1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 // Note: ported from Chromium commit head: 2f13d62f0c0d
5 // Note: Added some missing defines that are only defined in newer kernel
6 // versions (e.g. V4L2_PIX_FMT_VP8_FRAME)
7
8 //#define LOG_NDEBUG 0
9 #define LOG_TAG "V4L2Device"
10
11 #include <v4l2_codec2/common/V4L2Device.h>
12
13 #include <fcntl.h>
14 #include <inttypes.h>
15 #include <linux/media.h>
16 #include <linux/videodev2.h>
17 #include <poll.h>
18 #include <string.h>
19 #include <sys/eventfd.h>
20 #include <sys/ioctl.h>
21 #include <sys/mman.h>
22
23 #include <algorithm>
24 #include <mutex>
25 #include <set>
26 #include <sstream>
27
28 #include <base/bind.h>
29 #include <base/numerics/safe_conversions.h>
30 #include <base/posix/eintr_wrapper.h>
31 #include <base/strings/stringprintf.h>
32 #include <base/thread_annotations.h>
33 #include <utils/Log.h>
34
35 #include <v4l2_codec2/common/Fourcc.h>
36 #include <v4l2_codec2/common/VideoPixelFormat.h>
37
38 // VP8 parsed frames
39 #ifndef V4L2_PIX_FMT_VP8_FRAME
40 #define V4L2_PIX_FMT_VP8_FRAME v4l2_fourcc('V', 'P', '8', 'F')
41 #endif
42
43 // VP9 parsed frames
44 #ifndef V4L2_PIX_FMT_VP9_FRAME
45 #define V4L2_PIX_FMT_VP9_FRAME v4l2_fourcc('V', 'P', '9', 'F')
46 #endif
47
48 // H264 parsed slices
49 #ifndef V4L2_PIX_FMT_H264_SLICE
50 #define V4L2_PIX_FMT_H264_SLICE v4l2_fourcc('S', '2', '6', '4')
51 #endif
52
53 // HEVC parsed slices
54 #ifndef V4L2_PIX_FMT_HEVC_SLICE
55 #define V4L2_PIX_FMT_HEVC_SLICE v4l2_fourcc('S', '2', '6', '5')
56 #endif
57
58 namespace android {
59
buildV4L2Format(const enum v4l2_buf_type type,uint32_t fourcc,const ui::Size & size,size_t buffer_size,uint32_t stride)60 struct v4l2_format buildV4L2Format(const enum v4l2_buf_type type, uint32_t fourcc,
61 const ui::Size& size, size_t buffer_size, uint32_t stride) {
62 struct v4l2_format format;
63 memset(&format, 0, sizeof(format));
64 format.type = type;
65 format.fmt.pix_mp.pixelformat = fourcc;
66 format.fmt.pix_mp.width = size.width;
67 format.fmt.pix_mp.height = size.height;
68 format.fmt.pix_mp.num_planes = V4L2Device::getNumPlanesOfV4L2PixFmt(fourcc);
69 format.fmt.pix_mp.plane_fmt[0].sizeimage = buffer_size;
70
71 // When the image format is planar the bytesperline value applies to the first plane and is
72 // divided by the same factor as the width field for the other planes.
73 format.fmt.pix_mp.plane_fmt[0].bytesperline = stride;
74
75 return format;
76 }
77
V4L2ExtCtrl(uint32_t id)78 V4L2ExtCtrl::V4L2ExtCtrl(uint32_t id) {
79 memset(&ctrl, 0, sizeof(ctrl));
80 ctrl.id = id;
81 }
82
V4L2ExtCtrl(uint32_t id,int32_t val)83 V4L2ExtCtrl::V4L2ExtCtrl(uint32_t id, int32_t val) : V4L2ExtCtrl(id) {
84 ctrl.value = val;
85 }
86
87 // Class used to store the state of a buffer that should persist between reference creations. This
88 // includes:
89 // * Result of initial VIDIOC_QUERYBUF ioctl,
90 // * Plane mappings.
91 //
92 // Also provides helper functions.
93 class V4L2Buffer {
94 public:
95 static std::unique_ptr<V4L2Buffer> create(scoped_refptr<V4L2Device> device,
96 enum v4l2_buf_type type, enum v4l2_memory memory,
97 const struct v4l2_format& format, size_t bufferId);
98 ~V4L2Buffer();
99
100 V4L2Buffer(const V4L2Buffer&) = delete;
101 V4L2Buffer& operator=(const V4L2Buffer&) = delete;
102
103 void* getPlaneMapping(const size_t plane);
104 size_t getMemoryUsage() const;
v4l2_buffer() const105 const struct v4l2_buffer& v4l2_buffer() const { return mV4l2Buffer; }
106
107 private:
108 V4L2Buffer(scoped_refptr<V4L2Device> device, enum v4l2_buf_type type, enum v4l2_memory memory,
109 const struct v4l2_format& format, size_t bufferId);
110 bool query();
111
112 scoped_refptr<V4L2Device> mDevice;
113 std::vector<void*> mPlaneMappings;
114
115 // V4L2 data as queried by QUERYBUF.
116 struct v4l2_buffer mV4l2Buffer;
117 // WARNING: do not change this to a vector or something smaller than VIDEO_MAX_PLANES, otherwise
118 // the Tegra libv4l2 will write data beyond the number of allocated planes, resulting in memory
119 // corruption.
120 struct v4l2_plane mV4l2Planes[VIDEO_MAX_PLANES];
121
122 struct v4l2_format mFormat __attribute__((unused));
123 };
124
create(scoped_refptr<V4L2Device> device,enum v4l2_buf_type type,enum v4l2_memory memory,const struct v4l2_format & format,size_t bufferId)125 std::unique_ptr<V4L2Buffer> V4L2Buffer::create(scoped_refptr<V4L2Device> device,
126 enum v4l2_buf_type type, enum v4l2_memory memory,
127 const struct v4l2_format& format, size_t bufferId) {
128 // Not using std::make_unique because constructor is private.
129 std::unique_ptr<V4L2Buffer> buffer(new V4L2Buffer(device, type, memory, format, bufferId));
130
131 if (!buffer->query()) return nullptr;
132
133 return buffer;
134 }
135
V4L2Buffer(scoped_refptr<V4L2Device> device,enum v4l2_buf_type type,enum v4l2_memory memory,const struct v4l2_format & format,size_t bufferId)136 V4L2Buffer::V4L2Buffer(scoped_refptr<V4L2Device> device, enum v4l2_buf_type type,
137 enum v4l2_memory memory, const struct v4l2_format& format, size_t bufferId)
138 : mDevice(device), mFormat(format) {
139 ALOG_ASSERT(V4L2_TYPE_IS_MULTIPLANAR(type));
140 ALOG_ASSERT(format.fmt.pix_mp.num_planes <= base::size(mV4l2Planes));
141
142 memset(mV4l2Planes, 0, sizeof(mV4l2Planes));
143 memset(&mV4l2Buffer, 0, sizeof(mV4l2Buffer));
144 mV4l2Buffer.m.planes = mV4l2Planes;
145 // Just in case we got more planes than we want.
146 mV4l2Buffer.length =
147 std::min(static_cast<size_t>(format.fmt.pix_mp.num_planes), base::size(mV4l2Planes));
148 mV4l2Buffer.index = bufferId;
149 mV4l2Buffer.type = type;
150 mV4l2Buffer.memory = memory;
151 mV4l2Buffer.memory = V4L2_MEMORY_DMABUF;
152 mPlaneMappings.resize(mV4l2Buffer.length);
153 }
154
~V4L2Buffer()155 V4L2Buffer::~V4L2Buffer() {
156 if (mV4l2Buffer.memory == V4L2_MEMORY_MMAP) {
157 for (size_t i = 0; i < mPlaneMappings.size(); i++) {
158 if (mPlaneMappings[i] != nullptr) {
159 mDevice->munmap(mPlaneMappings[i], mV4l2Buffer.m.planes[i].length);
160 }
161 }
162 }
163 }
164
query()165 bool V4L2Buffer::query() {
166 int ret = mDevice->ioctl(VIDIOC_QUERYBUF, &mV4l2Buffer);
167 if (ret) {
168 ALOGE("VIDIOC_QUERYBUF failed");
169 return false;
170 }
171
172 DCHECK(mPlaneMappings.size() == mV4l2Buffer.length);
173
174 return true;
175 }
176
getPlaneMapping(const size_t plane)177 void* V4L2Buffer::getPlaneMapping(const size_t plane) {
178 if (plane >= mPlaneMappings.size()) {
179 ALOGE("Invalid plane %zu requested.", plane);
180 return nullptr;
181 }
182
183 void* p = mPlaneMappings[plane];
184 if (p) {
185 return p;
186 }
187
188 // Do this check here to avoid repeating it after a buffer has been successfully mapped (we know
189 // we are of MMAP type by then).
190 if (mV4l2Buffer.memory != V4L2_MEMORY_MMAP) {
191 ALOGE("Cannot create mapping on non-MMAP buffer");
192 return nullptr;
193 }
194
195 p = mDevice->mmap(NULL, mV4l2Buffer.m.planes[plane].length, PROT_READ | PROT_WRITE, MAP_SHARED,
196 mV4l2Buffer.m.planes[plane].m.mem_offset);
197 if (p == MAP_FAILED) {
198 ALOGE("mmap() failed: ");
199 return nullptr;
200 }
201
202 mPlaneMappings[plane] = p;
203 return p;
204 }
205
getMemoryUsage() const206 size_t V4L2Buffer::getMemoryUsage() const {
207 size_t usage = 0;
208 for (size_t i = 0; i < mV4l2Buffer.length; i++) {
209 usage += mV4l2Buffer.m.planes[i].length;
210 }
211 return usage;
212 }
213
214 // A thread-safe pool of buffer indexes, allowing buffers to be obtained and returned from different
215 // threads. All the methods of this class are thread-safe. Users should keep a scoped_refptr to
216 // instances of this class in order to ensure the list remains alive as long as they need it.
217 class V4L2BuffersList : public base::RefCountedThreadSafe<V4L2BuffersList> {
218 public:
219 V4L2BuffersList() = default;
220
221 V4L2BuffersList(const V4L2BuffersList&) = delete;
222 V4L2BuffersList& operator=(const V4L2BuffersList&) = delete;
223
224 // Return a buffer to this list. Also can be called to set the initial pool of buffers.
225 // Note that it is illegal to return the same buffer twice.
226 void returnBuffer(size_t bufferId);
227 // Get any of the buffers in the list. There is no order guarantee whatsoever.
228 std::optional<size_t> getFreeBuffer();
229 // Get the buffer with specified index.
230 std::optional<size_t> getFreeBuffer(size_t requestedBufferId);
231 // Number of buffers currently in this list.
232 size_t size() const;
233
234 private:
235 friend class base::RefCountedThreadSafe<V4L2BuffersList>;
236 ~V4L2BuffersList() = default;
237
238 mutable std::mutex mLock;
239 std::set<size_t> mFreeBuffers GUARDED_BY(mLock);
240 };
241
returnBuffer(size_t bufferId)242 void V4L2BuffersList::returnBuffer(size_t bufferId) {
243 std::lock_guard<std::mutex> lock(mLock);
244
245 auto inserted = mFreeBuffers.emplace(bufferId);
246 if (!inserted.second) {
247 ALOGE("Returning buffer failed");
248 }
249 }
250
getFreeBuffer()251 std::optional<size_t> V4L2BuffersList::getFreeBuffer() {
252 std::lock_guard<std::mutex> lock(mLock);
253
254 auto iter = mFreeBuffers.begin();
255 if (iter == mFreeBuffers.end()) {
256 ALOGV("No free buffer available!");
257 return std::nullopt;
258 }
259
260 size_t bufferId = *iter;
261 mFreeBuffers.erase(iter);
262
263 return bufferId;
264 }
265
getFreeBuffer(size_t requestedBufferId)266 std::optional<size_t> V4L2BuffersList::getFreeBuffer(size_t requestedBufferId) {
267 std::lock_guard<std::mutex> lock(mLock);
268
269 return (mFreeBuffers.erase(requestedBufferId) > 0) ? std::make_optional(requestedBufferId)
270 : std::nullopt;
271 }
272
size() const273 size_t V4L2BuffersList::size() const {
274 std::lock_guard<std::mutex> lock(mLock);
275
276 return mFreeBuffers.size();
277 }
278
279 // Module-private class that let users query/write V4L2 buffer information. It also makes some
280 // private V4L2Queue methods available to this module only.
