 } // end namespace Eigen
724
725 template<typename T> struct GetDifferentType;
726
727 template<> struct GetDifferentType<float> { typedef double type; };
728 template<> struct GetDifferentType<double> { typedef float type; };
729 template<typename T> struct GetDifferentType<std::complex<T> >
730 { typedef std::complex<typename GetDifferentType<T>::type> type; };
731
732 // Forward declaration to avoid ICC warning
733 template<typename T> std::string type_name();
734 template<typename T> std::string type_name() { return "other"; }
735 template<> std::string type_name<float>() { return "float"; }
736 template<> std::string type_name<double>() { return "double"; }
737 template<> std::string type_name<long double>() { return "long double"; }
738 template<> std::string type_name<int>() { return "int"; }
739 template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
740 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
741 template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; }
742 template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
743
744 using namespace Eigen;
745
746 inline void set_repeat_from_string(const char *str)
747 {
748 errno = 0;
749 g_repeat = int(strtoul(str, 0, 10));
750 if(errno || g_repeat <= 0)
751 {
752 std::cout << "Invalid repeat value " << str << std::endl;
753 exit(EXIT_FAILURE);
754 }
755 g_has_set_repeat = true;
756 }
757
758 inline void set_seed_from_string(const char *str)
759 {
760 errno = 0;
761 g_seed = int(strtoul(str, 0, 10));
762 if(errno || g_seed == 0)
763 {
764 std::cout << "Invalid seed value " << str << std::endl;
765 exit(EXIT_FAILURE);
766 }
767 g_has_set_seed = true;
768 }
769
770 int main(int argc, char *argv[])
771 {
772 g_has_set_repeat = false;
773 g_has_set_seed = false;
774 bool need_help = false;
775
776 for(int i = 1; i < argc; i++)
777 {
778 if(argv[i][0] == 'r')
779 {
780 if(g_has_set_repeat)
781 {
782 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
783 return 1;
784 }
785 set_repeat_from_string(argv[i]+1);
786 }
787 else if(argv[i][0] == 's')
788 {
789 if(g_has_set_seed)
790 {
791 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
792 return 1;
793 }
794 set_seed_from_string(argv[i]+1);
795 }
796 else
797 {
798 need_help = true;
799 }
800 }
801
802 if(need_help)
803 {
804 std::cout << "This test application takes the following optional arguments:" << std::endl;
805 std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
806 std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
807 std::cout << std::endl;
808 std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
809 std::cout << "will be used as default values for these parameters." << std::endl;
810 return 1;
811 }
812
813 char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
814 if(!g_has_set_repeat && env_EIGEN_REPEAT)
815 set_repeat_from_string(env_EIGEN_REPEAT);
816 char *env_EIGEN_SEED = getenv("EIGEN_SEED");
817 if(!g_has_set_seed && env_EIGEN_SEED)
818 set_seed_from_string(env_EIGEN_SEED);
819
820 if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
821 if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
822
823 std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
824 std::stringstream ss;
825 ss << "Seed: " << g_seed;
826 g_test_stack.push_back(ss.str());
827 srand(g_seed);
828 std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
829
830 VERIFY(EigenTest::all().size()>0);
831
832 for(std::size_t i=0; i<EigenTest::all().size(); ++i)
833 {
834 const EigenTest& current_test = *EigenTest::all()[i];
835 Eigen::g_test_stack.push_back(current_test.name());
836 current_test();
837 Eigen::g_test_stack.pop_back();
838 }
839
840 return 0;
841 }
842
843 // These warning are disabled here such that they are still ON when parsing Eigen's header files.
844 #if defined __INTEL_COMPILER
845 // remark #383: value copied to temporary, reference to temporary used
846 // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
847 // remark #1418: external function definition with no prior declaration
848 // -> this warning is raised for all our test functions. Declaring them static would fix the issue.
849 // warning #279: controlling expression is constant
850 // remark #1572: floating-point equality and inequality comparisons are unreliable
851 #pragma warning disable 279 383 1418 1572
852 #endif
853
854 #ifdef _MSC_VER
855 // 4503 - decorated name length exceeded, name was truncated
856 #pragma warning( disable : 4503)
857 #endif
858