1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Target/TargetOptions.h"
22 #include <string>
23
24 namespace llvm {
25
26 class Function;
27 class GlobalValue;
28 class MachineModuleInfoWrapperPass;
29 class Mangler;
30 class MCAsmInfo;
31 class MCContext;
32 class MCInstrInfo;
33 class MCRegisterInfo;
34 class MCSubtargetInfo;
35 class MCSymbol;
36 class raw_pwrite_stream;
37 class PassManagerBuilder;
38 struct PerFunctionMIParsingState;
39 class SMDiagnostic;
40 class SMRange;
41 class Target;
42 class TargetIntrinsicInfo;
43 class TargetIRAnalysis;
44 class TargetTransformInfo;
45 class TargetLoweringObjectFile;
46 class TargetPassConfig;
47 class TargetSubtargetInfo;
48
49 // The old pass manager infrastructure is hidden in a legacy namespace now.
50 namespace legacy {
51 class PassManagerBase;
52 }
53 using legacy::PassManagerBase;
54
55 namespace yaml {
56 struct MachineFunctionInfo;
57 }
58
59 //===----------------------------------------------------------------------===//
60 ///
61 /// Primary interface to the complete machine description for the target
62 /// machine. All target-specific information should be accessible through this
63 /// interface.
64 ///
65 class TargetMachine {
66 protected: // Can only create subclasses.
67 TargetMachine(const Target &T, StringRef DataLayoutString,
68 const Triple &TargetTriple, StringRef CPU, StringRef FS,
69 const TargetOptions &Options);
70
71 /// The Target that this machine was created for.
72 const Target &TheTarget;
73
74 /// DataLayout for the target: keep ABI type size and alignment.
75 ///
76 /// The DataLayout is created based on the string representation provided
77 /// during construction. It is kept here only to avoid reparsing the string
78 /// but should not really be used during compilation, because it has an
79 /// internal cache that is context specific.
80 const DataLayout DL;
81
82 /// Triple string, CPU name, and target feature strings the TargetMachine
83 /// instance is created with.
84 Triple TargetTriple;
85 std::string TargetCPU;
86 std::string TargetFS;
87
88 Reloc::Model RM = Reloc::Static;
89 CodeModel::Model CMModel = CodeModel::Small;
90 CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
91
92 /// Contains target specific asm information.
93 std::unique_ptr<const MCAsmInfo> AsmInfo;
94 std::unique_ptr<const MCRegisterInfo> MRI;
95 std::unique_ptr<const MCInstrInfo> MII;
96 std::unique_ptr<const MCSubtargetInfo> STI;
97
98 unsigned RequireStructuredCFG : 1;
99 unsigned O0WantsFastISel : 1;
100
101 public:
102 const TargetOptions DefaultOptions;
103 mutable TargetOptions Options;
104
105 TargetMachine(const TargetMachine &) = delete;
106 void operator=(const TargetMachine &) = delete;
107 virtual ~TargetMachine();
108
getTarget()109 const Target &getTarget() const { return TheTarget; }
110
getTargetTriple()111 const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()112 StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()113 StringRef getTargetFeatureString() const { return TargetFS; }
114
115 /// Virtual method implemented by subclasses that returns a reference to that
116 /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)117 virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
118 return nullptr;
119 }
getObjFileLowering()120 virtual TargetLoweringObjectFile *getObjFileLowering() const {
121 return nullptr;
122 }
123
124 /// Allocate and return a default initialized instance of the YAML
125 /// representation for the MachineFunctionInfo.
createDefaultFuncInfoYAML()126 virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
127 return nullptr;
128 }
129
130 /// Allocate and initialize an instance of the YAML representation of the
131 /// MachineFunctionInfo.
132 virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction & MF)133 convertFuncInfoToYAML(const MachineFunction &MF) const {
134 return nullptr;
135 }
136
137 /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,PerFunctionMIParsingState & PFS,SMDiagnostic & Error,SMRange & SourceRange)138 virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
139 PerFunctionMIParsingState &PFS,
140 SMDiagnostic &Error,
141 SMRange &SourceRange) const {
142 return false;
143 }
144
145 /// This method returns a pointer to the specified type of
146 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
147 /// returned is of the correct type.
getSubtarget(const Function & F)148 template <typename STC> const STC &getSubtarget(const Function &F) const {
149 return *static_cast<const STC*>(getSubtargetImpl(F));
150 }
151
152 /// Create a DataLayout.
createDataLayout()153 const DataLayout createDataLayout() const { return DL; }
154
155 /// Test if a DataLayout if compatible with the CodeGen for this target.
