• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! This module implements safe wrappers for some crypto operations required by
16 //! Keystore 2.0.
17 
18 mod error;
19 pub mod zvec;
20 pub use error::Error;
21 use keystore2_crypto_bindgen::{
22     extractSubjectFromCertificate, generateKeyFromPassword, hmacSha256, randomBytes,
23     AES_gcm_decrypt, AES_gcm_encrypt, ECDHComputeKey, ECKEYGenerateKey, ECKEYMarshalPrivateKey,
24     ECKEYParsePrivateKey, ECPOINTOct2Point, ECPOINTPoint2Oct, EC_KEY_free, EC_KEY_get0_public_key,
25     EC_POINT_free, HKDFExpand, HKDFExtract, EC_KEY, EC_MAX_BYTES, EC_POINT, EVP_MAX_MD_SIZE,
26 };
27 use std::convert::TryFrom;
28 use std::convert::TryInto;
29 use std::marker::PhantomData;
30 pub use zvec::ZVec;
31 
32 /// Length of the expected initialization vector.
33 pub const GCM_IV_LENGTH: usize = 12;
34 /// Length of the expected AEAD TAG.
35 pub const TAG_LENGTH: usize = 16;
36 /// Length of an AES 256 key in bytes.
37 pub const AES_256_KEY_LENGTH: usize = 32;
38 /// Length of an AES 128 key in bytes.
39 pub const AES_128_KEY_LENGTH: usize = 16;
40 /// Length of the expected salt for key from password generation.
41 pub const SALT_LENGTH: usize = 16;
42 /// Length of an HMAC-SHA256 tag in bytes.
43 pub const HMAC_SHA256_LEN: usize = 32;
44 
45 /// Older versions of keystore produced IVs with four extra
46 /// ignored zero bytes at the end; recognise and trim those.
47 pub const LEGACY_IV_LENGTH: usize = 16;
48 
49 /// Generate an AES256 key, essentially 32 random bytes from the underlying
50 /// boringssl library discretely stuffed into a ZVec.
generate_aes256_key() -> Result<ZVec, Error>51 pub fn generate_aes256_key() -> Result<ZVec, Error> {
52     // Safety: key has the same length as the requested number of random bytes.
53     let mut key = ZVec::new(AES_256_KEY_LENGTH)?;
54     if unsafe { randomBytes(key.as_mut_ptr(), AES_256_KEY_LENGTH) } {
55         Ok(key)
56     } else {
57         Err(Error::RandomNumberGenerationFailed)
58     }
59 }
60 
61 /// Generate a salt.
generate_salt() -> Result<Vec<u8>, Error>62 pub fn generate_salt() -> Result<Vec<u8>, Error> {
63     generate_random_data(SALT_LENGTH)
64 }
65 
66 /// Generate random data of the given size.
generate_random_data(size: usize) -> Result<Vec<u8>, Error>67 pub fn generate_random_data(size: usize) -> Result<Vec<u8>, Error> {
68     // Safety: data has the same length as the requested number of random bytes.
69     let mut data = vec![0; size];
70     if unsafe { randomBytes(data.as_mut_ptr(), size) } {
71         Ok(data)
72     } else {
73         Err(Error::RandomNumberGenerationFailed)
74     }
75 }
76 
77 /// Perform HMAC-SHA256.
hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error>78 pub fn hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error> {
79     let mut tag = vec![0; HMAC_SHA256_LEN];
80     // Safety: The first two pairs of arguments must point to const buffers with
81     // size given by the second arg of the pair.  The final pair of arguments
82     // must point to an output buffer with size given by the second arg of the
83     // pair.
84     match unsafe {
85         hmacSha256(key.as_ptr(), key.len(), msg.as_ptr(), msg.len(), tag.as_mut_ptr(), tag.len())
86     } {
87         true => Ok(tag),
88         false => Err(Error::HmacSha256Failed),
89     }
90 }
91 
92 /// Uses AES GCM to decipher a message given an initialization vector, aead tag, and key.
93 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based
94 /// on the key length.
95 /// This function returns the plaintext message in a ZVec because it is assumed that
96 /// it contains sensitive information that should be zeroed from memory before its buffer is
97 /// freed. Input key is taken as a slice for flexibility, but it is recommended that it is held
98 /// in a ZVec as well.
aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error>99 pub fn aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error> {
100     // Old versions of aes_gcm_encrypt produced 16 byte IVs, but the last four bytes were ignored
101     // so trim these to the correct size.