281 class V4L2BufferRefBase {
282 public:
283 V4L2BufferRefBase(const struct v4l2_buffer& v4l2Buffer, base::WeakPtr<V4L2Queue> queue);
284 ~V4L2BufferRefBase();
285
286 V4L2BufferRefBase(const V4L2BufferRefBase&) = delete;
287 V4L2BufferRefBase& operator=(const V4L2BufferRefBase&) = delete;
288
289 bool queueBuffer();
290 void* getPlaneMapping(const size_t plane);
291
292 // Checks that the number of passed FDs is adequate for the current format and buffer
293 // configuration. Only useful for DMABUF buffers.
294 bool checkNumFDsForFormat(const size_t numFds) const;
295
296 // Data from the buffer, that users can query and/or write.
297 struct v4l2_buffer mV4l2Buffer;
298 // WARNING: do not change this to a vector or something smaller than VIDEO_MAX_PLANES, otherwise
299 // the Tegra libv4l2 will write data beyond the number of allocated planes, resulting in memory
300 // corruption.
301 struct v4l2_plane mV4l2Planes[VIDEO_MAX_PLANES];
302
303 private:
bufferId() const304 size_t bufferId() const { return mV4l2Buffer.index; }
305
306 friend class V4L2WritableBufferRef;
307 // A weak pointer to the queue this buffer belongs to. Will remain valid as long as the
308 // underlying V4L2 buffer is valid too. This can only be accessed from the sequence protected by
309 // sequence_checker_. Thread-safe methods (like ~V4L2BufferRefBase) must *never* access this.
310 base::WeakPtr<V4L2Queue> mQueue;
311 // Where to return this buffer if it goes out of scope without being queued.
312 scoped_refptr<V4L2BuffersList> mReturnTo;
313 bool queued = false;
314
315 SEQUENCE_CHECKER(mSequenceChecker);
316 };
317
V4L2BufferRefBase(const struct v4l2_buffer & v4l2Buffer,base::WeakPtr<V4L2Queue> queue)318 V4L2BufferRefBase::V4L2BufferRefBase(const struct v4l2_buffer& v4l2Buffer,
319 base::WeakPtr<V4L2Queue> queue)
320 : mQueue(std::move(queue)), mReturnTo(mQueue->mFreeBuffers) {
321 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
322 ALOG_ASSERT(V4L2_TYPE_IS_MULTIPLANAR(v4l2Buffer.type));
323 ALOG_ASSERT(v4l2Buffer.length <= base::size(mV4l2Planes));
324 ALOG_ASSERT(mReturnTo);
325
326 memcpy(&mV4l2Buffer, &v4l2Buffer, sizeof(mV4l2Buffer));
327 memcpy(mV4l2Planes, v4l2Buffer.m.planes, sizeof(struct v4l2_plane) * v4l2Buffer.length);
328 mV4l2Buffer.m.planes = mV4l2Planes;
329 }
330
~V4L2BufferRefBase()331 V4L2BufferRefBase::~V4L2BufferRefBase() {
332 // We are the last reference and are only accessing the thread-safe mReturnTo, so we are safe
333 // to call from any sequence. If we have been queued, then the queue is our owner so we don't
334 // need to return to the free buffers list.
335 if (!queued) mReturnTo->returnBuffer(bufferId());
336 }
337
queueBuffer()338 bool V4L2BufferRefBase::queueBuffer() {
339 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
340
341 if (!mQueue) return false;
342
343 queued = mQueue->queueBuffer(&mV4l2Buffer);
344
345 return queued;
346 }
347
getPlaneMapping(const size_t plane)348 void* V4L2BufferRefBase::getPlaneMapping(const size_t plane) {
349 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
350
351 if (!mQueue) return nullptr;
352
353 return mQueue->mBuffers[bufferId()]->getPlaneMapping(plane);
354 }
355
checkNumFDsForFormat(const size_t numFds) const356 bool V4L2BufferRefBase::checkNumFDsForFormat(const size_t numFds) const {
357 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
358
359 if (!mQueue) return false;
360
361 // We have not used SetFormat(), assume this is ok.
362 // Hopefully we standardize SetFormat() in the future.
363 if (!mQueue->mCurrentFormat) return true;
364
365 const size_t requiredFds = mQueue->mCurrentFormat->fmt.pix_mp.num_planes;
366 // Sanity check.
367 ALOG_ASSERT(mV4l2Buffer.length == requiredFds);
368 if (numFds < requiredFds) {
369 ALOGE("Insufficient number of FDs given for the current format. "
370 "%zu provided, %zu required.",
371 numFds, requiredFds);
372 return false;
373 }
374
375 const auto* planes = mV4l2Buffer.m.planes;
376 for (size_t i = mV4l2Buffer.length - 1; i >= numFds; --i) {
377 // Assume that an fd is a duplicate of a previous plane's fd if offset != 0. Otherwise, if
378 // offset == 0, return error as it is likely pointing to a new plane.
379 if (planes[i].data_offset == 0) {
380 ALOGE("Additional dmabuf fds point to a new buffer.");
381 return false;
382 }
383 }
384
385 return true;
386 }
387
V4L2WritableBufferRef(const struct v4l2_buffer & v4l2Buffer,base::WeakPtr<V4L2Queue> queue)388 V4L2WritableBufferRef::V4L2WritableBufferRef(const struct v4l2_buffer& v4l2Buffer,
389 base::WeakPtr<V4L2Queue> queue)
390 : mBufferData(std::make_unique<V4L2BufferRefBase>(v4l2Buffer, std::move(queue))) {
391 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
392 }
393
V4L2WritableBufferRef(V4L2WritableBufferRef && other)394 V4L2WritableBufferRef::V4L2WritableBufferRef(V4L2WritableBufferRef&& other)
395 : mBufferData(std::move(other.mBufferData)) {
396 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
397 DCHECK_CALLED_ON_VALID_SEQUENCE(other.mSequenceChecker);
398 }
399
~V4L2WritableBufferRef()400 V4L2WritableBufferRef::~V4L2WritableBufferRef() {
401 // Only valid references should be sequence-checked
402 if (mBufferData) {
403 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
404 }
405 }
406
operator =(V4L2WritableBufferRef && other)407 V4L2WritableBufferRef& V4L2WritableBufferRef::operator=(V4L2WritableBufferRef&& other) {
408 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
409 DCHECK_CALLED_ON_VALID_SEQUENCE(other.mSequenceChecker);
410
411 if (this == &other) return *this;
412
413 mBufferData = std::move(other.mBufferData);
414
415 return *this;
416 }
417
memory() const418 enum v4l2_memory V4L2WritableBufferRef::memory() const {
419 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
420 ALOG_ASSERT(mBufferData);
421
422 return static_cast<enum v4l2_memory>(mBufferData->mV4l2Buffer.memory);
423 }
424
doQueue()425 bool V4L2WritableBufferRef::doQueue() && {
426 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
427 ALOG_ASSERT(mBufferData);
428
429 bool queued = mBufferData->queueBuffer();
430
431 // Clear our own reference.
432 mBufferData.reset();
433
434 return queued;
435 }
436
queueMMap()437 bool V4L2WritableBufferRef::queueMMap() && {
438 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
439 ALOG_ASSERT(mBufferData);
440
441 // Move ourselves so our data gets freed no matter when we return
442 V4L2WritableBufferRef self(std::move(*this));
443
444 if (self.memory() != V4L2_MEMORY_MMAP) {
445 ALOGE("Called on invalid buffer type!");
446 return false;
447 }
448
449 return std::move(self).doQueue();
450 }
451
queueUserPtr(const std::vector<void * > & ptrs)452 bool V4L2WritableBufferRef::queueUserPtr(const std::vector<void*>& ptrs) && {
453 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
454 ALOG_ASSERT(mBufferData);
455
456 // Move ourselves so our data gets freed no matter when we return
457 V4L2WritableBufferRef self(std::move(*this));
458
459 if (self.memory() != V4L2_MEMORY_USERPTR) {
460 ALOGE("Called on invalid buffer type!");
461 return false;
462 }
463
464 if (ptrs.size() != self.planesCount()) {
465 ALOGE("Provided %zu pointers while we require %u.", ptrs.size(),
466 self.mBufferData->mV4l2Buffer.length);
467 return false;
468 }
469
470 for (size_t i = 0; i < ptrs.size(); i++) {
471 self.mBufferData->mV4l2Buffer.m.planes[i].m.userptr =
472 reinterpret_cast<unsigned long>(ptrs[i]);
473 }
474
475 return std::move(self).doQueue();
476 }
477
queueDMABuf(const std::vector<int> & fds)478 bool V4L2WritableBufferRef::queueDMABuf(const std::vector<int>& fds) && {
479 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
480 ALOG_ASSERT(mBufferData);
481
482 // Move ourselves so our data gets freed no matter when we return
483 V4L2WritableBufferRef self(std::move(*this));
484
485 if (self.memory() != V4L2_MEMORY_DMABUF) {
486 ALOGE("Called on invalid buffer type!");
487 return false;
488 }
489
490 if (!self.mBufferData->checkNumFDsForFormat(fds.size())) return false;
491
492 size_t numPlanes = self.planesCount();
493 for (size_t i = 0; i < numPlanes; i++) self.mBufferData->mV4l2Buffer.m.planes[i].m.fd = fds[i];
494
495 return std::move(self).doQueue();
496 }
497
planesCount() const498 size_t V4L2WritableBufferRef::planesCount() const {
499 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
500 ALOG_ASSERT(mBufferData);
501
502 return mBufferData->mV4l2Buffer.length;
503 }
504
getPlaneSize(const size_t plane) const505 size_t V4L2WritableBufferRef::getPlaneSize(const size_t plane) const {
506 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
507 ALOG_ASSERT(mBufferData);
508
509 if (plane >= planesCount()) {
510 ALOGE("Invalid plane %zu requested.", plane);
511 return 0;
512 }
513
514 return mBufferData->mV4l2Buffer.m.planes[plane].length;
515 }
516
setPlaneSize(const size_t plane,const size_t size)517 void V4L2WritableBufferRef::setPlaneSize(const size_t plane, const size_t size) {
518 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
519 ALOG_ASSERT(mBufferData);
520
521 enum v4l2_memory mem = memory();
522 if (mem == V4L2_MEMORY_MMAP) {
523 ALOG_ASSERT(mBufferData->mV4l2Buffer.m.planes[plane].length == size);
524 return;
525 }
526 ALOG_ASSERT(mem == V4L2_MEMORY_USERPTR || mem == V4L2_MEMORY_DMABUF);
527
528 if (plane >= planesCount()) {
529 ALOGE("Invalid plane %zu requested.", plane);
530 return;
531 }
532
533 mBufferData->mV4l2Buffer.m.planes[plane].length = size;
534 }
535
getPlaneMapping(const size_t plane)536 void* V4L2WritableBufferRef::getPlaneMapping(const size_t plane) {
537 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
538 ALOG_ASSERT(mBufferData);
539
540 return mBufferData->getPlaneMapping(plane);
541 }
542
setTimeStamp(const struct timeval & timestamp)543 void V4L2WritableBufferRef::setTimeStamp(const struct timeval& timestamp) {
544 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
545 ALOG_ASSERT(mBufferData);
546
547 mBufferData->mV4l2Buffer.timestamp = timestamp;
548 }
549
getTimeStamp() const550 const struct timeval& V4L2WritableBufferRef::getTimeStamp() const {
551 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
552 ALOG_ASSERT(mBufferData);
553
554 return mBufferData->mV4l2Buffer.timestamp;
555 }
556
setPlaneBytesUsed(const size_t plane,const size_t bytesUsed)557 void V4L2WritableBufferRef::setPlaneBytesUsed(const size_t plane, const size_t bytesUsed) {
558 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
559 ALOG_ASSERT(mBufferData);
560
561 if (plane >= planesCount()) {
562 ALOGE("Invalid plane %zu requested.", plane);
563 return;
564 }
565
566 if (bytesUsed > getPlaneSize(plane)) {
567 ALOGE("Set bytes used %zu larger than plane size %zu.", bytesUsed, getPlaneSize(plane));
568 return;
569 }
570
571 mBufferData->mV4l2Buffer.m.planes[plane].bytesused = bytesUsed;
572 }
573
getPlaneBytesUsed(const size_t plane) const574 size_t V4L2WritableBufferRef::getPlaneBytesUsed(const size_t plane) const {
575 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
576 ALOG_ASSERT(mBufferData);
577
578 if (plane >= planesCount()) {
579 ALOGE("Invalid plane %zu requested.", plane);
580 return 0;
581 }
582
583 return mBufferData->mV4l2Buffer.m.planes[plane].bytesused;
584 }
585
setPlaneDataOffset(const size_t plane,const size_t dataOffset)586 void V4L2WritableBufferRef::setPlaneDataOffset(const size_t plane, const size_t dataOffset) {
587 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
588 ALOG_ASSERT(mBufferData);
589
590 if (plane >= planesCount()) {
591 ALOGE("Invalid plane %zu requested.", plane);
592 return;
593 }
594
595 mBufferData->mV4l2Buffer.m.planes[plane].data_offset = dataOffset;
596 }
597
bufferId() const598 size_t V4L2WritableBufferRef::bufferId() const {
599 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
600 ALOG_ASSERT(mBufferData);
601
602 return mBufferData->mV4l2Buffer.index;
603 }
604
V4L2ReadableBuffer(const struct v4l2_buffer & v4l2Buffer,base::WeakPtr<V4L2Queue> queue)605 V4L2ReadableBuffer::V4L2ReadableBuffer(const struct v4l2_buffer& v4l2Buffer,
606 base::WeakPtr<V4L2Queue> queue)
607 : mBufferData(std::make_unique<V4L2BufferRefBase>(v4l2Buffer, std::move(queue))) {
608 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
609 }
610
~V4L2ReadableBuffer()611 V4L2ReadableBuffer::~V4L2ReadableBuffer() {
612 // This method is thread-safe. Since we are the destructor, we are guaranteed to be called from
613 // the only remaining reference to us. Also, we are just calling the destructor of buffer_data_,
614 // which is also thread-safe.
