• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 #include <utility>
20 
21 #ifdef __linux__
22 #include <sys/prctl.h>
23 #endif
24 
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <sys/mount.h>
28 #include <sys/syscall.h>
29 
30 #if defined(__APPLE__)
31 #include <crt_externs.h>  // for _NSGetEnviron
32 #endif
33 
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <string.h>
38 #include <thread>
39 #include <unordered_set>
40 #include <vector>
41 
42 #include "android-base/strings.h"
43 
44 #include "aot_class_linker.h"
45 #include "arch/arm/registers_arm.h"
46 #include "arch/arm64/registers_arm64.h"
47 #include "arch/context.h"
48 #include "arch/instruction_set_features.h"
49 #include "arch/x86/registers_x86.h"
50 #include "arch/x86_64/registers_x86_64.h"
51 #include "art_field-inl.h"
52 #include "art_method-inl.h"
53 #include "asm_support.h"
54 #include "base/aborting.h"
55 #include "base/arena_allocator.h"
56 #include "base/atomic.h"
57 #include "base/dumpable.h"
58 #include "base/enums.h"
59 #include "base/file_utils.h"
60 #include "base/flags.h"
61 #include "base/malloc_arena_pool.h"
62 #include "base/mem_map_arena_pool.h"
63 #include "base/memory_tool.h"
64 #include "base/mutex.h"
65 #include "base/os.h"
66 #include "base/quasi_atomic.h"
67 #include "base/sdk_version.h"
68 #include "base/stl_util.h"
69 #include "base/systrace.h"
70 #include "base/unix_file/fd_file.h"
71 #include "base/utils.h"
72 #include "class_linker-inl.h"
73 #include "class_root-inl.h"
74 #include "compiler_callbacks.h"
75 #include "debugger.h"
76 #include "dex/art_dex_file_loader.h"
77 #include "dex/dex_file_loader.h"
78 #include "elf_file.h"
79 #include "entrypoints/runtime_asm_entrypoints.h"
80 #include "entrypoints/entrypoint_utils-inl.h"
81 #include "experimental_flags.h"
82 #include "fault_handler.h"
83 #include "gc/accounting/card_table-inl.h"
84 #include "gc/heap.h"
85 #include "gc/scoped_gc_critical_section.h"
86 #include "gc/space/image_space.h"
87 #include "gc/space/space-inl.h"
88 #include "gc/system_weak.h"
89 #include "gc/task_processor.h"
90 #include "handle_scope-inl.h"
91 #include "hidden_api.h"
92 #include "image-inl.h"
93 #include "indirect_reference_table.h"
94 #include "instrumentation.h"
95 #include "intern_table-inl.h"
96 #include "interpreter/interpreter.h"
97 #include "jit/jit.h"
98 #include "jit/jit_code_cache.h"
99 #include "jit/profile_saver.h"
100 #include "jni/java_vm_ext.h"
101 #include "jni/jni_id_manager.h"
102 #include "jni_id_type.h"
103 #include "linear_alloc.h"
104 #include "memory_representation.h"
105 #include "metrics/statsd.h"
106 #include "mirror/array.h"
107 #include "mirror/class-alloc-inl.h"
108 #include "mirror/class-inl.h"
109 #include "mirror/class_ext.h"
110 #include "mirror/class_loader-inl.h"
111 #include "mirror/emulated_stack_frame.h"
112 #include "mirror/field.h"
113 #include "mirror/method.h"
114 #include "mirror/method_handle_impl.h"
115 #include "mirror/method_handles_lookup.h"
116 #include "mirror/method_type.h"
117 #include "mirror/stack_trace_element.h"
118 #include "mirror/throwable.h"
119 #include "mirror/var_handle.h"
120 #include "monitor.h"
121 #include "native/dalvik_system_DexFile.h"
122 #include "native/dalvik_system_BaseDexClassLoader.h"
123 #include "native/dalvik_system_VMDebug.h"
124 #include "native/dalvik_system_VMRuntime.h"
125 #include "native/dalvik_system_VMStack.h"
126 #include "native/dalvik_system_ZygoteHooks.h"
127 #include "native/java_lang_Class.h"
128 #include "native/java_lang_Object.h"
129 #include "native/java_lang_StackStreamFactory.h"
130 #include "native/java_lang_String.h"
131 #include "native/java_lang_StringFactory.h"
132 #include "native/java_lang_System.h"
133 #include "native/java_lang_Thread.h"
134 #include "native/java_lang_Throwable.h"
135 #include "native/java_lang_VMClassLoader.h"
136 #include "native/java_lang_invoke_MethodHandle.h"
137 #include "native/java_lang_invoke_MethodHandleImpl.h"
138 #include "native/java_lang_ref_FinalizerReference.h"
139 #include "native/java_lang_ref_Reference.h"
140 #include "native/java_lang_reflect_Array.h"
141 #include "native/java_lang_reflect_Constructor.h"
142 #include "native/java_lang_reflect_Executable.h"
143 #include "native/java_lang_reflect_Field.h"
144 #include "native/java_lang_reflect_Method.h"
145 #include "native/java_lang_reflect_Parameter.h"
146 #include "native/java_lang_reflect_Proxy.h"
147 #include "native/java_util_concurrent_atomic_AtomicLong.h"
148 #include "native/libcore_io_Memory.h"
149 #include "native/libcore_util_CharsetUtils.h"
150 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
151 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
152 #include "native/sun_misc_Unsafe.h"
153 #include "native/jdk_internal_misc_Unsafe.h"
154 #include "native_bridge_art_interface.h"
155 #include "native_stack_dump.h"
156 #include "nativehelper/scoped_local_ref.h"
157 #include "nterp_helpers.h"
158 #include "oat.h"
159 #include "oat_file_manager.h"
160 #include "oat_quick_method_header.h"
161 #include "object_callbacks.h"
162 #include "odr_statslog/odr_statslog.h"
163 #include "parsed_options.h"
164 #include "quick/quick_method_frame_info.h"
165 #include "reflection.h"
166 #include "runtime_callbacks.h"
167 #include "runtime_common.h"
168 #include "runtime_image.h"