156 ///
157 /// The LLVM Module owns a DataLayout that is used for the target independent
158 /// optimizations and code generation. This hook provides a target specific
159 /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)160 bool isCompatibleDataLayout(const DataLayout &Candidate) const {
161 return DL == Candidate;
162 }
163
164 /// Get the pointer size for this target.
165 ///
166 /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize(unsigned AS)167 unsigned getPointerSize(unsigned AS) const {
168 return DL.getPointerSize(AS);
169 }
170
getPointerSizeInBits(unsigned AS)171 unsigned getPointerSizeInBits(unsigned AS) const {
172 return DL.getPointerSizeInBits(AS);
173 }
174
getProgramPointerSize()175 unsigned getProgramPointerSize() const {
176 return DL.getPointerSize(DL.getProgramAddressSpace());
177 }
178
getAllocaPointerSize()179 unsigned getAllocaPointerSize() const {
180 return DL.getPointerSize(DL.getAllocaAddrSpace());
181 }
182
183 /// Reset the target options based on the function's attributes.
184 // FIXME: Remove TargetOptions that affect per-function code generation
185 // from TargetMachine.
186 void resetTargetOptions(const Function &F) const;
187
188 /// Return target specific asm information.
getMCAsmInfo()189 const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
190
getMCRegisterInfo()191 const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
getMCInstrInfo()192 const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
getMCSubtargetInfo()193 const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
194
195 /// If intrinsic information is available, return it. If not, return null.
getIntrinsicInfo()196 virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
197 return nullptr;
198 }
199
requiresStructuredCFG()200 bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)201 void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
202
203 /// Returns the code generation relocation model. The choices are static, PIC,
204 /// and dynamic-no-pic, and target default.
205 Reloc::Model getRelocationModel() const;
206
207 /// Returns the code model. The choices are small, kernel, medium, large, and
208 /// target default.
209 CodeModel::Model getCodeModel() const;
210
211 bool isPositionIndependent() const;
212
213 bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
214
215 /// Returns true if this target uses emulated TLS.
216 bool useEmulatedTLS() const;
217
218 /// Returns the TLS model which should be used for the given global variable.
219 TLSModel::Model getTLSModel(const GlobalValue *GV) const;
220
221 /// Returns the optimization level: None, Less, Default, or Aggressive.
222 CodeGenOpt::Level getOptLevel() const;
223
224 /// Overrides the optimization level.
225 void setOptLevel(CodeGenOpt::Level Level);
226
setFastISel(bool Enable)227 void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()228 bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)229 void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
setGlobalISel(bool Enable)230 void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
setGlobalISelAbort(GlobalISelAbortMode Mode)231 void setGlobalISelAbort(GlobalISelAbortMode Mode) {
232 Options.GlobalISelAbort = Mode;
233 }
setMachineOutliner(bool Enable)234 void setMachineOutliner(bool Enable) {
235 Options.EnableMachineOutliner = Enable;
236 }
setSupportsDefaultOutlining(bool Enable)237 void setSupportsDefaultOutlining(bool Enable) {
238 Options.SupportsDefaultOutlining = Enable;
239 }
240
shouldPrintMachineCode()241 bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
242
getUniqueSectionNames()243 bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
244
245 /// Return true if data objects should be emitted into their own section,
246 /// corresponds to -fdata-sections.
getDataSections()247 bool getDataSections() const {
248 return Options.DataSections;
249 }
250
251 /// Return true if functions should be emitted into their own section,
252 /// corresponding to -ffunction-sections.
getFunctionSections()253 bool getFunctionSections() const {
254 return Options.FunctionSections;
255 }
256
257 /// Get a \c TargetIRAnalysis appropriate for the target.
258 ///
259 /// This is used to construct the new pass manager's target IR analysis pass,
260 /// set up appropriately for this target machine. Even the old pass manager
261 /// uses this to answer queries about the IR.
262 TargetIRAnalysis getTargetIRAnalysis();
263
264 /// Return a TargetTransformInfo for a given function.
265 ///
266 /// The returned TargetTransformInfo is specialized to the subtarget
267 /// corresponding to \p F.
268 virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
269
270 /// Allow the target to modify the pass manager, e.g. by calling
271 /// PassManagerBuilder::addExtension.
adjustPassManager(PassManagerBuilder &)272 virtual void adjustPassManager(PassManagerBuilder &) {}
273
274 /// Add passes to the specified pass manager to get the specified file
275 /// emitted. Typically this will involve several steps of code generation.
276 /// This method should return true if emission of this file type is not
277 /// supported, or false on success.
