1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDGPUTargetTransformInfo.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/SubtargetFeature.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <utility>
42
43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
44
45 #define GET_INSTRINFO_NAMED_OPS
46 #define GET_INSTRMAP_INFO
47 #include "AMDGPUGenInstrInfo.inc"
48 #undef GET_INSTRMAP_INFO
49 #undef GET_INSTRINFO_NAMED_OPS
50
51 namespace {
52
53 /// \returns Bit mask for given bit \p Shift and bit \p Width.
getBitMask(unsigned Shift,unsigned Width)54 unsigned getBitMask(unsigned Shift, unsigned Width) {
55 return ((1 << Width) - 1) << Shift;
56 }
57
58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
59 ///
60 /// \returns Packed \p Dst.
packBits(unsigned Src,unsigned Dst,unsigned Shift,unsigned Width)61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
62 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
63 Dst |= (Src << Shift) & getBitMask(Shift, Width);
64 return Dst;
65 }
66
67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
68 ///
69 /// \returns Unpacked bits.
unpackBits(unsigned Src,unsigned Shift,unsigned Width)70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
71 return (Src & getBitMask(Shift, Width)) >> Shift;
72 }
73
74 /// \returns Vmcnt bit shift (lower bits).
getVmcntBitShiftLo()75 unsigned getVmcntBitShiftLo() { return 0; }
76
77 /// \returns Vmcnt bit width (lower bits).
getVmcntBitWidthLo()78 unsigned getVmcntBitWidthLo() { return 4; }
79
80 /// \returns Expcnt bit shift.
getExpcntBitShift()81 unsigned getExpcntBitShift() { return 4; }
82
83 /// \returns Expcnt bit width.
getExpcntBitWidth()84 unsigned getExpcntBitWidth() { return 3; }
85
86 /// \returns Lgkmcnt bit shift.
getLgkmcntBitShift()87 unsigned getLgkmcntBitShift() { return 8; }
88
89 /// \returns Lgkmcnt bit width.
getLgkmcntBitWidth(unsigned VersionMajor)90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
91 return (VersionMajor >= 10) ? 6 : 4;
92 }
93
94 /// \returns Vmcnt bit shift (higher bits).
getVmcntBitShiftHi()95 unsigned getVmcntBitShiftHi() { return 14; }
96
97 /// \returns Vmcnt bit width (higher bits).
getVmcntBitWidthHi()98 unsigned getVmcntBitWidthHi() { return 2; }
99
100 } // end namespace anonymous
101
102 namespace llvm {
103
104 namespace AMDGPU {
105
106 #define GET_MIMGBaseOpcodesTable_IMPL
107 #define GET_MIMGDimInfoTable_IMPL
108 #define GET_MIMGInfoTable_IMPL
109 #define GET_MIMGLZMappingTable_IMPL
110 #define GET_MIMGMIPMappingTable_IMPL
111 #include "AMDGPUGenSearchableTables.inc"
112
getMIMGOpcode(unsigned BaseOpcode,unsigned MIMGEncoding,unsigned VDataDwords,unsigned VAddrDwords)113 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
114 unsigned VDataDwords, unsigned VAddrDwords) {
115 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
116 VDataDwords, VAddrDwords);
117 return Info ? Info->Opcode : -1;
118 }
119
getMIMGBaseOpcode(unsigned Opc)120 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
121 const MIMGInfo *Info = getMIMGInfo(Opc);
122 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
123 }
124
getMaskedMIMGOp(unsigned Opc,unsigned NewChannels)125 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
126 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
127 const MIMGInfo *NewInfo =
128 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
129 NewChannels, OrigInfo->VAddrDwords);
130 return NewInfo ? NewInfo->Opcode : -1;
131 }
132
133 struct MUBUFInfo {
134 uint16_t Opcode;
135 uint16_t BaseOpcode;
136 uint8_t elements;
137 bool has_vaddr;
138 bool has_srsrc;
139 bool has_soffset;
140 };
141
142 struct MTBUFInfo {
143 uint16_t Opcode;
144 uint16_t BaseOpcode;
145 uint8_t elements;
146 bool has_vaddr;
147 bool has_srsrc;
148 bool has_soffset;
149 };
150
151 #define GET_MTBUFInfoTable_DECL
152 #define GET_MTBUFInfoTable_IMPL
153 #define GET_MUBUFInfoTable_DECL
154 #define GET_MUBUFInfoTable_IMPL
155 #include "AMDGPUGenSearchableTables.inc"
156
getMTBUFBaseOpcode(unsigned Opc)157 int getMTBUFBaseOpcode(unsigned Opc) {
158 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
159 return Info ? Info->BaseOpcode : -1;
160 }
161
getMTBUFOpcode(unsigned BaseOpc,unsigned Elements)162 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
163 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
164 return Info ? Info->Opcode : -1;
165 }
166
getMTBUFElements(unsigned Opc)167 int getMTBUFElements(unsigned Opc) {
168 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
169 return Info ? Info->elements : 0;
170 }
171
getMTBUFHasVAddr(unsigned Opc)172 bool getMTBUFHasVAddr(unsigned Opc) {
173 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
174 return Info ? Info->has_vaddr : false;
175 }
176
getMTBUFHasSrsrc(unsigned Opc)177 bool getMTBUFHasSrsrc(unsigned Opc) {
178 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
179 return Info ? Info->has_srsrc : false;
180 }
181
getMTBUFHasSoffset(unsigned Opc)182 bool getMTBUFHasSoffset(unsigned Opc) {
183 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
184 return Info ? Info->has_soffset : false;
185 }
186
getMUBUFBaseOpcode(unsigned Opc)187 int getMUBUFBaseOpcode(unsigned Opc) {
188 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
189 return Info ? Info->BaseOpcode : -1;
190 }
191
getMUBUFOpcode(unsigned BaseOpc,unsigned Elements)192 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
193 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
194 return Info ? Info->Opcode : -1;
195 }
196
getMUBUFElements(unsigned Opc)197 int getMUBUFElements(unsigned Opc) {
198 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
199 return Info ? Info->elements : 0;
200 }
201
getMUBUFHasVAddr(unsigned Opc)202 bool getMUBUFHasVAddr(unsigned Opc) {
203 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
204 return Info ? Info->has_vaddr : false;
205 }
206
getMUBUFHasSrsrc(unsigned Opc)207 bool getMUBUFHasSrsrc(unsigned Opc) {
208 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
209 return Info ? Info->has_srsrc : false;
210 }
211
getMUBUFHasSoffset(unsigned Opc)212 bool getMUBUFHasSoffset(unsigned Opc) {
213 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
214 return Info ? Info->has_soffset : false;
215 }
216
217 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any
218 // header files, so we need to wrap it in a function that takes unsigned
219 // instead.