102     let iv = match iv.len() {
103         GCM_IV_LENGTH => iv,
104         LEGACY_IV_LENGTH => &iv[..GCM_IV_LENGTH],
105         _ => return Err(Error::InvalidIvLength),
106     };
107     if tag.len() != TAG_LENGTH {
108         return Err(Error::InvalidAeadTagLength);
109     }
110 
111     match key.len() {
112         AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
113         _ => return Err(Error::InvalidKeyLength),
114     }
115 
116     let mut result = ZVec::new(data.len())?;
117 
118     // Safety: The first two arguments must point to buffers with a size given by the third
119     // argument. We pass the length of the key buffer along with the key.
120     // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
121     match unsafe {
122         AES_gcm_decrypt(
123             data.as_ptr(),
124             result.as_mut_ptr(),
125             data.len(),
126             key.as_ptr(),
127             key.len(),
128             iv.as_ptr(),
129             tag.as_ptr(),
130         )
131     } {
132         true => Ok(result),
133         false => Err(Error::DecryptionFailed),
134     }
135 }
136 
137 /// Uses AES GCM to encrypt a message given a key.
138 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based on
139 /// the key length. The function generates an initialization vector. The return value is a tuple
140 /// of `(ciphertext, iv, tag)`.
aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error>141 pub fn aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
142     let mut iv = vec![0; GCM_IV_LENGTH];
143     // Safety: iv is GCM_IV_LENGTH bytes long.
144     if !unsafe { randomBytes(iv.as_mut_ptr(), GCM_IV_LENGTH) } {
145         return Err(Error::RandomNumberGenerationFailed);
146     }
147 
148     match key.len() {
149         AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
150         _ => return Err(Error::InvalidKeyLength),
151     }
152 
153     let mut ciphertext: Vec<u8> = vec![0; plaintext.len()];
154     let mut tag: Vec<u8> = vec![0; TAG_LENGTH];
155     // Safety: The first two arguments must point to buffers with a size given by the third
156     // argument. We pass the length of the key buffer along with the key.
157     // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
158     if unsafe {
159         AES_gcm_encrypt(
160             plaintext.as_ptr(),
161             ciphertext.as_mut_ptr(),
162             plaintext.len(),
163             key.as_ptr(),
164             key.len(),
165             iv.as_ptr(),
166             tag.as_mut_ptr(),
167         )
168     } {
169         Ok((ciphertext, iv, tag))
170     } else {
171         Err(Error::EncryptionFailed)
172     }
173 }
174 
175 /// Represents a "password" that can be used to key the PBKDF2 algorithm.
176 pub enum Password<'a> {
177     /// Borrow an existing byte array
178     Ref(&'a [u8]),
179     /// Use an owned ZVec to store the key
180     Owned(ZVec),
181 }
182 
183 impl<'a> From<&'a [u8]> for Password<'a> {
from(pw: &'a [u8]) -> Self184     fn from(pw: &'a [u8]) -> Self {
185         Self::Ref(pw)
186     }
187 }
188 
189 impl<'a> Password<'a> {
get_key(&'a self) -> &'a [u8]190     fn get_key(&'a self) -> &'a [u8] {
191         match self {
192             Self::Ref(b) => b,
193             Self::Owned(z) => z,
194         }
195     }
196 
197     /// Generate a key from the given password and salt.
198     /// The salt must be exactly 16 bytes long.
199     /// Two key sizes are accepted: 16 and 32 bytes.
derive_key(&self, salt: &[u8], key_length: usize) -> Result<ZVec, Error>200     pub fn derive_key(&self, salt: &[u8], key_length: usize) -> Result<ZVec, Error> {
201         if salt.len() != SALT_LENGTH {
202             return Err(Error::InvalidSaltLength);
203         }
204         match key_length {
205             AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
206             _ => return Err(Error::InvalidKeyLength),
207         }
208 
209         let pw = self.get_key();
210         let mut result = ZVec::new(key_length)?;
211 
212         unsafe {
213             generateKeyFromPassword(
214                 result.as_mut_ptr(),
215                 result.len(),
216                 pw.as_ptr() as *const std::os::raw::c_char,
217                 pw.len(),
218                 salt.as_ptr(),
219             )
220         };
221 
222         Ok(result)
223     }
224 
225     /// Try to make another Password object with the same data.
try_clone(&self) -> Result<Password<'static>, Error>226     pub fn try_clone(&self) -> Result<Password<'static>, Error> {
227         Ok(Password::Owned(ZVec::try_from(self.get_key())?))
228     }
229 }
230 
231 /// Calls the boringssl HKDF_extract function.
hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error>232 pub fn hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error> {
233     let max_size: usize = EVP_MAX_MD_SIZE.try_into().unwrap();
234     let mut buf = ZVec::new(max_size)?;
235     let mut out_len = 0;
236     // Safety: HKDF_extract writes at most EVP_MAX_MD_SIZE bytes.