615 ALOG_ASSERT(mBufferData);
616 }
617
isLast() const618 bool V4L2ReadableBuffer::isLast() const {
619 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
620 ALOG_ASSERT(mBufferData);
621
622 return mBufferData->mV4l2Buffer.flags & V4L2_BUF_FLAG_LAST;
623 }
624
isKeyframe() const625 bool V4L2ReadableBuffer::isKeyframe() const {
626 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
627 ALOG_ASSERT(mBufferData);
628
629 return mBufferData->mV4l2Buffer.flags & V4L2_BUF_FLAG_KEYFRAME;
630 }
631
getTimeStamp() const632 struct timeval V4L2ReadableBuffer::getTimeStamp() const {
633 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
634 ALOG_ASSERT(mBufferData);
635
636 return mBufferData->mV4l2Buffer.timestamp;
637 }
638
planesCount() const639 size_t V4L2ReadableBuffer::planesCount() const {
640 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
641 ALOG_ASSERT(mBufferData);
642
643 return mBufferData->mV4l2Buffer.length;
644 }
645
getPlaneMapping(const size_t plane) const646 const void* V4L2ReadableBuffer::getPlaneMapping(const size_t plane) const {
647 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
648 DCHECK(mBufferData);
649
650 return mBufferData->getPlaneMapping(plane);
651 }
652
getPlaneBytesUsed(const size_t plane) const653 size_t V4L2ReadableBuffer::getPlaneBytesUsed(const size_t plane) const {
654 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
655 ALOG_ASSERT(mBufferData);
656
657 if (plane >= planesCount()) {
658 ALOGE("Invalid plane %zu requested.", plane);
659 return 0;
660 }
661
662 return mBufferData->mV4l2Planes[plane].bytesused;
663 }
664
getPlaneDataOffset(const size_t plane) const665 size_t V4L2ReadableBuffer::getPlaneDataOffset(const size_t plane) const {
666 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
667 ALOG_ASSERT(mBufferData);
668
669 if (plane >= planesCount()) {
670 ALOGE("Invalid plane %zu requested.", plane);
671 return 0;
672 }
673
674 return mBufferData->mV4l2Planes[plane].data_offset;
675 }
676
bufferId() const677 size_t V4L2ReadableBuffer::bufferId() const {
678 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
679 ALOG_ASSERT(mBufferData);
680
681 return mBufferData->mV4l2Buffer.index;
682 }
683
684 // This class is used to expose buffer reference classes constructors to this module. This is to
685 // ensure that nobody else can create buffer references.
686 class V4L2BufferRefFactory {
687 public:
CreateWritableRef(const struct v4l2_buffer & v4l2Buffer,base::WeakPtr<V4L2Queue> queue)688 static V4L2WritableBufferRef CreateWritableRef(const struct v4l2_buffer& v4l2Buffer,
689 base::WeakPtr<V4L2Queue> queue) {
690 return V4L2WritableBufferRef(v4l2Buffer, std::move(queue));
691 }
692
CreateReadableRef(const struct v4l2_buffer & v4l2Buffer,base::WeakPtr<V4L2Queue> queue)693 static V4L2ReadableBufferRef CreateReadableRef(const struct v4l2_buffer& v4l2Buffer,
694 base::WeakPtr<V4L2Queue> queue) {
695 return new V4L2ReadableBuffer(v4l2Buffer, std::move(queue));
696 }
697 };
698
699 //// Helper macros that print the queue type with logs.
700 #define ALOGEQ(fmt, ...) ALOGE("(%s)" fmt, V4L2Device::v4L2BufferTypeToString(mType), ##__VA_ARGS__)
701 #define ALOGVQ(fmt, ...) ALOGD("(%s)" fmt, V4L2Device::v4L2BufferTypeToString(mType), ##__VA_ARGS__)
702
V4L2Queue(scoped_refptr<V4L2Device> dev,enum v4l2_buf_type type,base::OnceClosure destroyCb)703 V4L2Queue::V4L2Queue(scoped_refptr<V4L2Device> dev, enum v4l2_buf_type type,
704 base::OnceClosure destroyCb)
705 : mType(type), mDevice(dev), mDestroyCb(std::move(destroyCb)) {
706 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
707 }
708
~V4L2Queue()709 V4L2Queue::~V4L2Queue() {
710 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
711
712 if (mIsStreaming) {
713 ALOGEQ("Queue is still streaming, trying to stop it...");
714 streamoff();
715 }
716
717 ALOG_ASSERT(mQueuedBuffers.empty());
718 ALOG_ASSERT(!mFreeBuffers);
719
720 if (!mBuffers.empty()) {
721 ALOGEQ("Buffers are still allocated, trying to deallocate them...");
722 deallocateBuffers();
723 }
724
725 std::move(mDestroyCb).Run();
726 }
727
setFormat(uint32_t fourcc,const ui::Size & size,size_t bufferSize,uint32_t stride)728 std::optional<struct v4l2_format> V4L2Queue::setFormat(uint32_t fourcc, const ui::Size& size,
729 size_t bufferSize, uint32_t stride) {
730 struct v4l2_format format = buildV4L2Format(mType, fourcc, size, bufferSize, stride);
731 if (mDevice->ioctl(VIDIOC_S_FMT, &format) != 0 || format.fmt.pix_mp.pixelformat != fourcc) {
732 ALOGEQ("Failed to set format (format_fourcc=0x%" PRIx32 ")", fourcc);
733 return std::nullopt;
734 }
735
736 mCurrentFormat = format;
737 return mCurrentFormat;
738 }
739
tryFormat(uint32_t fourcc,const ui::Size & size,size_t bufferSize)740 std::optional<struct v4l2_format> V4L2Queue::tryFormat(uint32_t fourcc, const ui::Size& size,
741 size_t bufferSize) {
742 struct v4l2_format format = buildV4L2Format(mType, fourcc, size, bufferSize, 0);
743 if (mDevice->ioctl(VIDIOC_TRY_FMT, &format) != 0 || format.fmt.pix_mp.pixelformat != fourcc) {
744 ALOGEQ("Tried format not supported (format_fourcc=0x%" PRIx32 ")", fourcc);
745 return std::nullopt;
746 }
747
748 return format;
749 }
750
getFormat()751 std::pair<std::optional<struct v4l2_format>, int> V4L2Queue::getFormat() {
752 struct v4l2_format format;
753 memset(&format, 0, sizeof(format));
754 format.type = mType;
755 if (mDevice->ioctl(VIDIOC_G_FMT, &format) != 0) {
756 ALOGEQ("Failed to get format");
757 return std::make_pair(std::nullopt, errno);
758 }
759
760 return std::make_pair(format, 0);
761 }
762
allocateBuffers(size_t count,enum v4l2_memory memory)763 size_t V4L2Queue::allocateBuffers(size_t count, enum v4l2_memory memory) {
764 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
765 ALOG_ASSERT(!mFreeBuffers);
766 ALOG_ASSERT(mQueuedBuffers.size() == 0u);
767
768 if (isStreaming()) {
769 ALOGEQ("Cannot allocate buffers while streaming.");
770 return 0;
771 }
772
773 if (mBuffers.size() != 0) {
774 ALOGEQ("Cannot allocate new buffers while others are still allocated.");
775 return 0;
776 }
777
778 if (count == 0) {
779 ALOGEQ("Attempting to allocate 0 buffers.");
780 return 0;
781 }
782
783 // First query the number of planes in the buffers we are about to request. This should not be
784 // required, but Tegra's VIDIOC_QUERYBUF will fail on output buffers if the number of specified
785 // planes does not exactly match the format.
786 struct v4l2_format format = {.type = mType};
787 int ret = mDevice->ioctl(VIDIOC_G_FMT, &format);
788 if (ret) {
789 ALOGEQ("VIDIOC_G_FMT failed");
790 return 0;
791 }
792 mPlanesCount = format.fmt.pix_mp.num_planes;
793 ALOG_ASSERT(mPlanesCount <= static_cast<size_t>(VIDEO_MAX_PLANES));
794
795 struct v4l2_requestbuffers reqbufs;
796 memset(&reqbufs, 0, sizeof(reqbufs));
797 reqbufs.count = count;
798 reqbufs.type = mType;
799 reqbufs.memory = memory;
800 ALOGVQ("Requesting %zu buffers.", count);
801
802 ret = mDevice->ioctl(VIDIOC_REQBUFS, &reqbufs);
803 if (ret) {
804 ALOGEQ("VIDIOC_REQBUFS failed");
805 return 0;
806 }
807 ALOGVQ("Queue %u: got %u buffers.", mType, reqbufs.count);
808
809 mMemory = memory;
810
811 mFreeBuffers = new V4L2BuffersList();
812
813 // Now query all buffer information.