getMCOpcode(uint16_t Opcode,unsigned Gen)220 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
221 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
222 }
223
224 namespace IsaInfo {
225
streamIsaVersion(const MCSubtargetInfo * STI,raw_ostream & Stream)226 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
227 auto TargetTriple = STI->getTargetTriple();
228 auto Version = getIsaVersion(STI->getCPU());
229
230 Stream << TargetTriple.getArchName() << '-'
231 << TargetTriple.getVendorName() << '-'
232 << TargetTriple.getOSName() << '-'
233 << TargetTriple.getEnvironmentName() << '-'
234 << "gfx"
235 << Version.Major
236 << Version.Minor
237 << Version.Stepping;
238
239 if (hasXNACK(*STI))
240 Stream << "+xnack";
241 if (hasSRAMECC(*STI))
242 Stream << "+sram-ecc";
243
244 Stream.flush();
245 }
246
hasCodeObjectV3(const MCSubtargetInfo * STI)247 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
248 return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
249 STI->getFeatureBits().test(FeatureCodeObjectV3);
250 }
251
getWavefrontSize(const MCSubtargetInfo * STI)252 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
253 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
254 return 16;
255 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
256 return 32;
257
258 return 64;
259 }
260
getLocalMemorySize(const MCSubtargetInfo * STI)261 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
262 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
263 return 32768;
264 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
265 return 65536;
266
267 return 0;
268 }
269
getEUsPerCU(const MCSubtargetInfo * STI)270 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
271 return 4;
272 }
273
getMaxWorkGroupsPerCU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)274 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
275 unsigned FlatWorkGroupSize) {
276 assert(FlatWorkGroupSize != 0);
277 if (STI->getTargetTriple().getArch() != Triple::amdgcn)
278 return 8;
279 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
280 if (N == 1)
281 return 40;
282 N = 40 / N;
283 return std::min(N, 16u);
284 }
285
getMaxWavesPerCU(const MCSubtargetInfo * STI)286 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
287 return getMaxWavesPerEU(STI) * getEUsPerCU(STI);
288 }
289
getMaxWavesPerCU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)290 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
291 unsigned FlatWorkGroupSize) {
292 return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
293 }
294
getMinWavesPerEU(const MCSubtargetInfo * STI)295 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
296 return 1;
297 }
298
getMaxWavesPerEU(const MCSubtargetInfo * STI)299 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
300 // FIXME: Need to take scratch memory into account.
301 if (!isGFX10(*STI))
302 return 10;
303 return 20;
304 }
305
getMaxWavesPerEU(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)306 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
307 unsigned FlatWorkGroupSize) {
308 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
309 getEUsPerCU(STI)) / getEUsPerCU(STI);
310 }
311
getMinFlatWorkGroupSize(const MCSubtargetInfo * STI)312 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
313 return 1;
314 }
315
getMaxFlatWorkGroupSize(const MCSubtargetInfo * STI)316 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
317 // Some subtargets allow encoding 2048, but this isn't tested or supported.
318 return 1024;
319 }
320
getWavesPerWorkGroup(const MCSubtargetInfo * STI,unsigned FlatWorkGroupSize)321 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
322 unsigned FlatWorkGroupSize) {
323 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
324 getWavefrontSize(STI);
325 }
326
getSGPRAllocGranule(const MCSubtargetInfo * STI)327 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
328 IsaVersion Version = getIsaVersion(STI->getCPU());
329 if (Version.Major >= 10)
330 return getAddressableNumSGPRs(STI);
331 if (Version.Major >= 8)
332 return 16;
333 return 8;
334 }
335
getSGPREncodingGranule(const MCSubtargetInfo * STI)336 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
337 return 8;
338 }
339
getTotalNumSGPRs(const MCSubtargetInfo * STI)340 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
341 IsaVersion Version = getIsaVersion(STI->getCPU());
342 if (Version.Major >= 8)
343 return 800;
344 return 512;
345 }
346
getAddressableNumSGPRs(const MCSubtargetInfo * STI)347 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
348 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
349 return FIXED_NUM_SGPRS_FOR_INIT_BUG;
350
351 IsaVersion Version = getIsaVersion(STI->getCPU());
352 if (Version.Major >= 10)
353 return 106;
354 if (Version.Major >= 8)
355 return 102;
356 return 104;
357 }
358
getMinNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)359 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
360 assert(WavesPerEU != 0);
361
362 IsaVersion Version = getIsaVersion(STI->getCPU());
363 if (Version.Major >= 10)
364 return 0;
365
366 if (WavesPerEU >= getMaxWavesPerEU(STI))
367 return 0;
368
369 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
370 if (STI->getFeatureBits().test(FeatureTrapHandler))
371 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
372 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
373 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
374 }
375
getMaxNumSGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU,bool Addressable)376 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
377 bool Addressable) {
378 assert(WavesPerEU != 0);
379
380 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
381 IsaVersion Version = getIsaVersion(STI->getCPU());
382 if (Version.Major >= 10)
383 return Addressable ? AddressableNumSGPRs : 108;
384 if (Version.Major >= 8 && !Addressable)
385 AddressableNumSGPRs = 112;
386 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
387 if (STI->getFeatureBits().test(FeatureTrapHandler))
388 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
389 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
390 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
391 }
392
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed,bool XNACKUsed)393 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
394 bool FlatScrUsed, bool XNACKUsed) {
395 unsigned ExtraSGPRs = 0;
396 if (VCCUsed)
397 ExtraSGPRs = 2;
398
399 IsaVersion Version = getIsaVersion(STI->getCPU());
400 if (Version.Major >= 10)
401 return ExtraSGPRs;
402
403 if (Version.Major < 8) {
404 if (FlatScrUsed)
405 ExtraSGPRs = 4;
406 } else {
407 if (XNACKUsed)
408 ExtraSGPRs = 4;
409
410 if (FlatScrUsed)
411 ExtraSGPRs = 6;
412 }
413
414 return ExtraSGPRs;
415 }
416
getNumExtraSGPRs(const MCSubtargetInfo * STI,bool VCCUsed,bool FlatScrUsed)417 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
418 bool FlatScrUsed) {
419 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
420 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
421 }
422
getNumSGPRBlocks(const MCSubtargetInfo * STI,unsigned NumSGPRs)423 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
424 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
425 // SGPRBlocks is actual number of SGPR blocks minus 1.