237     // Secret and salt point to valid buffers.
238     let result = unsafe {
239         HKDFExtract(
240             buf.as_mut_ptr(),
241             &mut out_len,
242             secret.as_ptr(),
243             secret.len(),
244             salt.as_ptr(),
245             salt.len(),
246         )
247     };
248     if !result {
249         return Err(Error::HKDFExtractFailed);
250     }
251     // According to the boringssl API, this should never happen.
252     if out_len > max_size {
253         return Err(Error::HKDFExtractFailed);
254     }
255     // HKDF_extract may write fewer than the maximum number of bytes, so we
256     // truncate the buffer.
257     buf.reduce_len(out_len);
258     Ok(buf)
259 }
260 
261 /// Calls the boringssl HKDF_expand function.
hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error>262 pub fn hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error> {
263     let mut buf = ZVec::new(out_len)?;
264     // Safety: HKDF_expand writes out_len bytes to the buffer.
265     // prk and info are valid buffers.
266     let result = unsafe {
267         HKDFExpand(buf.as_mut_ptr(), out_len, prk.as_ptr(), prk.len(), info.as_ptr(), info.len())
268     };
269     if !result {
270         return Err(Error::HKDFExpandFailed);
271     }
272     Ok(buf)
273 }
274 
275 /// A wrapper around the boringssl EC_KEY type that frees it on drop.
276 pub struct ECKey(*mut EC_KEY);
277 
278 impl Drop for ECKey {
drop(&mut self)279     fn drop(&mut self) {
280         // Safety: We only create ECKey objects for valid EC_KEYs
281         // and they are the sole owners of those keys.
282         unsafe { EC_KEY_free(self.0) };
283     }
284 }
285 
286 // Wrappers around the boringssl EC_POINT type.
287 // The EC_POINT can either be owned (and therefore mutable) or a pointer to an
288 // EC_POINT owned by someone else (and thus immutable).  The former are freed
289 // on drop.
290 
291 /// An owned EC_POINT object.
292 pub struct OwnedECPoint(*mut EC_POINT);
293 
294 /// A pointer to an EC_POINT object.
295 pub struct BorrowedECPoint<'a> {
296     data: *const EC_POINT,
297     phantom: PhantomData<&'a EC_POINT>,
298 }
299 
300 impl OwnedECPoint {
301     /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT302     pub fn get_point(&self) -> &EC_POINT {
303         // Safety: We only create OwnedECPoint objects for valid EC_POINTs.
304         unsafe { self.0.as_ref().unwrap() }
305     }
306 }
307 
308 impl<'a> BorrowedECPoint<'a> {
309     /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT310     pub fn get_point(&self) -> &EC_POINT {
311         // Safety: We only create BorrowedECPoint objects for valid EC_POINTs.
312         unsafe { self.data.as_ref().unwrap() }
313     }
314 }
315 
316 impl Drop for OwnedECPoint {
drop(&mut self)317     fn drop(&mut self) {
318         // Safety: We only create OwnedECPoint objects for valid
319         // EC_POINTs and they are the sole owners of those points.
320         unsafe { EC_POINT_free(self.0) };
321     }
322 }
323 
324 /// Calls the boringssl ECDH_compute_key function.
ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error>325 pub fn ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error> {
326     let mut buf = ZVec::new(EC_MAX_BYTES)?;
327     // Safety: Our ECDHComputeKey wrapper passes EC_MAX_BYES to ECDH_compute_key, which
328     // writes at most that many bytes to the output.
329     // The two keys are valid objects.
330     let result =
331         unsafe { ECDHComputeKey(buf.as_mut_ptr() as *mut std::ffi::c_void, pub_key, priv_key.0) };
332     if result == -1 {
333         return Err(Error::ECDHComputeKeyFailed);
334     }
335     let out_len = result.try_into().unwrap();
336     // According to the boringssl API, this should never happen.
337     if out_len > buf.len() {
338         return Err(Error::ECDHComputeKeyFailed);
339     }
340     // ECDH_compute_key may write fewer than the maximum number of bytes, so we
341     // truncate the buffer.
342     buf.reduce_len(out_len);
343     Ok(buf)
344 }
345 
346 /// Calls the boringssl EC_KEY_generate_key function.
ec_key_generate_key() -> Result<ECKey, Error>347 pub fn ec_key_generate_key() -> Result<ECKey, Error> {
348     // Safety: Creates a new key on its own.