814 for (size_t i = 0; i < reqbufs.count; i++) {
815 auto buffer = V4L2Buffer::create(mDevice, mType, mMemory, format, i);
816
817 if (!buffer) {
818 deallocateBuffers();
819
820 return 0;
821 }
822
823 mBuffers.emplace_back(std::move(buffer));
824 mFreeBuffers->returnBuffer(i);
825 }
826
827 ALOG_ASSERT(mFreeBuffers);
828 ALOG_ASSERT(mFreeBuffers->size() == mBuffers.size());
829 ALOG_ASSERT(mQueuedBuffers.size() == 0u);
830
831 return mBuffers.size();
832 }
833
deallocateBuffers()834 bool V4L2Queue::deallocateBuffers() {
835 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
836
837 if (isStreaming()) {
838 ALOGEQ("Cannot deallocate buffers while streaming.");
839 return false;
840 }
841
842 if (mBuffers.size() == 0) return true;
843
844 mWeakThisFactory.InvalidateWeakPtrs();
845 mBuffers.clear();
846 mFreeBuffers = nullptr;
847
848 // Free all buffers.
849 struct v4l2_requestbuffers reqbufs;
850 memset(&reqbufs, 0, sizeof(reqbufs));
851 reqbufs.count = 0;
852 reqbufs.type = mType;
853 reqbufs.memory = mMemory;
854
855 int ret = mDevice->ioctl(VIDIOC_REQBUFS, &reqbufs);
856 if (ret) {
857 ALOGEQ("VIDIOC_REQBUFS failed");
858 return false;
859 }
860
861 ALOG_ASSERT(!mFreeBuffers);
862 ALOG_ASSERT(mQueuedBuffers.size() == 0u);
863
864 return true;
865 }
866
getMemoryUsage() const867 size_t V4L2Queue::getMemoryUsage() const {
868 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
869 size_t usage = 0;
870 for (const auto& buf : mBuffers) {
871 usage += buf->getMemoryUsage();
872 }
873 return usage;
874 }
875
getMemoryType() const876 v4l2_memory V4L2Queue::getMemoryType() const {
877 return mMemory;
878 }
879
getFreeBuffer()880 std::optional<V4L2WritableBufferRef> V4L2Queue::getFreeBuffer() {
881 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
882
883 // No buffers allocated at the moment?
884 if (!mFreeBuffers) return std::nullopt;
885
886 auto bufferId = mFreeBuffers->getFreeBuffer();
887 if (!bufferId.has_value()) return std::nullopt;
888
889 return V4L2BufferRefFactory::CreateWritableRef(mBuffers[bufferId.value()]->v4l2_buffer(),
890 mWeakThisFactory.GetWeakPtr());
891 }
892
getFreeBuffer(size_t requestedBufferIid)893 std::optional<V4L2WritableBufferRef> V4L2Queue::getFreeBuffer(size_t requestedBufferIid) {
894 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
895
896 // No buffers allocated at the moment?
897 if (!mFreeBuffers) return std::nullopt;
898
899 auto bufferId = mFreeBuffers->getFreeBuffer(requestedBufferIid);
900 if (!bufferId.has_value()) return std::nullopt;
901
902 return V4L2BufferRefFactory::CreateWritableRef(mBuffers[bufferId.value()]->v4l2_buffer(),
903 mWeakThisFactory.GetWeakPtr());
904 }
905
queueBuffer(struct v4l2_buffer * v4l2Buffer)906 bool V4L2Queue::queueBuffer(struct v4l2_buffer* v4l2Buffer) {
907 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
908
909 int ret = mDevice->ioctl(VIDIOC_QBUF, v4l2Buffer);
910 if (ret) {
911 ALOGEQ("VIDIOC_QBUF failed");
912 return false;
913 }
914
915 auto inserted = mQueuedBuffers.emplace(v4l2Buffer->index);
916 if (!inserted.second) {
917 ALOGE("Queuing buffer failed");
918 return false;
919 }
920
921 mDevice->schedulePoll();
922
923 return true;
924 }
925
dequeueBuffer()926 std::pair<bool, V4L2ReadableBufferRef> V4L2Queue::dequeueBuffer() {
927 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
928
929 // No need to dequeue if no buffers queued.
930 if (queuedBuffersCount() == 0) return std::make_pair(true, nullptr);
931
932 if (!isStreaming()) {
933 ALOGEQ("Attempting to dequeue a buffer while not streaming.");
934 return std::make_pair(true, nullptr);
935 }
936
937 struct v4l2_buffer v4l2Buffer;
938 memset(&v4l2Buffer, 0, sizeof(v4l2Buffer));
939 // WARNING: do not change this to a vector or something smaller than VIDEO_MAX_PLANES, otherwise
940 // the Tegra libv4l2 will write data beyond the number of allocated planes, resulting in memory
941 // corruption.
942 struct v4l2_plane planes[VIDEO_MAX_PLANES];
943 memset(planes, 0, sizeof(planes));
944 v4l2Buffer.type = mType;
945 v4l2Buffer.memory = mMemory;
946 v4l2Buffer.m.planes = planes;
947 v4l2Buffer.length = mPlanesCount;
948 int ret = mDevice->ioctl(VIDIOC_DQBUF, &v4l2Buffer);
949 if (ret) {
950 // TODO(acourbot): we should not have to check for EPIPE as codec clients should not call
951 // this method after the last buffer is dequeued.
952 switch (errno) {
953 case EAGAIN:
954 case EPIPE:
955 // This is not an error so we'll need to continue polling but won't provide a buffer.
956 mDevice->schedulePoll();
957 return std::make_pair(true, nullptr);
958 default:
959 ALOGEQ("VIDIOC_DQBUF failed");
960 return std::make_pair(false, nullptr);
961 }
962 }
963
964 auto it = mQueuedBuffers.find(v4l2Buffer.index);
965 ALOG_ASSERT(it != mQueuedBuffers.end());
966 mQueuedBuffers.erase(*it);
967
968 if (queuedBuffersCount() > 0) mDevice->schedulePoll();
969
970 ALOG_ASSERT(mFreeBuffers);
971 return std::make_pair(true, V4L2BufferRefFactory::CreateReadableRef(
972 v4l2Buffer, mWeakThisFactory.GetWeakPtr()));
973 }
974
isStreaming() const975 bool V4L2Queue::isStreaming() const {
976 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
977
978 return mIsStreaming;
979 }
980
streamon()981 bool V4L2Queue::streamon() {
982 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
983
984 if (mIsStreaming) return true;
985
986 int arg = static_cast<int>(mType);
987 int ret = mDevice->ioctl(VIDIOC_STREAMON, &arg);
988 if (ret) {
989 ALOGEQ("VIDIOC_STREAMON failed");
990 return false;
991 }
992
993 mIsStreaming = true;
994
995 return true;
996 }
997
streamoff()998 bool V4L2Queue::streamoff() {
999 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
1000
1001 // We do not check the value of IsStreaming(), because we may have queued buffers to the queue
1002 // and wish to get them back - in such as case, we may need to do a VIDIOC_STREAMOFF on a
1003 // stopped queue.
1004
1005 int arg = static_cast<int>(mType);
1006 int ret = mDevice->ioctl(VIDIOC_STREAMOFF, &arg);
1007 if (ret) {
1008 ALOGEQ("VIDIOC_STREAMOFF failed");
1009 return false;
1010 }
1011
1012 for (const auto& bufferId : mQueuedBuffers) {
1013 ALOG_ASSERT(mFreeBuffers);
1014 mFreeBuffers->returnBuffer(bufferId);
1015 }
1016
1017 mQueuedBuffers.clear();
1018
1019 mIsStreaming = false;
1020
1021 return true;
1022 }
1023
allocatedBuffersCount() const1024 size_t V4L2Queue::allocatedBuffersCount() const {
1025 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
1026
1027 return mBuffers.size();
1028 }
1029
freeBuffersCount() const1030 size_t V4L2Queue::freeBuffersCount() const {
1031 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
1032
1033 return mFreeBuffers ? mFreeBuffers->size() : 0;
1034 }
1035
queuedBuffersCount() const1036 size_t V4L2Queue::queuedBuffersCount() const {
1037 DCHECK_CALLED_ON_VALID_SEQUENCE(mSequenceChecker);
1038
1039 return mQueuedBuffers.size();
1040 }
1041
1042 #undef ALOGEQ
1043 #undef ALOGVQ
1044
1045 // This class is used to expose V4L2Queue's constructor to this module. This is to ensure that
1046 // nobody else can create instances of it.
1047 class V4L2QueueFactory {
1048 public:
createQueue(scoped_refptr<V4L2Device> dev,enum v4l2_buf_type type,base::OnceClosure destroyCb)1049 static scoped_refptr<V4L2Queue> createQueue(scoped_refptr<V4L2Device> dev,
1050 enum v4l2_buf_type type,
1051 base::OnceClosure destroyCb) {
1052 return new V4L2Queue(std::move(dev), type, std::move(destroyCb));
1053 }
1054 };
1055
V4L2Device()1056 V4L2Device::V4L2Device() {
1057 DETACH_FROM_SEQUENCE(mClientSequenceChecker);
1058 }
1059
~V4L2Device()1060 V4L2Device::~V4L2Device() {
1061 closeDevice();
1062 }
1063
getQueue(enum v4l2_buf_type type)1064 scoped_refptr<V4L2Queue> V4L2Device::getQueue(enum v4l2_buf_type type) {
1065 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1066
1067 switch (type) {
1068 // Supported queue types.
1069 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
1070 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
1071 break;
1072 default:
1073 ALOGE("Unsupported V4L2 queue type: %u", type);
1074 return nullptr;
1075 }
1076
1077 // TODO(acourbot): we should instead query the device for available queues, and allocate them
1078 // accordingly. This will do for now though.