426 return NumSGPRs / getSGPREncodingGranule(STI) - 1;
427 }
428
getVGPRAllocGranule(const MCSubtargetInfo * STI,Optional<bool> EnableWavefrontSize32)429 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
430 Optional<bool> EnableWavefrontSize32) {
431 bool IsWave32 = EnableWavefrontSize32 ?
432 *EnableWavefrontSize32 :
433 STI->getFeatureBits().test(FeatureWavefrontSize32);
434 return IsWave32 ? 8 : 4;
435 }
436
getVGPREncodingGranule(const MCSubtargetInfo * STI,Optional<bool> EnableWavefrontSize32)437 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
438 Optional<bool> EnableWavefrontSize32) {
439 return getVGPRAllocGranule(STI, EnableWavefrontSize32);
440 }
441
getTotalNumVGPRs(const MCSubtargetInfo * STI)442 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
443 if (!isGFX10(*STI))
444 return 256;
445 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
446 }
447
getAddressableNumVGPRs(const MCSubtargetInfo * STI)448 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
449 return 256;
450 }
451
getMinNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)452 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
453 assert(WavesPerEU != 0);
454
455 if (WavesPerEU >= getMaxWavesPerEU(STI))
456 return 0;
457 unsigned MinNumVGPRs =
458 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
459 getVGPRAllocGranule(STI)) + 1;
460 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
461 }
462
getMaxNumVGPRs(const MCSubtargetInfo * STI,unsigned WavesPerEU)463 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
464 assert(WavesPerEU != 0);
465
466 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
467 getVGPRAllocGranule(STI));
468 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
469 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
470 }
471
getNumVGPRBlocks(const MCSubtargetInfo * STI,unsigned NumVGPRs,Optional<bool> EnableWavefrontSize32)472 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
473 Optional<bool> EnableWavefrontSize32) {
474 NumVGPRs = alignTo(std::max(1u, NumVGPRs),
475 getVGPREncodingGranule(STI, EnableWavefrontSize32));
476 // VGPRBlocks is actual number of VGPR blocks minus 1.
477 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
478 }
479
480 } // end namespace IsaInfo
481
initDefaultAMDKernelCodeT(amd_kernel_code_t & Header,const MCSubtargetInfo * STI)482 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
483 const MCSubtargetInfo *STI) {
484 IsaVersion Version = getIsaVersion(STI->getCPU());
485
486 memset(&Header, 0, sizeof(Header));
487
488 Header.amd_kernel_code_version_major = 1;
489 Header.amd_kernel_code_version_minor = 2;
490 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
491 Header.amd_machine_version_major = Version.Major;
492 Header.amd_machine_version_minor = Version.Minor;
493 Header.amd_machine_version_stepping = Version.Stepping;
494 Header.kernel_code_entry_byte_offset = sizeof(Header);
495 Header.wavefront_size = 6;
496
497 // If the code object does not support indirect functions, then the value must
498 // be 0xffffffff.
499 Header.call_convention = -1;
500
501 // These alignment values are specified in powers of two, so alignment =
502 // 2^n. The minimum alignment is 2^4 = 16.