349     let key = unsafe { ECKEYGenerateKey() };
350     if key.is_null() {
351         return Err(Error::ECKEYGenerateKeyFailed);
352     }
353     Ok(ECKey(key))
354 }
355 
356 /// Calls the boringssl EC_KEY_marshal_private_key function.
ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error>357 pub fn ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error> {
358     let len = 73; // Empirically observed length of private key
359     let mut buf = ZVec::new(len)?;
360     // Safety: the key is valid.
361     // This will not write past the specified length of the buffer; if the
362     // len above is too short, it returns 0.
363     let written_len = unsafe { ECKEYMarshalPrivateKey(key.0, buf.as_mut_ptr(), buf.len()) };
364     if written_len == len {
365         Ok(buf)
366     } else {
367         Err(Error::ECKEYMarshalPrivateKeyFailed)
368     }
369 }
370 
371 /// Calls the boringssl EC_KEY_parse_private_key function.
ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error>372 pub fn ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error> {
373     // Safety: this will not read past the specified length of the buffer.
374     // It fails if less than the whole buffer is consumed.
375     let key = unsafe { ECKEYParsePrivateKey(buf.as_ptr(), buf.len()) };
376     if key.is_null() {
377         Err(Error::ECKEYParsePrivateKeyFailed)
378     } else {
379         Ok(ECKey(key))
380     }
381 }
382 
383 /// Calls the boringssl EC_KEY_get0_public_key function.
ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint384 pub fn ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint {
385     // Safety: The key is valid.
386     // This returns a pointer to a key, so we create an immutable variant.
387     BorrowedECPoint { data: unsafe { EC_KEY_get0_public_key(key.0) }, phantom: PhantomData }
388 }
389 
390 /// Calls the boringssl EC_POINT_point2oct.
ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error>391 pub fn ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error> {
392     // We fix the length to 133 (1 + 2 * field_elem_size), as we get an error if it's too small.
393     let len = 133;
394     let mut buf = vec![0; len];
395     // Safety: EC_POINT_point2oct writes at most len bytes. The point is valid.
396     let result = unsafe { ECPOINTPoint2Oct(point, buf.as_mut_ptr(), len) };
397     if result == 0 {
398         return Err(Error::ECPoint2OctFailed);
399     }
400     // According to the boringssl API, this should never happen.
401     if result > len {
402         return Err(Error::ECPoint2OctFailed);
403     }
404     buf.resize(result, 0);
405     Ok(buf)
406 }
407 
408 /// Calls the boringssl EC_POINT_oct2point function.
ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error>409 pub fn ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error> {
410     // Safety: The buffer is valid.
411     let result = unsafe { ECPOINTOct2Point(buf.as_ptr(), buf.len()) };
412     if result.is_null() {
413         return Err(Error::ECPoint2OctFailed);
414     }
415     // Our C wrapper creates a new EC_POINT, so we mark this mutable and free
416     // it on drop.
417     Ok(OwnedECPoint(result))
418 }
419 
420 /// Uses BoringSSL to extract the DER-encoded subject from a DER-encoded X.509 certificate.
parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error>421 pub fn parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error> {
422     // Try with a 200-byte output buffer, should be enough in all but bizarre cases.
423     let mut retval = vec![0; 200];
424 
425     // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf and
426     // writes at most retval.len() bytes to retval.
427     let mut size = unsafe {
428         extractSubjectFromCertificate(
429             cert_buf.as_ptr(),
430             cert_buf.len(),
431             retval.as_mut_ptr(),
432             retval.len(),
433         )
434     };
435 
436     if size == 0 {
437         return Err(Error::ExtractSubjectFailed);
438     }
439 
440     if size < 0 {
441         // Our buffer wasn't big enough.  Make one that is just the right size and try again.
442         let negated_size = usize::try_from(-size).map_err(|_e| Error::ExtractSubjectFailed)?;
443         retval = vec![0; negated_size];
444 
445         // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf
446         // and writes at most retval.len() bytes to retval.
447         size = unsafe {
448             extractSubjectFromCertificate(
449                 cert_buf.as_ptr(),
450                 cert_buf.len(),
451                 retval.as_mut_ptr(),
452                 retval.len(),
453             )
454         };
455 
456         if size <= 0 {
457             return Err(Error::ExtractSubjectFailed);
458         }
459     }
460 
461     // Reduce buffer size to the amount written.