1079 auto it = mQueues.find(type);
1080 if (it != mQueues.end()) return scoped_refptr<V4L2Queue>(it->second);
1081
1082 scoped_refptr<V4L2Queue> queue = V4L2QueueFactory::createQueue(
1083 this, type, base::BindOnce(&V4L2Device::onQueueDestroyed, this, type));
1084
1085 mQueues[type] = queue.get();
1086 return queue;
1087 }
1088
onQueueDestroyed(v4l2_buf_type bufType)1089 void V4L2Device::onQueueDestroyed(v4l2_buf_type bufType) {
1090 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1091
1092 auto it = mQueues.find(bufType);
1093 ALOG_ASSERT(it != mQueues.end());
1094 mQueues.erase(it);
1095 }
1096
1097 // static
create()1098 scoped_refptr<V4L2Device> V4L2Device::create() {
1099 ALOGV("%s()", __func__);
1100 return scoped_refptr<V4L2Device>(new V4L2Device());
1101 }
1102
open(Type type,uint32_t v4l2PixFmt)1103 bool V4L2Device::open(Type type, uint32_t v4l2PixFmt) {
1104 ALOGV("%s()", __func__);
1105
1106 std::string path = getDevicePathFor(type, v4l2PixFmt);
1107
1108 if (path.empty()) {
1109 ALOGE("No devices supporting %s for type: %u", fourccToString(v4l2PixFmt).c_str(),
1110 static_cast<uint32_t>(type));
1111 return false;
1112 }
1113
1114 if (!openDevicePath(path, type)) {
1115 ALOGE("Failed opening %s", path.c_str());
1116 return false;
1117 }
1118
1119 mDevicePollInterruptFd.reset(eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC));
1120 if (!mDevicePollInterruptFd.is_valid()) {
1121 ALOGE("Failed creating a poll interrupt fd");
1122 return false;
1123 }
1124
1125 return true;
1126 }
1127
ioctl(int request,void * arg)1128 int V4L2Device::ioctl(int request, void* arg) {
1129 ALOG_ASSERT(mDeviceFd.is_valid());
1130 return HANDLE_EINTR(::ioctl(mDeviceFd.get(), request, arg));
1131 }
1132
poll(bool pollDevice,bool * eventPending)1133 bool V4L2Device::poll(bool pollDevice, bool* eventPending) {
1134 struct pollfd pollfds[2];
1135 nfds_t nfds;
1136 int pollfd = -1;
1137
1138 pollfds[0].fd = mDevicePollInterruptFd.get();
1139 pollfds[0].events = POLLIN | POLLERR;
1140 nfds = 1;
1141
1142 if (pollDevice) {
1143 ALOGV("adding device fd to poll() set");
1144 pollfds[nfds].fd = mDeviceFd.get();
1145 pollfds[nfds].events = POLLIN | POLLOUT | POLLERR | POLLPRI;
1146 pollfd = nfds;
1147 nfds++;
1148 }
1149
1150 if (HANDLE_EINTR(::poll(pollfds, nfds, -1)) == -1) {
1151 ALOGE("poll() failed");
1152 return false;
1153 }
1154 *eventPending = (pollfd != -1 && pollfds[pollfd].revents & POLLPRI);
1155 return true;
1156 }
1157
mmap(void * addr,unsigned int len,int prot,int flags,unsigned int offset)1158 void* V4L2Device::mmap(void* addr, unsigned int len, int prot, int flags, unsigned int offset) {
1159 DCHECK(mDeviceFd.is_valid());
1160 return ::mmap(addr, len, prot, flags, mDeviceFd.get(), offset);
1161 }
1162
munmap(void * addr,unsigned int len)1163 void V4L2Device::munmap(void* addr, unsigned int len) {
1164 ::munmap(addr, len);
1165 }
1166
setDevicePollInterrupt()1167 bool V4L2Device::setDevicePollInterrupt() {
1168 ALOGV("%s()", __func__);
1169
1170 const uint64_t buf = 1;
1171 if (HANDLE_EINTR(write(mDevicePollInterruptFd.get(), &buf, sizeof(buf))) == -1) {
1172 ALOGE("write() failed");
1173 return false;
1174 }
1175 return true;
1176 }
1177
clearDevicePollInterrupt()1178 bool V4L2Device::clearDevicePollInterrupt() {
1179 ALOGV("%s()", __func__);
1180
1181 uint64_t buf;
1182 if (HANDLE_EINTR(read(mDevicePollInterruptFd.get(), &buf, sizeof(buf))) == -1) {
1183 if (errno == EAGAIN) {
1184 // No interrupt flag set, and we're reading nonblocking. Not an error.
1185 return true;
1186 } else {
1187 ALOGE("read() failed");
1188 return false;
1189 }
1190 }
1191 return true;
1192 }
1193
getDmabufsForV4L2Buffer(int index,size_t numPlanes,enum v4l2_buf_type bufType)1194 std::vector<base::ScopedFD> V4L2Device::getDmabufsForV4L2Buffer(int index, size_t numPlanes,
1195 enum v4l2_buf_type bufType) {
1196 ALOGV("%s()", __func__);
1197 ALOG_ASSERT(V4L2_TYPE_IS_MULTIPLANAR(bufType));
1198
1199 std::vector<base::ScopedFD> dmabufFds;
1200 for (size_t i = 0; i < numPlanes; ++i) {
1201 struct v4l2_exportbuffer expbuf;
1202 memset(&expbuf, 0, sizeof(expbuf));
1203 expbuf.type = bufType;
1204 expbuf.index = index;
1205 expbuf.plane = i;
1206 expbuf.flags = O_CLOEXEC;
1207 if (ioctl(VIDIOC_EXPBUF, &expbuf) != 0) {
1208 dmabufFds.clear();
1209 break;
1210 }
1211
1212 dmabufFds.push_back(base::ScopedFD(expbuf.fd));
1213 }
1214
1215 return dmabufFds;
1216 }
1217
preferredInputFormat(Type type)1218 std::vector<uint32_t> V4L2Device::preferredInputFormat(Type type) {
1219 if (type == Type::kEncoder) return {V4L2_PIX_FMT_NV12M, V4L2_PIX_FMT_NV12};
1220
1221 return {};
1222 }
1223
1224 // static
C2ProfileToV4L2PixFmt(C2Config::profile_t profile,bool sliceBased)1225 uint32_t V4L2Device::C2ProfileToV4L2PixFmt(C2Config::profile_t profile, bool sliceBased) {
1226 if (profile >= C2Config::PROFILE_AVC_BASELINE &&
1227 profile <= C2Config::PROFILE_AVC_ENHANCED_MULTIVIEW_DEPTH_HIGH) {
1228 if (sliceBased) {
1229 return V4L2_PIX_FMT_H264_SLICE;
1230 } else {
1231 return V4L2_PIX_FMT_H264;
1232 }
1233 } else if (profile >= C2Config::PROFILE_VP8_0 && profile <= C2Config::PROFILE_VP8_3) {
1234 if (sliceBased) {
1235 return V4L2_PIX_FMT_VP8_FRAME;
1236 } else {
1237 return V4L2_PIX_FMT_VP8;
1238 }
1239 } else if (profile >= C2Config::PROFILE_VP9_0 && profile <= C2Config::PROFILE_VP9_3) {
1240 if (sliceBased) {
1241 return V4L2_PIX_FMT_VP9_FRAME;
1242 } else {
1243 return V4L2_PIX_FMT_VP9;
1244 }
1245 } else if (profile >= C2Config::PROFILE_HEVC_MAIN &&
1246 profile <= C2Config::PROFILE_HEVC_3D_MAIN) {
1247 if (sliceBased) {
1248 return V4L2_PIX_FMT_HEVC_SLICE;
1249 } else {
1250 return V4L2_PIX_FMT_HEVC;
1251 }
1252 } else {
1253 ALOGE("Unknown profile: %s", profileToString(profile));
1254 return 0;
1255 }
1256 }
1257
1258 // static
v4L2ProfileToC2Profile(VideoCodec codec,uint32_t profile)1259 C2Config::profile_t V4L2Device::v4L2ProfileToC2Profile(VideoCodec codec, uint32_t profile) {
1260 switch (codec) {
1261 case VideoCodec::H264:
1262 switch (profile) {
1263 case V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE:
1264 case V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINE:
1265 return C2Config::PROFILE_AVC_BASELINE;
1266 case V4L2_MPEG_VIDEO_H264_PROFILE_MAIN:
1267 return C2Config::PROFILE_AVC_MAIN;
1268 case V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED:
1269 return C2Config::PROFILE_AVC_EXTENDED;
1270 case V4L2_MPEG_VIDEO_H264_PROFILE_HIGH:
1271 return C2Config::PROFILE_AVC_HIGH;
1272 }
1273 break;
1274 case VideoCodec::VP8:
1275 switch (profile) {
1276 case V4L2_MPEG_VIDEO_VP8_PROFILE_0:
1277 return C2Config::PROFILE_VP8_0;
1278 case V4L2_MPEG_VIDEO_VP8_PROFILE_1:
1279 return C2Config::PROFILE_VP8_1;
1280 case V4L2_MPEG_VIDEO_VP8_PROFILE_2:
1281 return C2Config::PROFILE_VP8_2;
1282 case V4L2_MPEG_VIDEO_VP8_PROFILE_3:
1283 return C2Config::PROFILE_VP8_3;
1284 }
1285 break;
1286 case VideoCodec::VP9:
1287 switch (profile) {
1288 case V4L2_MPEG_VIDEO_VP9_PROFILE_0:
1289 return C2Config::PROFILE_VP9_0;
1290 case V4L2_MPEG_VIDEO_VP9_PROFILE_1:
1291 return C2Config::PROFILE_VP9_1;
1292 case V4L2_MPEG_VIDEO_VP9_PROFILE_2:
1293 return C2Config::PROFILE_VP9_2;
1294 case V4L2_MPEG_VIDEO_VP9_PROFILE_3:
1295 return C2Config::PROFILE_VP9_3;
1296 }
1297 break;
1298 case VideoCodec::HEVC:
1299 switch (profile) {
1300 case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN:
1301 return C2Config::PROFILE_HEVC_MAIN;
1302 case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE:
1303 return C2Config::PROFILE_HEVC_MAIN_STILL;
1304 case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10:
1305 return C2Config::PROFILE_HEVC_MAIN_10;
1306 }
1307 break;
1308 default:
1309 ALOGE("Unknown codec: %u", codec);
1310 }
1311 ALOGE("Unknown profile: %u", profile);
1312 return C2Config::PROFILE_UNUSED;
1313 }
1314
v4L2PixFmtToC2Profiles(uint32_t pixFmt,bool)1315 std::vector<C2Config::profile_t> V4L2Device::v4L2PixFmtToC2Profiles(uint32_t pixFmt,
1316 bool /*isEncoder*/) {
1317 auto getSupportedProfiles = [this](VideoCodec codec,
1318 std::vector<C2Config::profile_t>* profiles) {
1319 uint32_t queryId = 0;
1320 switch (codec) {
1321 case VideoCodec::H264:
1322 queryId = V4L2_CID_MPEG_VIDEO_H264_PROFILE;
1323 break;
1324 case VideoCodec::VP8:
1325 queryId = V4L2_CID_MPEG_VIDEO_VP8_PROFILE;
1326 break;
1327 case VideoCodec::VP9:
1328 queryId = V4L2_CID_MPEG_VIDEO_VP9_PROFILE;
1329 break;
1330 case VideoCodec::HEVC:
1331 queryId = V4L2_CID_MPEG_VIDEO_HEVC_PROFILE;
1332 break;
1333 default:
1334 return false;
1335 }
1336
1337 v4l2_queryctrl queryCtrl = {};
1338 queryCtrl.id = queryId;
1339 if (ioctl(VIDIOC_QUERYCTRL, &queryCtrl) != 0) {
1340 return false;
1341 }
1342 v4l2_querymenu queryMenu = {};
1343 queryMenu.id = queryCtrl.id;
1344 for (queryMenu.index = queryCtrl.minimum;
1345 static_cast<int>(queryMenu.index) <= queryCtrl.maximum; queryMenu.index++) {
1346 if (ioctl(VIDIOC_QUERYMENU, &queryMenu) == 0) {
1347 const C2Config::profile_t profile =
1348 V4L2Device::v4L2ProfileToC2Profile(codec, queryMenu.index);
1349 if (profile != C2Config::PROFILE_UNUSED) profiles->push_back(profile);
1350 }
1351 }
1352 return true;
1353 };
1354
1355 std::vector<C2Config::profile_t> profiles;
1356 switch (pixFmt) {
1357 case V4L2_PIX_FMT_H264:
1358 case V4L2_PIX_FMT_H264_SLICE:
1359 if (!getSupportedProfiles(VideoCodec::H264, &profiles)) {
1360 ALOGW("Driver doesn't support QUERY H264 profiles, "
1361 "use default values, Base, Main, High");
1362 profiles = {
1363 C2Config::PROFILE_AVC_BASELINE,
1364 C2Config::PROFILE_AVC_MAIN,
1365 C2Config::PROFILE_AVC_HIGH,
1366 };
1367 }
1368 break;
1369 case V4L2_PIX_FMT_VP8:
1370 case V4L2_PIX_FMT_VP8_FRAME:
1371 if (!getSupportedProfiles(VideoCodec::VP8, &profiles)) {
1372 ALOGW("Driver doesn't support QUERY VP8 profiles, use default values, Profile0");
1373 profiles = {C2Config::PROFILE_VP8_0};
1374 }
1375 break;
1376 case V4L2_PIX_FMT_VP9:
1377 case V4L2_PIX_FMT_VP9_FRAME:
1378 if (!getSupportedProfiles(VideoCodec::VP9, &profiles)) {
1379 ALOGW("Driver doesn't support QUERY VP9 profiles, use default values, Profile0");
1380 profiles = {C2Config::PROFILE_VP9_0};
1381 }
1382 break;
1383 case V4L2_PIX_FMT_HEVC:
1384 case V4L2_PIX_FMT_HEVC_SLICE:
1385 if (!getSupportedProfiles(VideoCodec::HEVC, &profiles)) {
1386 ALOGW("Driver doesn't support QUERY HEVC profiles, "
1387 "use default values, Main");
1388 profiles = {
1389 C2Config::PROFILE_HEVC_MAIN,
1390 };
1391 }
1392 break;
1393 default:
1394 ALOGE("Unhandled pixelformat %s", fourccToString(pixFmt).c_str());
1395 return {};
1396 }
1397
1398 // Erase duplicated profiles.