503 Header.kernarg_segment_alignment = 4;
504 Header.group_segment_alignment = 4;
505 Header.private_segment_alignment = 4;
506
507 if (Version.Major >= 10) {
508 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
509 Header.wavefront_size = 5;
510 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
511 }
512 Header.compute_pgm_resource_registers |=
513 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
514 S_00B848_MEM_ORDERED(1);
515 }
516 }
517
getDefaultAmdhsaKernelDescriptor(const MCSubtargetInfo * STI)518 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
519 const MCSubtargetInfo *STI) {
520 IsaVersion Version = getIsaVersion(STI->getCPU());
521
522 amdhsa::kernel_descriptor_t KD;
523 memset(&KD, 0, sizeof(KD));
524
525 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
526 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
527 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
528 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
529 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
530 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
531 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
532 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
533 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
534 if (Version.Major >= 10) {
535 AMDHSA_BITS_SET(KD.kernel_code_properties,
536 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
537 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
538 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
539 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
540 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
541 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
542 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
543 }
544 return KD;
545 }
546
isGroupSegment(const GlobalValue * GV)547 bool isGroupSegment(const GlobalValue *GV) {
548 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
549 }
550
isGlobalSegment(const GlobalValue * GV)551 bool isGlobalSegment(const GlobalValue *GV) {
552 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
553 }
554
isReadOnlySegment(const GlobalValue * GV)555 bool isReadOnlySegment(const GlobalValue *GV) {
556 unsigned AS = GV->getAddressSpace();
557 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
558 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
559 }
560
shouldEmitConstantsToTextSection(const Triple & TT)561 bool shouldEmitConstantsToTextSection(const Triple &TT) {
562 return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600;
563 }
564
getIntegerAttribute(const Function & F,StringRef Name,int Default)565 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
566 Attribute A = F.getFnAttribute(Name);
567 int Result = Default;
568
569 if (A.isStringAttribute()) {
570 StringRef Str = A.getValueAsString();
571 if (Str.getAsInteger(0, Result)) {
572 LLVMContext &Ctx = F.getContext();
573 Ctx.emitError("can't parse integer attribute " + Name);
574 }
575 }
576
577 return Result;
578 }
579
getIntegerPairAttribute(const Function & F,StringRef Name,std::pair<int,int> Default,bool OnlyFirstRequired)580 std::pair<int, int> getIntegerPairAttribute(const Function &F,
581 StringRef Name,
582 std::pair<int, int> Default,
583 bool OnlyFirstRequired) {
584 Attribute A = F.getFnAttribute(Name);
585 if (!A.isStringAttribute())
586 return Default;
587
588 LLVMContext &Ctx = F.getContext();
589 std::pair<int, int> Ints = Default;
590 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
591 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
592 Ctx.emitError("can't parse first integer attribute " + Name);
593 return Default;
594 }
595 if (Strs.second.trim().getAsInteger(0, Ints.second)) {
596 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
597 Ctx.emitError("can't parse second integer attribute " + Name);
598 return Default;
599 }
600 }
601
602 return Ints;
603 }
604
getVmcntBitMask(const IsaVersion & Version)605 unsigned getVmcntBitMask(const IsaVersion &Version) {
606 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
607 if (Version.Major < 9)
608 return VmcntLo;
609
610 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
611 return VmcntLo | VmcntHi;
612 }
613
getExpcntBitMask(const IsaVersion & Version)614 unsigned getExpcntBitMask(const IsaVersion &Version) {
615 return (1 << getExpcntBitWidth()) - 1;
616 }
617
getLgkmcntBitMask(const IsaVersion & Version)618 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
619 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
620 }
621
getWaitcntBitMask(const IsaVersion & Version)622 unsigned getWaitcntBitMask(const IsaVersion &Version) {
623 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
624 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
625 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
626 getLgkmcntBitWidth(Version.Major));
627 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
628 if (Version.Major < 9)
629 return Waitcnt;
630
631 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
632 return Waitcnt | VmcntHi;
633 }
634
decodeVmcnt(const IsaVersion & Version,unsigned Waitcnt)635 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
636 unsigned VmcntLo =
637 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
638 if (Version.Major < 9)
639 return VmcntLo;
640
641 unsigned VmcntHi =
642 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
643 VmcntHi <<= getVmcntBitWidthLo();
644 return VmcntLo | VmcntHi;
645 }
646
decodeExpcnt(const IsaVersion & Version,unsigned Waitcnt)647 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
648 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
649 }
650
decodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt)651 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
652 return unpackBits(Waitcnt, getLgkmcntBitShift(),
653 getLgkmcntBitWidth(Version.Major));
654 }
655
decodeWaitcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned & Vmcnt,unsigned & Expcnt,unsigned & Lgkmcnt)656 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
657 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
658 Vmcnt = decodeVmcnt(Version, Waitcnt);
659 Expcnt = decodeExpcnt(Version, Waitcnt);
660 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
661 }
662
decodeWaitcnt(const IsaVersion & Version,unsigned Encoded)663 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
664 Waitcnt Decoded;
665 Decoded.VmCnt = decodeVmcnt(Version, Encoded);
666 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
667 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
668 return Decoded;
669 }
670
encodeVmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Vmcnt)671 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
672 unsigned Vmcnt) {
673 Waitcnt =
674 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
675 if (Version.Major < 9)
676 return Waitcnt;
677
678 Vmcnt >>= getVmcntBitWidthLo();
679 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
680 }
681
encodeExpcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Expcnt)682 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
683 unsigned Expcnt) {
684 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
685 }
686