462     let safe_size = usize::try_from(size).map_err(|_e| Error::ExtractSubjectFailed)?;
463     retval.truncate(safe_size);
464 
465     Ok(retval)
466 }
467 
468 #[cfg(test)]
469 mod tests {
470 
471     use super::*;
472     use keystore2_crypto_bindgen::{
473         generateKeyFromPassword, AES_gcm_decrypt, AES_gcm_encrypt, CreateKeyId,
474     };
475 
476     #[test]
test_wrapper_roundtrip()477     fn test_wrapper_roundtrip() {
478         let key = generate_aes256_key().unwrap();
479         let message = b"totally awesome message";
480         let (cipher_text, iv, tag) = aes_gcm_encrypt(message, &key).unwrap();
481         let message2 = aes_gcm_decrypt(&cipher_text, &iv, &tag, &key).unwrap();
482         assert_eq!(message[..], message2[..])
483     }
484 
485     #[test]
test_encrypt_decrypt()486     fn test_encrypt_decrypt() {
487         let input = vec![0; 16];
488         let mut out = vec![0; 16];
489         let mut out2 = vec![0; 16];
490         let key = vec![0; 16];
491         let iv = vec![0; 12];
492         let mut tag = vec![0; 16];
493         unsafe {
494             let res = AES_gcm_encrypt(
495                 input.as_ptr(),
496                 out.as_mut_ptr(),
497                 16,
498                 key.as_ptr(),
499                 16,
500                 iv.as_ptr(),
501                 tag.as_mut_ptr(),
502             );
503             assert!(res);
504             assert_ne!(out, input);
505             assert_ne!(tag, input);
506             let res = AES_gcm_decrypt(
507                 out.as_ptr(),
508                 out2.as_mut_ptr(),
509                 16,
510                 key.as_ptr(),
511                 16,
512                 iv.as_ptr(),
513                 tag.as_ptr(),
514             );
515             assert!(res);
516             assert_eq!(out2, input);
517         }
518     }
519 
520     #[test]
test_create_key_id()521     fn test_create_key_id() {
522         let blob = vec![0; 16];
523         let mut out: u64 = 0;
524         unsafe {
525             let res = CreateKeyId(blob.as_ptr(), 16, &mut out);
526             assert!(res);
527             assert_ne!(out, 0);
528         }
529     }
530 
531     #[test]
test_generate_key_from_password()532     fn test_generate_key_from_password() {
533         let mut key = vec![0; 16];
534         let pw = vec![0; 16];
535         let salt = vec![0; 16];
536         unsafe {
537             generateKeyFromPassword(key.as_mut_ptr(), 16, pw.as_ptr(), 16, salt.as_ptr());
538         }
539         assert_ne!(key, vec![0; 16]);
540     }
541 
542     #[test]
test_hkdf()543     fn test_hkdf() {
544         let result = hkdf_extract(&[0; 16], &[0; 16]);
545         assert!(result.is_ok());
546         for out_len in 4..=8 {
547             let result = hkdf_expand(out_len, &[0; 16], &[0; 16]);
548             assert!(result.is_ok());
549             assert_eq!(result.unwrap().len(), out_len);
550         }
551     }
552 
553     #[test]
test_ec() -> Result<(), Error>554     fn test_ec() -> Result<(), Error> {
555         let priv0 = ec_key_generate_key()?;
556         assert!(!priv0.0.is_null());
557         let pub0 = ec_key_get0_public_key(&priv0);
558 
559         let priv1 = ec_key_generate_key()?;
560         let pub1 = ec_key_get0_public_key(&priv1);
561 
562         let priv0s = ec_key_marshal_private_key(&priv0)?;
563         let pub0s = ec_point_point_to_oct(pub0.get_point())?;
564         let pub1s = ec_point_point_to_oct(pub1.get_point())?;
565 
566         let priv0 = ec_key_parse_private_key(&priv0s)?;
567         let pub0 = ec_point_oct_to_point(&pub0s)?;
568         let pub1 = ec_point_oct_to_point(&pub1s)?;
569 
570         let left_key = ecdh_compute_key(pub0.get_point(), &priv1)?;
571         let right_key = ecdh_compute_key(pub1.get_point(), &priv0)?;
572 
573         assert_eq!(left_key, right_key);
574         Ok(())
575     }
576 
577     #[test]
test_hmac_sha256()578     fn test_hmac_sha256() {
579         let key = b"This is the key";
580         let msg1 = b"This is a message";
581         let msg2 = b"This is another message";
582         let tag1a = hmac_sha256(key, msg1).unwrap();
583         assert_eq!(tag1a.len(), HMAC_SHA256_LEN);
584         let tag1b = hmac_sha256(key, msg1).unwrap();
585         assert_eq!(tag1a, tag1b);
586         let tag2 = hmac_sha256(key, msg2).unwrap();
587         assert_eq!(tag2.len(), HMAC_SHA256_LEN);
588         assert_ne!(tag1a, tag2);
589     }
590 }
591