1399 std::sort(profiles.begin(), profiles.end());
1400 profiles.erase(std::unique(profiles.begin(), profiles.end()), profiles.end());
1401 return profiles;
1402 }
1403
1404 // static
c2ProfileToV4L2H264Profile(C2Config::profile_t profile)1405 int32_t V4L2Device::c2ProfileToV4L2H264Profile(C2Config::profile_t profile) {
1406 switch (profile) {
1407 case C2Config::PROFILE_AVC_BASELINE:
1408 return V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE;
1409 case C2Config::PROFILE_AVC_MAIN:
1410 return V4L2_MPEG_VIDEO_H264_PROFILE_MAIN;
1411 case C2Config::PROFILE_AVC_EXTENDED:
1412 return V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED;
1413 case C2Config::PROFILE_AVC_HIGH:
1414 return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH;
1415 case C2Config::PROFILE_AVC_HIGH_10:
1416 return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10;
1417 case C2Config::PROFILE_AVC_HIGH_422:
1418 return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422;
1419 case C2Config::PROFILE_AVC_HIGH_444_PREDICTIVE:
1420 return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_PREDICTIVE;
1421 case C2Config::PROFILE_AVC_SCALABLE_BASELINE:
1422 return V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_BASELINE;
1423 case C2Config::PROFILE_AVC_SCALABLE_HIGH:
1424 return V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH;
1425 case C2Config::PROFILE_AVC_STEREO_HIGH:
1426 return V4L2_MPEG_VIDEO_H264_PROFILE_STEREO_HIGH;
1427 case C2Config::PROFILE_AVC_MULTIVIEW_HIGH:
1428 return V4L2_MPEG_VIDEO_H264_PROFILE_MULTIVIEW_HIGH;
1429 default:
1430 ALOGE("Add more cases as needed");
1431 return -1;
1432 }
1433 }
1434
1435 // static
h264LevelIdcToV4L2H264Level(uint8_t levelIdc)1436 int32_t V4L2Device::h264LevelIdcToV4L2H264Level(uint8_t levelIdc) {
1437 switch (levelIdc) {
1438 case 10:
1439 return V4L2_MPEG_VIDEO_H264_LEVEL_1_0;
1440 case 9:
1441 return V4L2_MPEG_VIDEO_H264_LEVEL_1B;
1442 case 11:
1443 return V4L2_MPEG_VIDEO_H264_LEVEL_1_1;
1444 case 12:
1445 return V4L2_MPEG_VIDEO_H264_LEVEL_1_2;
1446 case 13:
1447 return V4L2_MPEG_VIDEO_H264_LEVEL_1_3;
1448 case 20:
1449 return V4L2_MPEG_VIDEO_H264_LEVEL_2_0;
1450 case 21:
1451 return V4L2_MPEG_VIDEO_H264_LEVEL_2_1;
1452 case 22:
1453 return V4L2_MPEG_VIDEO_H264_LEVEL_2_2;
1454 case 30:
1455 return V4L2_MPEG_VIDEO_H264_LEVEL_3_0;
1456 case 31:
1457 return V4L2_MPEG_VIDEO_H264_LEVEL_3_1;
1458 case 32:
1459 return V4L2_MPEG_VIDEO_H264_LEVEL_3_2;
1460 case 40:
1461 return V4L2_MPEG_VIDEO_H264_LEVEL_4_0;
1462 case 41:
1463 return V4L2_MPEG_VIDEO_H264_LEVEL_4_1;
1464 case 42:
1465 return V4L2_MPEG_VIDEO_H264_LEVEL_4_2;
1466 case 50:
1467 return V4L2_MPEG_VIDEO_H264_LEVEL_5_0;
1468 case 51:
1469 return V4L2_MPEG_VIDEO_H264_LEVEL_5_1;
1470 default:
1471 ALOGE("Unrecognized levelIdc: %u", static_cast<uint32_t>(levelIdc));
1472 return -1;
1473 }
1474 }
1475
1476 // static
C2BitrateModeToV4L2BitrateMode(C2Config::bitrate_mode_t bitrateMode)1477 v4l2_mpeg_video_bitrate_mode V4L2Device::C2BitrateModeToV4L2BitrateMode(
1478 C2Config::bitrate_mode_t bitrateMode) {
1479 switch (bitrateMode) {
1480 case C2Config::bitrate_mode_t::BITRATE_CONST_SKIP_ALLOWED:
1481 ALOGW("BITRATE_CONST_SKIP_ALLOWED not supported, defaulting to BITRATE_CONST");
1482 FALLTHROUGH;
1483 case C2Config::bitrate_mode_t::BITRATE_CONST:
1484 return V4L2_MPEG_VIDEO_BITRATE_MODE_CBR;
1485 case C2Config::bitrate_mode_t::BITRATE_VARIABLE_SKIP_ALLOWED:
1486 ALOGW("BITRATE_VARIABLE_SKIP_ALLOWED not supported, defaulting to BITRATE_VARIABLE");
1487 FALLTHROUGH;
1488 case C2Config::bitrate_mode_t::BITRATE_VARIABLE:
1489 return V4L2_MPEG_VIDEO_BITRATE_MODE_VBR;
1490 default:
1491 ALOGW("Unsupported bitrate mode %u, defaulting to BITRATE_VARIABLE",
1492 static_cast<uint32_t>(bitrateMode));
1493 return V4L2_MPEG_VIDEO_BITRATE_MODE_VBR;
1494 }
1495 }
1496
1497 // static
allocatedSizeFromV4L2Format(const struct v4l2_format & format)1498 ui::Size V4L2Device::allocatedSizeFromV4L2Format(const struct v4l2_format& format) {
1499 ui::Size codedSize;
1500 ui::Size visibleSize;
1501 VideoPixelFormat frameFormat = VideoPixelFormat::UNKNOWN;
1502 size_t bytesPerLine = 0;
1503 // Total bytes in the frame.
1504 size_t sizeimage = 0;
1505
1506 if (V4L2_TYPE_IS_MULTIPLANAR(format.type)) {
1507 ALOG_ASSERT(format.fmt.pix_mp.num_planes > 0);
1508 bytesPerLine = base::checked_cast<int>(format.fmt.pix_mp.plane_fmt[0].bytesperline);
1509 for (size_t i = 0; i < format.fmt.pix_mp.num_planes; ++i) {
1510 sizeimage += base::checked_cast<int>(format.fmt.pix_mp.plane_fmt[i].sizeimage);
1511 }
1512 visibleSize.set(base::checked_cast<int>(format.fmt.pix_mp.width),
1513 base::checked_cast<int>(format.fmt.pix_mp.height));
1514 const uint32_t pixFmt = format.fmt.pix_mp.pixelformat;
1515 const auto frameFourcc = Fourcc::fromV4L2PixFmt(pixFmt);
1516 if (!frameFourcc) {
1517 ALOGE("Unsupported format %s", fourccToString(pixFmt).c_str());
1518 return codedSize;
1519 }
1520 frameFormat = frameFourcc->toVideoPixelFormat();
1521 } else {
1522 bytesPerLine = base::checked_cast<int>(format.fmt.pix.bytesperline);
1523 sizeimage = base::checked_cast<int>(format.fmt.pix.sizeimage);
1524 visibleSize.set(base::checked_cast<int>(format.fmt.pix.width),
1525 base::checked_cast<int>(format.fmt.pix.height));
1526 const uint32_t fourcc = format.fmt.pix.pixelformat;
1527 const auto frameFourcc = Fourcc::fromV4L2PixFmt(fourcc);
1528 if (!frameFourcc) {
1529 ALOGE("Unsupported format %s", fourccToString(fourcc).c_str());
1530 return codedSize;
1531 }
1532 frameFormat = frameFourcc ? frameFourcc->toVideoPixelFormat() : VideoPixelFormat::UNKNOWN;
1533 }
1534
1535 // V4L2 does not provide per-plane bytesperline (bpl) when different components are sharing one
1536 // physical plane buffer. In this case, it only provides bpl for the first component in the
1537 // plane. So we can't depend on it for calculating height, because bpl may vary within one
1538 // physical plane buffer. For example, YUV420 contains 3 components in one physical plane, with
1539 // Y at 8 bits per pixel, and Cb/Cr at 4 bits per pixel per component, but we only get 8 pits
1540 // per pixel from bytesperline in physical plane 0. So we need to get total frame bpp from
1541 // elsewhere to calculate coded height.
1542
1543 // We need bits per pixel for one component only to calculate the coded width from bytesperline.
1544 int planeHorizBitsPerPixel = planeHorizontalBitsPerPixel(frameFormat, 0);
1545
1546 // Adding up bpp for each component will give us total bpp for all components.
1547 int totalBpp = 0;
1548 for (size_t i = 0; i < numPlanes(frameFormat); ++i)
1549 totalBpp += planeBitsPerPixel(frameFormat, i);
1550
1551 if (sizeimage == 0 || bytesPerLine == 0 || planeHorizBitsPerPixel == 0 || totalBpp == 0 ||
1552 (bytesPerLine * 8) % planeHorizBitsPerPixel != 0) {
1553 ALOGE("Invalid format provided");
1554 return codedSize;
1555 }
1556
1557 // Coded width can be calculated by taking the first component's bytesperline, which in V4L2
1558 // always applies to the first component in physical plane buffer.
1559 int codedWidth = bytesPerLine * 8 / planeHorizBitsPerPixel;
1560 // Sizeimage is codedWidth * codedHeight * totalBpp.
1561 int codedHeight = sizeimage * 8 / codedWidth / totalBpp;
1562
1563 codedSize.set(codedWidth, codedHeight);
1564 ALOGV("codedSize=%s", toString(codedSize).c_str());
1565
1566 // Sanity checks. Calculated coded size has to contain given visible size and fulfill buffer
1567 // byte size requirements.