encodeLgkmcnt(const IsaVersion & Version,unsigned Waitcnt,unsigned Lgkmcnt)687 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
688 unsigned Lgkmcnt) {
689 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
690 getLgkmcntBitWidth(Version.Major));
691 }
692
encodeWaitcnt(const IsaVersion & Version,unsigned Vmcnt,unsigned Expcnt,unsigned Lgkmcnt)693 unsigned encodeWaitcnt(const IsaVersion &Version,
694 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
695 unsigned Waitcnt = getWaitcntBitMask(Version);
696 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
697 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
698 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
699 return Waitcnt;
700 }
701
encodeWaitcnt(const IsaVersion & Version,const Waitcnt & Decoded)702 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
703 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
704 }
705
706 //===----------------------------------------------------------------------===//
707 // hwreg
708 //===----------------------------------------------------------------------===//
709
710 namespace Hwreg {
711
getHwregId(const StringRef Name)712 int64_t getHwregId(const StringRef Name) {
713 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
714 if (IdSymbolic[Id] && Name == IdSymbolic[Id])
715 return Id;
716 }
717 return ID_UNKNOWN_;
718 }
719
getLastSymbolicHwreg(const MCSubtargetInfo & STI)720 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
721 if (isSI(STI) || isCI(STI) || isVI(STI))
722 return ID_SYMBOLIC_FIRST_GFX9_;
723 else if (isGFX9(STI))
724 return ID_SYMBOLIC_FIRST_GFX10_;
725 else
726 return ID_SYMBOLIC_LAST_;
727 }
728
isValidHwreg(int64_t Id,const MCSubtargetInfo & STI)729 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
730 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
731 IdSymbolic[Id];
732 }
733
isValidHwreg(int64_t Id)734 bool isValidHwreg(int64_t Id) {
735 return 0 <= Id && isUInt<ID_WIDTH_>(Id);
736 }
737
isValidHwregOffset(int64_t Offset)738 bool isValidHwregOffset(int64_t Offset) {
739 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
740 }
741
isValidHwregWidth(int64_t Width)742 bool isValidHwregWidth(int64_t Width) {
743 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
744 }
745
encodeHwreg(uint64_t Id,uint64_t Offset,uint64_t Width)746 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
747 return (Id << ID_SHIFT_) |
748 (Offset << OFFSET_SHIFT_) |
749 ((Width - 1) << WIDTH_M1_SHIFT_);
750 }
751
getHwreg(unsigned Id,const MCSubtargetInfo & STI)752 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
753 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
754 }
755
decodeHwreg(unsigned Val,unsigned & Id,unsigned & Offset,unsigned & Width)756 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
757 Id = (Val & ID_MASK_) >> ID_SHIFT_;
758 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
759 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
760 }
761
762 } // namespace Hwreg
763
764 //===----------------------------------------------------------------------===//
765 // SendMsg
766 //===----------------------------------------------------------------------===//
767
768 namespace SendMsg {
769
getMsgId(const StringRef Name)770 int64_t getMsgId(const StringRef Name) {
771 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
772 if (IdSymbolic[i] && Name == IdSymbolic[i])
773 return i;
774 }
775 return ID_UNKNOWN_;
776 }
777
isValidMsgId(int64_t MsgId)778 static bool isValidMsgId(int64_t MsgId) {
779 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
780 }
781
isValidMsgId(int64_t MsgId,const MCSubtargetInfo & STI,bool Strict)782 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
783 if (Strict) {
784 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
785 return isGFX9(STI) || isGFX10(STI);
786 else
787 return isValidMsgId(MsgId);
788 } else {
789 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
790 }
791 }
792
getMsgName(int64_t MsgId)793 StringRef getMsgName(int64_t MsgId) {
794 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
795 }
796
getMsgOpId(int64_t MsgId,const StringRef Name)797 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
798 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
799 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
800 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
801 for (int i = F; i < L; ++i) {
802 if (Name == S[i]) {
803 return i;
804 }
805 }
806 return OP_UNKNOWN_;
807 }
808
isValidMsgOp(int64_t MsgId,int64_t OpId,bool Strict)809 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
810
811 if (!Strict)
812 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
813
814 switch(MsgId)
815 {
816 case ID_GS:
817 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
818 case ID_GS_DONE:
819 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
820 case ID_SYSMSG:
821 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
822 default:
823 return OpId == OP_NONE_;
824 }
825 }
826
getMsgOpName(int64_t MsgId,int64_t OpId)827 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
828 assert(msgRequiresOp(MsgId));
829 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
830 }
831
isValidMsgStream(int64_t MsgId,int64_t OpId,int64_t StreamId,bool Strict)832 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
833
834 if (!Strict)
835 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
836
837 switch(MsgId)
838 {
839 case ID_GS:
840 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
841 case ID_GS_DONE:
842 return (OpId == OP_GS_NOP)?
843 (StreamId == STREAM_ID_NONE_) :
844 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
845 default:
846 return StreamId == STREAM_ID_NONE_;
847 }
848 }
849
msgRequiresOp(int64_t MsgId)850 bool msgRequiresOp(int64_t MsgId) {
851 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
852 }
853
msgSupportsStream(int64_t MsgId,int64_t OpId)854 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
855 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
856 }
857
decodeMsg(unsigned Val,uint16_t & MsgId,uint16_t & OpId,uint16_t & StreamId)858 void decodeMsg(unsigned Val,
859 uint16_t &MsgId,
860 uint16_t &OpId,
861 uint16_t &StreamId) {
862 MsgId = Val & ID_MASK_;
863 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
864 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
865 }
866
encodeMsg(uint64_t MsgId,uint64_t OpId,uint64_t StreamId)867 uint64_t encodeMsg(uint64_t MsgId,
868 uint64_t OpId,
869 uint64_t StreamId) {
870 return (MsgId << ID_SHIFT_) |
871 (OpId << OP_SHIFT_) |
872 (StreamId << STREAM_ID_SHIFT_);
873 }
874
875 } // namespace SendMsg
876
877 //===----------------------------------------------------------------------===//
878 //
879 //===----------------------------------------------------------------------===//
880
getInitialPSInputAddr(const Function & F)881 unsigned getInitialPSInputAddr(const Function &F) {
882 return getIntegerAttribute(F, "InitialPSInputAddr", 0);
883 }
884
isShader(CallingConv::ID cc)885 bool isShader(CallingConv::ID cc) {
886 switch(cc) {
887 case CallingConv::AMDGPU_VS:
888 case CallingConv::AMDGPU_LS:
889 case CallingConv::AMDGPU_HS:
890 case CallingConv::AMDGPU_ES:
891 case CallingConv::AMDGPU_GS:
892 case CallingConv::AMDGPU_PS:
893 case CallingConv::AMDGPU_CS:
894 return true;
895 default:
896 return false;
897 }
898 }
899
isCompute(CallingConv::ID cc)900 bool isCompute(CallingConv::ID cc) {
901 return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
902 }
903
isEntryFunctionCC(CallingConv::ID CC)904 bool isEntryFunctionCC(CallingConv::ID CC) {
905 switch (CC) {
906 case CallingConv::AMDGPU_KERNEL:
907 case CallingConv::SPIR_KERNEL:
908 case CallingConv::AMDGPU_VS:
909 case CallingConv::AMDGPU_GS:
910 case CallingConv::AMDGPU_PS:
911 case CallingConv::AMDGPU_CS:
912 case CallingConv::AMDGPU_ES:
913 case CallingConv::AMDGPU_HS:
914 case CallingConv::AMDGPU_LS:
915 return true;
916 default:
917 return false;
918 }
919 }
920
hasXNACK(const MCSubtargetInfo & STI)921 bool hasXNACK(const MCSubtargetInfo &STI) {
922 return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
923 }
924
hasSRAMECC(const MCSubtargetInfo & STI)925 bool hasSRAMECC(const MCSubtargetInfo &STI) {
926 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
927 }
928
hasMIMG_R128(const MCSubtargetInfo & STI)929 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
930 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
931 }
932
hasPackedD16(const MCSubtargetInfo & STI)933 bool hasPackedD16(const MCSubtargetInfo &STI) {
934 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
935 }
936
isSI(const MCSubtargetInfo & STI)937 bool isSI(const MCSubtargetInfo &STI) {
938 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
939 }
940
isCI(const MCSubtargetInfo & STI)941 bool isCI(const MCSubtargetInfo &STI) {
942 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
943 }
944
isVI(const MCSubtargetInfo & STI)945 bool isVI(const MCSubtargetInfo &STI) {
946 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
947 }
948
isGFX9(const MCSubtargetInfo & STI)949 bool isGFX9(const MCSubtargetInfo &STI) {
950 return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
951 }
952
isGFX10(const MCSubtargetInfo & STI)953 bool isGFX10(const MCSubtargetInfo &STI) {
954 return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
955 }
956
isGCN3Encoding(const MCSubtargetInfo & STI)957 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
958 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
959 }
960
isSGPR(unsigned Reg,const MCRegisterInfo * TRI)961 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
962 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
963 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
964 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
965 Reg == AMDGPU::SCC;
966 }
967
isRegIntersect(unsigned Reg0,unsigned Reg1,const MCRegisterInfo * TRI)968 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
969 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
970 if (*R == Reg1) return true;
971 }
972 return false;
973 }
974
975 #define MAP_REG2REG \
976 using namespace AMDGPU; \
977 switch(Reg) { \
978 default: return Reg; \
979 CASE_CI_VI(FLAT_SCR) \
980 CASE_CI_VI(FLAT_SCR_LO) \
981 CASE_CI_VI(FLAT_SCR_HI) \
982 CASE_VI_GFX9_GFX10(TTMP0) \
983 CASE_VI_GFX9_GFX10(TTMP1) \
984 CASE_VI_GFX9_GFX10(TTMP2) \
985 CASE_VI_GFX9_GFX10(TTMP3) \
986 CASE_VI_GFX9_GFX10(TTMP4) \
987 CASE_VI_GFX9_GFX10(TTMP5) \
988 CASE_VI_GFX9_GFX10(TTMP6) \
989 CASE_VI_GFX9_GFX10(TTMP7) \
990 CASE_VI_GFX9_GFX10(TTMP8) \
991 CASE_VI_GFX9_GFX10(TTMP9) \
992 CASE_VI_GFX9_GFX10(TTMP10) \
993 CASE_VI_GFX9_GFX10(TTMP11) \
994 CASE_VI_GFX9_GFX10(TTMP12) \
995 CASE_VI_GFX9_GFX10(TTMP13) \
996 CASE_VI_GFX9_GFX10(TTMP14) \
997 CASE_VI_GFX9_GFX10(TTMP15) \
998 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
999 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
1000 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
1001 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
1002 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
1003 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
1004 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
1005 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1006 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1007 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1008 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1009 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1010 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1011 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1012 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1013 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1014 }
1015
1016 #define CASE_CI_VI(node) \
1017 assert(!isSI(STI)); \
1018 case node: return isCI(STI) ? node##_ci : node##_vi;
1019
1020 #define CASE_VI_GFX9_GFX10(node) \
1021 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1022
getMCReg(unsigned Reg,const MCSubtargetInfo & STI)1023 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1024 if (STI.getTargetTriple().getArch() == Triple::r600)
1025 return Reg;
1026 MAP_REG2REG
1027 }
1028
1029 #undef CASE_CI_VI
1030 #undef CASE_VI_GFX9_GFX10
1031
1032 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
1033 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1034
mc2PseudoReg(unsigned Reg)1035 unsigned mc2PseudoReg(unsigned Reg) {
1036 MAP_REG2REG
1037 }
1038
1039 #undef CASE_CI_VI
1040 #undef CASE_VI_GFX9_GFX10
1041 #undef MAP_REG2REG
1042
isSISrcOperand(const MCInstrDesc & Desc,unsigned OpNo)1043 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1044 assert(OpNo < Desc.NumOperands);
1045 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1046 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1047 OpType <= AMDGPU::OPERAND_SRC_LAST;
1048 }
1049
isSISrcFPOperand(const MCInstrDesc & Desc,unsigned OpNo)1050 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1051 assert(OpNo < Desc.NumOperands);
1052 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1053 switch (OpType) {
1054 case AMDGPU::OPERAND_REG_IMM_FP32:
1055 case AMDGPU::OPERAND_REG_IMM_FP64:
1056 case AMDGPU::OPERAND_REG_IMM_FP16:
1057 case AMDGPU::OPERAND_REG_IMM_V2FP16:
1058 case AMDGPU::OPERAND_REG_IMM_V2INT16:
1059 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1060 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1061 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1062 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1063 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1064 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1065 case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1066 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1067 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1068 return true;
1069 default:
1070 return false;
1071 }
1072 }
1073
isSISrcInlinableOperand(const MCInstrDesc & Desc,unsigned OpNo)1074 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1075 assert(OpNo < Desc.NumOperands);
1076 unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1077 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1078 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1079 }
1080
1081 // Avoid using MCRegisterClass::getSize, since that function will go away
1082 // (move from MC* level to Target* level). Return size in bits.