278 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
279 /// will be used to set the MachineModuloInfo for this PM.
280 virtual bool
281 addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
282 raw_pwrite_stream *, CodeGenFileType,
283 bool /*DisableVerify*/ = true,
284 MachineModuleInfoWrapperPass *MMIWP = nullptr) {
285 return true;
286 }
287
288 /// Add passes to the specified pass manager to get machine code emitted with
289 /// the MCJIT. This method returns true if machine code is not supported. It
290 /// fills the MCContext Ctx pointer which can be used to build custom
291 /// MCStreamer.
292 ///
293 virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
294 raw_pwrite_stream &,
295 bool /*DisableVerify*/ = true) {
296 return true;
297 }
298
299 /// True if subtarget inserts the final scheduling pass on its own.
300 ///
301 /// Branch relaxation, which must happen after block placement, can
302 /// on some targets (e.g. SystemZ) expose additional post-RA
303 /// scheduling opportunities.
targetSchedulesPostRAScheduling()304 virtual bool targetSchedulesPostRAScheduling() const { return false; };
305
306 void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
307 Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
308 MCSymbol *getSymbol(const GlobalValue *GV) const;
309 };
310
311 /// This class describes a target machine that is implemented with the LLVM
312 /// target-independent code generator.
313 ///
314 class LLVMTargetMachine : public TargetMachine {
315 protected: // Can only create subclasses.
316 LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
317 const Triple &TT, StringRef CPU, StringRef FS,
318 const TargetOptions &Options, Reloc::Model RM,
319 CodeModel::Model CM, CodeGenOpt::Level OL);
320
321 void initAsmInfo();
322
323 public:
324 /// Get a TargetTransformInfo implementation for the target.
325 ///
326 /// The TTI returned uses the common code generator to answer queries about
327 /// the IR.
328 TargetTransformInfo getTargetTransformInfo(const Function &F) override;
329
330 /// Create a pass configuration object to be used by addPassToEmitX methods
331 /// for generating a pipeline of CodeGen passes.
332 virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
333
334 /// Add passes to the specified pass manager to get the specified file
335 /// emitted. Typically this will involve several steps of code generation.
336 /// \p MMIWP is an optional parameter that, if set to non-nullptr,
337 /// will be used to set the MachineModuloInfo for this PM.
338 bool
339 addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
340 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
341 bool DisableVerify = true,
342 MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
343
344 /// Add passes to the specified pass manager to get machine code emitted with
345 /// the MCJIT. This method returns true if machine code is not supported. It
346 /// fills the MCContext Ctx pointer which can be used to build custom
347 /// MCStreamer.
348 bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
349 raw_pwrite_stream &Out,
350 bool DisableVerify = true) override;
351
352 /// Returns true if the target is expected to pass all machine verifier
353 /// checks. This is a stopgap measure to fix targets one by one. We will
354 /// remove this at some point and always enable the verifier when
355 /// EXPENSIVE_CHECKS is enabled.
isMachineVerifierClean()356 virtual bool isMachineVerifierClean() const { return true; }
357
358 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
359 /// machine code from the MI representation.
360 bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
361 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
362 MCContext &Context);
363
364 /// True if the target uses physical regs at Prolog/Epilog insertion
365 /// time. If true (most machines), all vregs must be allocated before
366 /// PEI. If false (virtual-register machines), then callee-save register
367 /// spilling and scavenging are not needed or used.
usesPhysRegsForPEI()368 virtual bool usesPhysRegsForPEI() const { return true; }
369
370 /// True if the target wants to use interprocedural register allocation by
371 /// default. The -enable-ipra flag can be used to override this.
useIPRA()372 virtual bool useIPRA() const {
373 return false;
374 }
375 };
376
377 /// Helper method for getting the code model, returning Default if
378 /// CM does not have a value. The tiny and kernel models will produce
379 /// an error, so targets that support them or require more complex codemodel
380 /// selection logic should implement and call their own getEffectiveCodeModel.
getEffectiveCodeModel(Optional<CodeModel::Model> CM,CodeModel::Model Default)381 inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
382 CodeModel::Model Default) {
383 if (CM) {
384 // By default, targets do not support the tiny and kernel models.
385 if (*CM == CodeModel::Tiny)
386 report_fatal_error("Target does not support the tiny CodeModel", false);
387 if (*CM == CodeModel::Kernel)
388 report_fatal_error("Target does not support the kernel CodeModel", false);
389 return *CM;
390 }
391 return Default;
392 }
393
394 } // end namespace llvm
395
396 #endif // LLVM_TARGET_TARGETMACHINE_H
397