1568 ALOG_ASSERT(contains(Rect(codedSize), Rect(visibleSize)));
1569 ALOG_ASSERT(sizeimage <= allocationSize(frameFormat, codedSize));
1570
1571 return codedSize;
1572 }
1573
1574 // static
v4L2MemoryToString(const v4l2_memory memory)1575 const char* V4L2Device::v4L2MemoryToString(const v4l2_memory memory) {
1576 switch (memory) {
1577 case V4L2_MEMORY_MMAP:
1578 return "V4L2_MEMORY_MMAP";
1579 case V4L2_MEMORY_USERPTR:
1580 return "V4L2_MEMORY_USERPTR";
1581 case V4L2_MEMORY_DMABUF:
1582 return "V4L2_MEMORY_DMABUF";
1583 case V4L2_MEMORY_OVERLAY:
1584 return "V4L2_MEMORY_OVERLAY";
1585 default:
1586 return "UNKNOWN";
1587 }
1588 }
1589
1590 // static
v4L2BufferTypeToString(const enum v4l2_buf_type bufType)1591 const char* V4L2Device::v4L2BufferTypeToString(const enum v4l2_buf_type bufType) {
1592 switch (bufType) {
1593 case V4L2_BUF_TYPE_VIDEO_OUTPUT:
1594 return "OUTPUT";
1595 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
1596 return "CAPTURE";
1597 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
1598 return "OUTPUT_MPLANE";
1599 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
1600 return "CAPTURE_MPLANE";
1601 default:
1602 return "UNKNOWN";
1603 }
1604 }
1605
1606 // static
v4L2FormatToString(const struct v4l2_format & format)1607 std::string V4L2Device::v4L2FormatToString(const struct v4l2_format& format) {
1608 std::ostringstream s;
1609 s << "v4l2_format type: " << format.type;
1610 if (format.type == V4L2_BUF_TYPE_VIDEO_CAPTURE || format.type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
1611 // single-planar
1612 const struct v4l2_pix_format& pix = format.fmt.pix;
1613 s << ", width_height: " << toString(ui::Size(pix.width, pix.height))
1614 << ", pixelformat: " << fourccToString(pix.pixelformat) << ", field: " << pix.field
1615 << ", bytesperline: " << pix.bytesperline << ", sizeimage: " << pix.sizeimage;
1616 } else if (V4L2_TYPE_IS_MULTIPLANAR(format.type)) {
1617 const struct v4l2_pix_format_mplane& pixMp = format.fmt.pix_mp;
1618 // As long as num_planes's type is uint8_t, ostringstream treats it as a char instead of an
1619 // integer, which is not what we want. Casting pix_mp.num_planes unsigned int solves the
1620 // issue.
1621 s << ", width_height: " << toString(ui::Size(pixMp.width, pixMp.height))
1622 << ", pixelformat: " << fourccToString(pixMp.pixelformat) << ", field: " << pixMp.field
1623 << ", num_planes: " << static_cast<unsigned int>(pixMp.num_planes);
1624 for (size_t i = 0; i < pixMp.num_planes; ++i) {
1625 const struct v4l2_plane_pix_format& plane_fmt = pixMp.plane_fmt[i];
1626 s << ", plane_fmt[" << i << "].sizeimage: " << plane_fmt.sizeimage << ", plane_fmt["
1627 << i << "].bytesperline: " << plane_fmt.bytesperline;
1628 }
1629 } else {
1630 s << " unsupported yet.";
1631 }
1632 return s.str();
1633 }
1634
1635 // static
v4L2BufferToString(const struct v4l2_buffer & buffer)1636 std::string V4L2Device::v4L2BufferToString(const struct v4l2_buffer& buffer) {
1637 std::ostringstream s;
1638 s << "v4l2_buffer type: " << buffer.type << ", memory: " << buffer.memory
1639 << ", index: " << buffer.index << " bytesused: " << buffer.bytesused
1640 << ", length: " << buffer.length;
1641 if (buffer.type == V4L2_BUF_TYPE_VIDEO_CAPTURE || buffer.type == V4L2_BUF_TYPE_VIDEO_OUTPUT) {
1642 // single-planar
1643 if (buffer.memory == V4L2_MEMORY_MMAP) {
1644 s << ", m.offset: " << buffer.m.offset;
1645 } else if (buffer.memory == V4L2_MEMORY_USERPTR) {
1646 s << ", m.userptr: " << buffer.m.userptr;
1647 } else if (buffer.memory == V4L2_MEMORY_DMABUF) {
1648 s << ", m.fd: " << buffer.m.fd;
1649 };
1650 } else if (V4L2_TYPE_IS_MULTIPLANAR(buffer.type)) {
1651 for (size_t i = 0; i < buffer.length; ++i) {
1652 const struct v4l2_plane& plane = buffer.m.planes[i];
1653 s << ", m.planes[" << i << "](bytesused: " << plane.bytesused
1654 << ", length: " << plane.length << ", data_offset: " << plane.data_offset;
1655 if (buffer.memory == V4L2_MEMORY_MMAP) {
1656 s << ", m.mem_offset: " << plane.m.mem_offset;
1657 } else if (buffer.memory == V4L2_MEMORY_USERPTR) {
1658 s << ", m.userptr: " << plane.m.userptr;
1659 } else if (buffer.memory == V4L2_MEMORY_DMABUF) {
1660 s << ", m.fd: " << plane.m.fd;
1661 }
1662 s << ")";
1663 }
1664 } else {
1665 s << " unsupported yet.";
1666 }
1667 return s.str();
1668 }
1669
1670 // static
v4L2FormatToVideoFrameLayout(const struct v4l2_format & format)1671 std::optional<VideoFrameLayout> V4L2Device::v4L2FormatToVideoFrameLayout(
1672 const struct v4l2_format& format) {
1673 if (!V4L2_TYPE_IS_MULTIPLANAR(format.type)) {
1674 ALOGE("v4l2_buf_type is not multiplanar: 0x%" PRIx32, format.type);
1675 return std::nullopt;
1676 }
1677 const v4l2_pix_format_mplane& pixMp = format.fmt.pix_mp;
1678 const uint32_t& pixFmt = pixMp.pixelformat;
1679 const auto videoFourcc = Fourcc::fromV4L2PixFmt(pixFmt);
1680 if (!videoFourcc) {
1681 ALOGE("Failed to convert pixel format to VideoPixelFormat: %s",
1682 fourccToString(pixFmt).c_str());
1683 return std::nullopt;
1684 }
1685 const VideoPixelFormat videoFormat = videoFourcc->toVideoPixelFormat();
1686 const size_t numBuffers = pixMp.num_planes;
1687 const size_t numColorPlanes = numPlanes(videoFormat);
1688 if (numColorPlanes == 0) {
1689 ALOGE("Unsupported video format for NumPlanes(): %s",
1690 videoPixelFormatToString(videoFormat).c_str());
1691 return std::nullopt;
1692 }
1693 if (numBuffers > numColorPlanes) {
1694 ALOGE("pix_mp.num_planes: %zu should not be larger than NumPlanes(%s): %zu", numBuffers,
1695 videoPixelFormatToString(videoFormat).c_str(), numColorPlanes);
1696 return std::nullopt;
1697 }
1698 // Reserve capacity in advance to prevent unnecessary vector reallocation.
1699 std::vector<VideoFramePlane> planes;
1700 planes.reserve(numColorPlanes);
1701 for (size_t i = 0; i < numBuffers; ++i) {
1702 const v4l2_plane_pix_format& planeFormat = pixMp.plane_fmt[i];
1703 planes.push_back(VideoFramePlane{planeFormat.bytesperline, 0u, planeFormat.sizeimage});
1704 }
1705 // For the case that #color planes > #buffers, it fills stride of color plane which does not map
1706 // to buffer. Right now only some pixel formats are supported: NV12, YUV420, YVU420.
1707 if (numColorPlanes > numBuffers) {
1708 const uint32_t yStride = planes[0].mStride;
1709 // Note that y_stride is from v4l2 bytesperline and its type is uint32_t. It is safe to cast
1710 // to size_t.
1711 const size_t yStrideAbs = static_cast<size_t>(yStride);
1712 switch (pixFmt) {
1713 case V4L2_PIX_FMT_NV12:
1714 // The stride of UV is the same as Y in NV12. The height is half of Y plane.
1715 planes.push_back(VideoFramePlane{yStride, yStrideAbs * pixMp.height,
1716 yStrideAbs * pixMp.height / 2});
1717 ALOG_ASSERT(2u == planes.size());
1718 break;
1719 case V4L2_PIX_FMT_YUV420:
1720 case V4L2_PIX_FMT_YVU420: {
1721 // The spec claims that two Cx rows (including padding) is exactly as long as one Y row
1722 // (including padding). So stride of Y must be even number.
1723 if (yStride % 2 != 0 || pixMp.height % 2 != 0) {
1724 ALOGE("Plane-Y stride and height should be even; stride: %u, height: %u", yStride,
1725 pixMp.height);
1726 return std::nullopt;
1727 }
1728 const uint32_t halfStride = yStride / 2;
1729 const size_t plane0Area = yStrideAbs * pixMp.height;
1730 const size_t plane1Area = plane0Area / 4;
1731 planes.push_back(VideoFramePlane{halfStride, plane0Area, plane1Area});
1732 planes.push_back(VideoFramePlane{halfStride, plane0Area + plane1Area, plane1Area});
1733 ALOG_ASSERT(3u == planes.size());
1734 break;
1735 }
1736 default:
1737 ALOGE("Cannot derive stride for each plane for pixel format %s",
1738 fourccToString(pixFmt).c_str());
1739 return std::nullopt;
1740 }
1741 }
1742
1743 return VideoFrameLayout{videoFormat, ui::Size(pixMp.width, pixMp.height), std::move(planes),
1744 (numBuffers > 1)};
1745 }
1746
1747 // static
getNumPlanesOfV4L2PixFmt(uint32_t pixFmt)1748 size_t V4L2Device::getNumPlanesOfV4L2PixFmt(uint32_t pixFmt) {
1749 std::optional<Fourcc> fourcc = Fourcc::fromV4L2PixFmt(pixFmt);
1750 if (fourcc && fourcc->isMultiPlanar()) {
1751 return numPlanes(fourcc->toVideoPixelFormat());
1752 }
1753 return 1u;
1754 }
1755
getSupportedResolution(uint32_t pixelFormat,ui::Size * minResolution,ui::Size * maxResolution)1756 void V4L2Device::getSupportedResolution(uint32_t pixelFormat, ui::Size* minResolution,
1757 ui::Size* maxResolution) {
1758 maxResolution->set(0, 0);
1759 minResolution->set(0, 0);
1760 v4l2_frmsizeenum frameSize;
1761 memset(&frameSize, 0, sizeof(frameSize));
1762 frameSize.pixel_format = pixelFormat;
1763 for (; ioctl(VIDIOC_ENUM_FRAMESIZES, &frameSize) == 0; ++frameSize.index) {
1764 if (frameSize.type == V4L2_FRMSIZE_TYPE_DISCRETE) {
1765 if (frameSize.discrete.width >= base::checked_cast<uint32_t>(maxResolution->width) &&
1766 frameSize.discrete.height >= base::checked_cast<uint32_t>(maxResolution->height)) {
1767 maxResolution->set(frameSize.discrete.width, frameSize.discrete.height);
1768 }
1769 if (isEmpty(*minResolution) ||
1770 (frameSize.discrete.width <= base::checked_cast<uint32_t>(minResolution->width) &&
1771 frameSize.discrete.height <=
1772 base::checked_cast<uint32_t>(minResolution->height))) {
1773 minResolution->set(frameSize.discrete.width, frameSize.discrete.height);
1774 }
1775 } else if (frameSize.type == V4L2_FRMSIZE_TYPE_STEPWISE ||
1776 frameSize.type == V4L2_FRMSIZE_TYPE_CONTINUOUS) {
1777 maxResolution->set(frameSize.stepwise.max_width, frameSize.stepwise.max_height);
1778 minResolution->set(frameSize.stepwise.min_width, frameSize.stepwise.min_height);
1779 break;
1780 }
1781 }
1782 if (isEmpty(*maxResolution)) {
1783 maxResolution->set(1920, 1088);
1784 ALOGE("GetSupportedResolution failed to get maximum resolution for fourcc %s, "
1785 "fall back to %s",
1786 fourccToString(pixelFormat).c_str(), toString(*maxResolution).c_str());
1787 }
1788 if (isEmpty(*minResolution)) {
1789 minResolution->set(16, 16);
1790 ALOGE("GetSupportedResolution failed to get minimum resolution for fourcc %s, "