getRegBitWidth(unsigned RCID)1083 unsigned getRegBitWidth(unsigned RCID) {
1084 switch (RCID) {
1085 case AMDGPU::SGPR_32RegClassID:
1086 case AMDGPU::VGPR_32RegClassID:
1087 case AMDGPU::VRegOrLds_32RegClassID:
1088 case AMDGPU::AGPR_32RegClassID:
1089 case AMDGPU::VS_32RegClassID:
1090 case AMDGPU::AV_32RegClassID:
1091 case AMDGPU::SReg_32RegClassID:
1092 case AMDGPU::SReg_32_XM0RegClassID:
1093 case AMDGPU::SRegOrLds_32RegClassID:
1094 return 32;
1095 case AMDGPU::SGPR_64RegClassID:
1096 case AMDGPU::VS_64RegClassID:
1097 case AMDGPU::AV_64RegClassID:
1098 case AMDGPU::SReg_64RegClassID:
1099 case AMDGPU::VReg_64RegClassID:
1100 case AMDGPU::AReg_64RegClassID:
1101 case AMDGPU::SReg_64_XEXECRegClassID:
1102 return 64;
1103 case AMDGPU::SGPR_96RegClassID:
1104 case AMDGPU::SReg_96RegClassID:
1105 case AMDGPU::VReg_96RegClassID:
1106 return 96;
1107 case AMDGPU::SGPR_128RegClassID:
1108 case AMDGPU::SReg_128RegClassID:
1109 case AMDGPU::VReg_128RegClassID:
1110 case AMDGPU::AReg_128RegClassID:
1111 return 128;
1112 case AMDGPU::SGPR_160RegClassID:
1113 case AMDGPU::SReg_160RegClassID:
1114 case AMDGPU::VReg_160RegClassID:
1115 return 160;
1116 case AMDGPU::SReg_256RegClassID:
1117 case AMDGPU::VReg_256RegClassID:
1118 return 256;
1119 case AMDGPU::SReg_512RegClassID:
1120 case AMDGPU::VReg_512RegClassID:
1121 case AMDGPU::AReg_512RegClassID:
1122 return 512;
1123 case AMDGPU::SReg_1024RegClassID:
1124 case AMDGPU::VReg_1024RegClassID:
1125 case AMDGPU::AReg_1024RegClassID:
1126 return 1024;
1127 default:
1128 llvm_unreachable("Unexpected register class");
1129 }
1130 }
1131
getRegBitWidth(const MCRegisterClass & RC)1132 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1133 return getRegBitWidth(RC.getID());
1134 }
1135
getRegOperandSize(const MCRegisterInfo * MRI,const MCInstrDesc & Desc,unsigned OpNo)1136 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1137 unsigned OpNo) {
1138 assert(OpNo < Desc.NumOperands);
1139 unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1140 return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1141 }
1142
isInlinableLiteral64(int64_t Literal,bool HasInv2Pi)1143 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1144 if (Literal >= -16 && Literal <= 64)
1145 return true;
1146
1147 uint64_t Val = static_cast<uint64_t>(Literal);
1148 return (Val == DoubleToBits(0.0)) ||
1149 (Val == DoubleToBits(1.0)) ||
1150 (Val == DoubleToBits(-1.0)) ||
1151 (Val == DoubleToBits(0.5)) ||
1152 (Val == DoubleToBits(-0.5)) ||
1153 (Val == DoubleToBits(2.0)) ||
1154 (Val == DoubleToBits(-2.0)) ||
1155 (Val == DoubleToBits(4.0)) ||
1156 (Val == DoubleToBits(-4.0)) ||
1157 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1158 }
1159
isInlinableLiteral32(int32_t Literal,bool HasInv2Pi)1160 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1161 if (Literal >= -16 && Literal <= 64)
1162 return true;
1163
1164 // The actual type of the operand does not seem to matter as long
1165 // as the bits match one of the inline immediate values. For example:
1166 //
1167 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1168 // so it is a legal inline immediate.
1169 //
1170 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1171 // floating-point, so it is a legal inline immediate.
1172
1173 uint32_t Val = static_cast<uint32_t>(Literal);
1174 return (Val == FloatToBits(0.0f)) ||
1175 (Val == FloatToBits(1.0f)) ||
1176 (Val == FloatToBits(-1.0f)) ||
1177 (Val == FloatToBits(0.5f)) ||
1178 (Val == FloatToBits(-0.5f)) ||
1179 (Val == FloatToBits(2.0f)) ||
1180 (Val == FloatToBits(-2.0f)) ||
1181 (Val == FloatToBits(4.0f)) ||
1182 (Val == FloatToBits(-4.0f)) ||
1183 (Val == 0x3e22f983 && HasInv2Pi);
1184 }
1185
isInlinableLiteral16(int16_t Literal,bool HasInv2Pi)1186 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1187 if (!HasInv2Pi)
1188 return false;
1189
1190 if (Literal >= -16 && Literal <= 64)
1191 return true;
1192
1193 uint16_t Val = static_cast<uint16_t>(Literal);
1194 return Val == 0x3C00 || // 1.0
1195 Val == 0xBC00 || // -1.0
1196 Val == 0x3800 || // 0.5
1197 Val == 0xB800 || // -0.5
1198 Val == 0x4000 || // 2.0
1199 Val == 0xC000 || // -2.0
1200 Val == 0x4400 || // 4.0
1201 Val == 0xC400 || // -4.0
1202 Val == 0x3118; // 1/2pi
1203 }
1204
isInlinableLiteralV216(int32_t Literal,bool HasInv2Pi)1205 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1206 assert(HasInv2Pi);
1207
1208 if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1209 int16_t Trunc = static_cast<int16_t>(Literal);
1210 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1211 }
1212 if (!(Literal & 0xffff))
1213 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1214
1215 int16_t Lo16 = static_cast<int16_t>(Literal);
1216 int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1217 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1218 }
1219
isArgPassedInSGPR(const Argument * A)1220 bool isArgPassedInSGPR(const Argument *A) {
1221 const Function *F = A->getParent();
1222
1223 // Arguments to compute shaders are never a source of divergence.