169 #include "runtime_intrinsics.h"
170 #include "runtime_options.h"
171 #include "scoped_thread_state_change-inl.h"
172 #include "sigchain.h"
173 #include "signal_catcher.h"
174 #include "signal_set.h"
175 #include "thread.h"
176 #include "thread_list.h"
177 #include "ti/agent.h"
178 #include "trace.h"
179 #include "transaction.h"
180 #include "vdex_file.h"
181 #include "verifier/class_verifier.h"
182 #include "well_known_classes-inl.h"
183 
184 #ifdef ART_TARGET_ANDROID
185 #include <android/api-level.h>
186 #include <android/set_abort_message.h>
187 #include "com_android_apex.h"
188 namespace apex = com::android::apex;
189 
190 #endif
191 
192 // Static asserts to check the values of generated assembly-support macros.
193 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
194 #include "asm_defines.def"
195 #undef ASM_DEFINE
196 
197 namespace art {
198 
199 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
200 static constexpr bool kEnableJavaStackTraceHandler = false;
201 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
202 // linking.
203 static constexpr double kLowMemoryMinLoadFactor = 0.5;
204 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
205 static constexpr double kNormalMinLoadFactor = 0.4;
206 static constexpr double kNormalMaxLoadFactor = 0.7;
207 
208 Runtime* Runtime::instance_ = nullptr;
209 
210 struct TraceConfig {
211   Trace::TraceMode trace_mode;
212   Trace::TraceOutputMode trace_output_mode;
213   std::string trace_file;
214   size_t trace_file_size;
215   TraceClockSource clock_source;
216 };
217 
218 namespace {
219 
220 #ifdef __APPLE__
GetEnviron()221 inline char** GetEnviron() {
222   // When Google Test is built as a framework on MacOS X, the environ variable
223   // is unavailable. Apple's documentation (man environ) recommends using
224   // _NSGetEnviron() instead.
225   return *_NSGetEnviron();
226 }
227 #else
228 // Some POSIX platforms expect you to declare environ. extern "C" makes
229 // it reside in the global namespace.
230 extern "C" char** environ;
231 inline char** GetEnviron() { return environ; }
232 #endif
233 
CheckConstants()234 void CheckConstants() {
235   CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
236 }
237 
238 }  // namespace
239 
Runtime()240 Runtime::Runtime()
241     : resolution_method_(nullptr),
242       imt_conflict_method_(nullptr),
243       imt_unimplemented_method_(nullptr),
244       instruction_set_(InstructionSet::kNone),
245       compiler_callbacks_(nullptr),
246       is_zygote_(false),
247       is_primary_zygote_(false),
248       is_system_server_(false),
249       must_relocate_(false),
250       is_concurrent_gc_enabled_(true),
251       is_explicit_gc_disabled_(false),
252       image_dex2oat_enabled_(true),
253       default_stack_size_(0),
254       heap_(nullptr),
255       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
256       monitor_list_(nullptr),
257       monitor_pool_(nullptr),
258       thread_list_(nullptr),
259       intern_table_(nullptr),
260       class_linker_(nullptr),
261       signal_catcher_(nullptr),
262       java_vm_(nullptr),
263       thread_pool_ref_count_(0u),
264       fault_message_(nullptr),
265       threads_being_born_(0),
266       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
267       shutting_down_(false),
268       shutting_down_started_(false),
269       started_(false),
270       finished_starting_(false),
271       vfprintf_(nullptr),
272       exit_(nullptr),
273       abort_(nullptr),
274       stats_enabled_(false),
275       is_running_on_memory_tool_(kRunningOnMemoryTool),
276       instrumentation_(),
277       main_thread_group_(nullptr),
278       system_thread_group_(nullptr),
279       system_class_loader_(nullptr),
280       dump_gc_performance_on_shutdown_(false),
281       preinitialization_transactions_(),
282       verify_(verifier::VerifyMode::kNone),
283       target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
284       compat_framework_(),
285       implicit_null_checks_(false),
286       implicit_so_checks_(false),
287       implicit_suspend_checks_(false),
288       no_sig_chain_(false),
289       force_native_bridge_(false),
290       is_native_bridge_loaded_(false),
291       is_native_debuggable_(false),
292       async_exceptions_thrown_(false),
293       non_standard_exits_enabled_(false),
294       runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable),
295       monitor_timeout_enable_(false),
296       monitor_timeout_ns_(0),
297       zygote_max_failed_boots_(0),
298       experimental_flags_(ExperimentalFlags::kNone),
299       oat_file_manager_(nullptr),
300       is_low_memory_mode_(false),
301       madvise_willneed_total_dex_size_(0),
302       madvise_willneed_odex_filesize_(0),
303       madvise_willneed_art_filesize_(0),
304       safe_mode_(false),
305       hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
306       core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
307       test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
308       dedupe_hidden_api_warnings_(true),
309       hidden_api_access_event_log_rate_(0),
310       dump_native_stack_on_sig_quit_(true),
311       // Initially assume we perceive jank in case the process state is never updated.