1791 "fall back to %s",
1792 fourccToString(pixelFormat).c_str(), toString(*minResolution).c_str());
1793 }
1794 }
1795
enumerateSupportedPixelformats(v4l2_buf_type bufType)1796 std::vector<uint32_t> V4L2Device::enumerateSupportedPixelformats(v4l2_buf_type bufType) {
1797 std::vector<uint32_t> pixelFormats;
1798
1799 v4l2_fmtdesc fmtDesc;
1800 memset(&fmtDesc, 0, sizeof(fmtDesc));
1801 fmtDesc.type = bufType;
1802
1803 for (; ioctl(VIDIOC_ENUM_FMT, &fmtDesc) == 0; ++fmtDesc.index) {
1804 ALOGV("Found %s (0x%" PRIx32 ")", fmtDesc.description, fmtDesc.pixelformat);
1805 pixelFormats.push_back(fmtDesc.pixelformat);
1806 }
1807
1808 return pixelFormats;
1809 }
1810
getSupportedDecodeProfiles(const size_t numFormats,const uint32_t pixelFormats[])1811 V4L2Device::SupportedDecodeProfiles V4L2Device::getSupportedDecodeProfiles(
1812 const size_t numFormats, const uint32_t pixelFormats[]) {
1813 SupportedDecodeProfiles supportedProfiles;
1814
1815 Type type = Type::kDecoder;
1816 const auto& devices = getDevicesForType(type);
1817 for (const auto& device : devices) {
1818 if (!openDevicePath(device.first, type)) {
1819 ALOGV("Failed opening %s", device.first.c_str());
1820 continue;
1821 }
1822
1823 const auto& profiles = enumerateSupportedDecodeProfiles(numFormats, pixelFormats);
1824 supportedProfiles.insert(supportedProfiles.end(), profiles.begin(), profiles.end());
1825 closeDevice();
1826 }
1827
1828 return supportedProfiles;
1829 }
1830
getSupportedEncodeProfiles()1831 V4L2Device::SupportedEncodeProfiles V4L2Device::getSupportedEncodeProfiles() {
1832 SupportedEncodeProfiles supportedProfiles;
1833
1834 Type type = Type::kEncoder;
1835 const auto& devices = getDevicesForType(type);
1836 for (const auto& device : devices) {
1837 if (!openDevicePath(device.first, type)) {
1838 ALOGV("Failed opening %s", device.first.c_str());
1839 continue;
1840 }
1841
1842 const auto& profiles = enumerateSupportedEncodeProfiles();
1843 supportedProfiles.insert(supportedProfiles.end(), profiles.begin(), profiles.end());
1844 closeDevice();
1845 }
1846
1847 return supportedProfiles;
1848 }
1849
enumerateSupportedDecodeProfiles(const size_t numFormats,const uint32_t pixelFormats[])1850 V4L2Device::SupportedDecodeProfiles V4L2Device::enumerateSupportedDecodeProfiles(
1851 const size_t numFormats, const uint32_t pixelFormats[]) {
1852 SupportedDecodeProfiles profiles;
1853
1854 const auto& supportedPixelformats =
1855 enumerateSupportedPixelformats(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1856
1857 for (uint32_t pixelFormat : supportedPixelformats) {
1858 if (std::find(pixelFormats, pixelFormats + numFormats, pixelFormat) ==
1859 pixelFormats + numFormats)
1860 continue;
1861
1862 SupportedDecodeProfile profile;
1863 getSupportedResolution(pixelFormat, &profile.min_resolution, &profile.max_resolution);
1864
1865 const auto videoCodecProfiles = v4L2PixFmtToC2Profiles(pixelFormat, false);
1866
1867 for (const auto& videoCodecProfile : videoCodecProfiles) {
1868 profile.profile = videoCodecProfile;
1869 profiles.push_back(profile);
1870
1871 ALOGV("Found decoder profile %s, resolutions: %s %s", profileToString(profile.profile),
1872 toString(profile.min_resolution).c_str(),
1873 toString(profile.max_resolution).c_str());
1874 }
1875 }
1876
1877 return profiles;
1878 }
1879
enumerateSupportedEncodeProfiles()1880 V4L2Device::SupportedEncodeProfiles V4L2Device::enumerateSupportedEncodeProfiles() {
1881 SupportedEncodeProfiles profiles;
1882
1883 const auto& supportedPixelformats =
1884 enumerateSupportedPixelformats(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
1885
1886 for (const auto& pixelformat : supportedPixelformats) {
1887 SupportedEncodeProfile profile;
1888 profile.max_framerate_numerator = 30;
1889 profile.max_framerate_denominator = 1;
1890 ui::Size minResolution;
1891 getSupportedResolution(pixelformat, &minResolution, &profile.max_resolution);
1892
1893 const auto videoCodecProfiles = v4L2PixFmtToC2Profiles(pixelformat, true);
1894
1895 for (const auto& videoCodecProfile : videoCodecProfiles) {
1896 profile.profile = videoCodecProfile;
1897 profiles.push_back(profile);
1898
1899 ALOGV("Found encoder profile %s, max resolution: %s", profileToString(profile.profile),
1900 toString(profile.max_resolution).c_str());
1901 }
1902 }
1903
1904 return profiles;
1905 }
1906
startPolling(android::V4L2DevicePoller::EventCallback eventCallback,base::RepeatingClosure errorCallback)1907 bool V4L2Device::startPolling(android::V4L2DevicePoller::EventCallback eventCallback,
1908 base::RepeatingClosure errorCallback) {
1909 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1910
1911 if (!mDevicePoller) {
1912 mDevicePoller = std::make_unique<android::V4L2DevicePoller>(this, "V4L2DeviceThreadPoller");
1913 }
1914
1915 bool ret = mDevicePoller->startPolling(std::move(eventCallback), std::move(errorCallback));
1916
1917 if (!ret) mDevicePoller = nullptr;
1918
1919 return ret;
1920 }
1921
stopPolling()1922 bool V4L2Device::stopPolling() {
1923 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1924
1925 return !mDevicePoller || mDevicePoller->stopPolling();
1926 }
1927
schedulePoll()1928 void V4L2Device::schedulePoll() {
1929 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1930
1931 if (!mDevicePoller || !mDevicePoller->isPolling()) return;
1932
1933 mDevicePoller->schedulePoll();
1934 }
1935
isCtrlExposed(uint32_t ctrlId)1936 bool V4L2Device::isCtrlExposed(uint32_t ctrlId) {
1937 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1938
1939 struct v4l2_queryctrl queryCtrl;
1940 memset(&queryCtrl, 0, sizeof(queryCtrl));
1941 queryCtrl.id = ctrlId;
1942
1943 return ioctl(VIDIOC_QUERYCTRL, &queryCtrl) == 0;
1944 }
1945
setExtCtrls(uint32_t ctrlClass,std::vector<V4L2ExtCtrl> ctrls)1946 bool V4L2Device::setExtCtrls(uint32_t ctrlClass, std::vector<V4L2ExtCtrl> ctrls) {
1947 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1948
1949 if (ctrls.empty()) return true;
1950
1951 struct v4l2_ext_controls extCtrls;
1952 memset(&extCtrls, 0, sizeof(extCtrls));
1953 extCtrls.ctrl_class = ctrlClass;
1954 extCtrls.count = ctrls.size();
1955 extCtrls.controls = &ctrls[0].ctrl;
1956 return ioctl(VIDIOC_S_EXT_CTRLS, &extCtrls) == 0;
1957 }
1958
isCommandSupported(uint32_t commandId)1959 bool V4L2Device::isCommandSupported(uint32_t commandId) {
1960 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1961
1962 struct v4l2_encoder_cmd cmd;
1963 memset(&cmd, 0, sizeof(cmd));
1964 cmd.cmd = commandId;
1965
1966 return ioctl(VIDIOC_TRY_ENCODER_CMD, &cmd) == 0;
1967 }
1968
hasCapabilities(uint32_t capabilities)1969 bool V4L2Device::hasCapabilities(uint32_t capabilities) {
1970 DCHECK_CALLED_ON_VALID_SEQUENCE(mClientSequenceChecker);
1971
1972 struct v4l2_capability caps;
1973 memset(&caps, 0, sizeof(caps));
1974 if (ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
1975 ALOGE("Failed to query capabilities");
1976 return false;
1977 }
1978
1979 return (caps.capabilities & capabilities) == capabilities;
1980 }
1981
openDevicePath(const std::string & path,Type)1982 bool V4L2Device::openDevicePath(const std::string& path, Type /*type*/) {
1983 ALOG_ASSERT(!mDeviceFd.is_valid());
1984
1985 mDeviceFd.reset(HANDLE_EINTR(::open(path.c_str(), O_RDWR | O_NONBLOCK | O_CLOEXEC)));
1986 if (!mDeviceFd.is_valid()) return false;
1987
1988 return true;
1989 }
1990
closeDevice()1991 void V4L2Device::closeDevice() {
1992 ALOGV("%s()", __func__);
1993
1994 mDeviceFd.reset();
1995 }
1996
enumerateDevicesForType(Type type)1997 void V4L2Device::enumerateDevicesForType(Type type) {
1998 // video input/output devices are registered as /dev/videoX in V4L2.
1999 static const std::string kVideoDevicePattern = "/dev/video";
2000
2001 std::string devicePattern;
2002 v4l2_buf_type bufType;
2003 switch (type) {
2004 case Type::kDecoder:
2005 devicePattern = kVideoDevicePattern;
2006 bufType = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2007 break;
2008 case Type::kEncoder:
2009 devicePattern = kVideoDevicePattern;
2010 bufType = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2011 break;
2012 default:
2013 ALOGE("Only decoder and encoder types are supported!!");
2014 return;
2015 }
2016
2017 std::vector<std::string> candidatePaths;
2018
2019 // TODO(posciak): Remove this legacy unnumbered device once all platforms are updated to use
2020 // numbered devices.
2021 candidatePaths.push_back(devicePattern);
2022
2023 // We are sandboxed, so we can't query directory contents to check which devices are actually
2024 // available. Try to open the first 16; if not present, we will just fail to open immediately.
2025 for (int i = 0; i < 16; ++i) {
2026 candidatePaths.push_back(base::StringPrintf("%s%d", devicePattern.c_str(), i));
2027 }
2028
2029 Devices devices;
2030 for (const auto& path : candidatePaths) {
2031 if (!openDevicePath(path, type)) {
2032 continue;
2033 }
2034
2035 const auto& supportedPixelformats = enumerateSupportedPixelformats(bufType);
2036 if (!supportedPixelformats.empty()) {
2037 ALOGV("Found device: %s", path.c_str());
2038 devices.push_back(std::make_pair(path, supportedPixelformats));
2039 }
2040
2041 closeDevice();
2042 }
2043
2044 ALOG_ASSERT(mDevicesByType.count(type) == 0u);
2045 mDevicesByType[type] = devices;
2046 }
2047
getDevicesForType(Type type)2048 const V4L2Device::Devices& V4L2Device::getDevicesForType(Type type) {
2049 if (mDevicesByType.count(type) == 0) enumerateDevicesForType(type);
2050
2051 ALOG_ASSERT(mDevicesByType.count(type) != 0u);
2052 return mDevicesByType[type];
2053 }
2054
getDevicePathFor(Type type,uint32_t pixFmt)2055 std::string V4L2Device::getDevicePathFor(Type type, uint32_t pixFmt) {
2056 const Devices& devices = getDevicesForType(type);
2057
2058 for (const auto& device : devices) {
2059 if (std::find(device.second.begin(), device.second.end(), pixFmt) != device.second.end())
2060 return device.first;
2061 }
2062
2063 return std::string();
2064 }
2065
2066 } // namespace android
2067