1224 CallingConv::ID CC = F->getCallingConv();
1225 switch (CC) {
1226 case CallingConv::AMDGPU_KERNEL:
1227 case CallingConv::SPIR_KERNEL:
1228 return true;
1229 case CallingConv::AMDGPU_VS:
1230 case CallingConv::AMDGPU_LS:
1231 case CallingConv::AMDGPU_HS:
1232 case CallingConv::AMDGPU_ES:
1233 case CallingConv::AMDGPU_GS:
1234 case CallingConv::AMDGPU_PS:
1235 case CallingConv::AMDGPU_CS:
1236 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1237 // Everything else is in VGPRs.
1238 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1239 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1240 default:
1241 // TODO: Should calls support inreg for SGPR inputs?
1242 return false;
1243 }
1244 }
1245
hasSMEMByteOffset(const MCSubtargetInfo & ST)1246 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1247 return isGCN3Encoding(ST) || isGFX10(ST);
1248 }
1249
getSMRDEncodedOffset(const MCSubtargetInfo & ST,int64_t ByteOffset)1250 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1251 if (hasSMEMByteOffset(ST))
1252 return ByteOffset;
1253 return ByteOffset >> 2;
1254 }
1255
isLegalSMRDImmOffset(const MCSubtargetInfo & ST,int64_t ByteOffset)1256 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1257 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1258 return (hasSMEMByteOffset(ST)) ?
1259 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1260 }
1261
1262 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1263 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1264 // hardware bug needing a workaround).
1265 //
1266 // The required alignment ensures that individual address components remain
1267 // aligned if they are aligned to begin with. It also ensures that additional
1268 // offsets within the given alignment can be added to the resulting ImmOffset.
splitMUBUFOffset(uint32_t Imm,uint32_t & SOffset,uint32_t & ImmOffset,const GCNSubtarget * Subtarget,uint32_t Align)1269 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1270 const GCNSubtarget *Subtarget, uint32_t Align) {
1271 const uint32_t MaxImm = alignDown(4095, Align);
1272 uint32_t Overflow = 0;
1273
1274 if (Imm > MaxImm) {
1275 if (Imm <= MaxImm + 64) {
1276 // Use an SOffset inline constant for 4..64
1277 Overflow = Imm - MaxImm;
1278 Imm = MaxImm;
1279 } else {
1280 // Try to keep the same value in SOffset for adjacent loads, so that
1281 // the corresponding register contents can be re-used.
1282 //
1283 // Load values with all low-bits (except for alignment bits) set into
1284 // SOffset, so that a larger range of values can be covered using
1285 // s_movk_i32.
1286 //
1287 // Atomic operations fail to work correctly when individual address
1288 // components are unaligned, even if their sum is aligned.
1289 uint32_t High = (Imm + Align) & ~4095;
1290 uint32_t Low = (Imm + Align) & 4095;
1291 Imm = Low;
1292 Overflow = High - Align;
1293 }
1294 }
1295
1296 // There is a hardware bug in SI and CI which prevents address clamping in
1297 // MUBUF instructions from working correctly with SOffsets. The immediate
1298 // offset is unaffected.
1299 if (Overflow > 0 &&
1300 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1301 return false;
1302
1303 ImmOffset = Imm;
1304 SOffset = Overflow;
1305 return true;
1306 }
1307
SIModeRegisterDefaults(const Function & F,const GCNSubtarget & ST)1308 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F,
1309 const GCNSubtarget &ST) {
1310 *this = getDefaultForCallingConv(F.getCallingConv());
1311
1312 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1313 if (!IEEEAttr.empty())
1314 IEEE = IEEEAttr == "true";
1315
1316 StringRef DX10ClampAttr
1317 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1318 if (!DX10ClampAttr.empty())
1319 DX10Clamp = DX10ClampAttr == "true";
1320
1321 FP32Denormals = ST.hasFP32Denormals(F);
1322 FP64FP16Denormals = ST.hasFP64FP16Denormals(F);
1323 }
1324
1325 namespace {
1326
1327 struct SourceOfDivergence {
1328 unsigned Intr;
1329 };
1330 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1331
1332 #define GET_SourcesOfDivergence_IMPL
1333 #define GET_Gfx9BufferFormat_IMPL
1334 #define GET_Gfx10PlusBufferFormat_IMPL
1335 #include "AMDGPUGenSearchableTables.inc"
1336
1337 } // end anonymous namespace
1338
isIntrinsicSourceOfDivergence(unsigned IntrID)1339 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1340 return lookupSourceOfDivergence(IntrID);
1341 }
1342
getGcnBufferFormatInfo(uint8_t BitsPerComp,uint8_t NumComponents,uint8_t NumFormat,const MCSubtargetInfo & STI)1343 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1344 uint8_t NumComponents,
1345 uint8_t NumFormat,
1346 const MCSubtargetInfo &STI) {
1347 return isGFX10(STI)
1348 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1349 NumFormat)
1350 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1351 }
1352
getGcnBufferFormatInfo(uint8_t Format,const MCSubtargetInfo & STI)1353 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1354 const MCSubtargetInfo &STI) {
1355 return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format)
1356 : getGfx9BufferFormatInfo(Format);
1357 }
1358
1359 } // namespace AMDGPU
1360 } // namespace llvm
1361