312       process_state_(kProcessStateJankPerceptible),
313       zygote_no_threads_(false),
314       verifier_logging_threshold_ms_(100),
315       verifier_missing_kthrow_fatal_(false),
316       perfetto_hprof_enabled_(false),
317       perfetto_javaheapprof_enabled_(false),
318       out_of_memory_error_hook_(nullptr) {
319   static_assert(Runtime::kCalleeSaveSize ==
320                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
321   CheckConstants();
322 
323   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
324   interpreter::CheckInterpreterAsmConstants();
325   callbacks_.reset(new RuntimeCallbacks());
326   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
327     deoptimization_counts_[i] = 0u;
328   }
329 }
330 
~Runtime()331 Runtime::~Runtime() {
332   ScopedTrace trace("Runtime shutdown");
333   if (is_native_bridge_loaded_) {
334     UnloadNativeBridge();
335   }
336 
337   Thread* self = Thread::Current();
338   const bool attach_shutdown_thread = self == nullptr;
339   if (attach_shutdown_thread) {
340     // We can only create a peer if the runtime is actually started. This is only not true during
341     // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
342     // In this case we will just try again without allocating a peer so that shutdown can continue.
343     // Very few things are actually capable of distinguishing between the peer & peerless states so
344     // this should be fine.
345     // Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to
346     // process any event. We also need to enter a GCCriticalSection when processing certain events
347     // (for ex: removing the last breakpoint). These two restrictions together make the tear down
348     // of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback.
349     // (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection.
350     bool thread_attached = AttachCurrentThread("Shutdown thread",
351                                                /* as_daemon= */ false,
352                                                GetSystemThreadGroup(),
353                                                /* create_peer= */ IsStarted(),
354                                                /* should_run_callbacks= */ false);
355     if (UNLIKELY(!thread_attached)) {
356       LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
357       CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
358                                 /* as_daemon= */   false,
359                                 /* thread_group=*/ nullptr,
360                                 /* create_peer= */ false));
361     }
362     self = Thread::Current();
363   } else {
364     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
365   }
366 
367   if (dump_gc_performance_on_shutdown_) {
368     heap_->CalculatePreGcWeightedAllocatedBytes();
369     uint64_t process_cpu_end_time = ProcessCpuNanoTime();
370     ScopedLogSeverity sls(LogSeverity::INFO);
371     // This can't be called from the Heap destructor below because it
372     // could call RosAlloc::InspectAll() which needs the thread_list
373     // to be still alive.
374     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
375 
376     uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
377     uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
378     float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
379     LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
380         << " out of process CPU time " << PrettyDuration(process_cpu_time)
381         << " (" << ratio << ")"
382         << "\n";
383     double pre_gc_weighted_allocated_bytes =
384         heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
385     // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
386     // GC. Both numerator and denominator take into account until the end of the last GC,
387     // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
388     double post_gc_weighted_allocated_bytes =
389         heap_->GetPostGcWeightedAllocatedBytes() /
390           (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
391 
392     LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
393         << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
394         << " (" <<  PrettySize(pre_gc_weighted_allocated_bytes)  << ")";
395     LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
396         << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
397         << " (" <<  PrettySize(post_gc_weighted_allocated_bytes)  << ")"
398         << "\n";
399   }
400 
401   // Wait for the workers of thread pools to be created since there can't be any
402   // threads attaching during shutdown.
403   WaitForThreadPoolWorkersToStart();
404   if (jit_ != nullptr) {
405     jit_->WaitForWorkersToBeCreated();
406     // Stop the profile saver thread before marking the runtime as shutting down.
407     // The saver will try to dump the profiles before being sopped and that
408     // requires holding the mutator lock.
409     jit_->StopProfileSaver();
410     // Delete thread pool before the thread list since we don't want to wait forever on the
411     // JIT compiler threads. Also this should be run before marking the runtime
412     // as shutting down as some tasks may require mutator access.
413     jit_->DeleteThreadPool();
414   }
415   if (oat_file_manager_ != nullptr) {
416     oat_file_manager_->WaitForWorkersToBeCreated();
417   }
418   // Disable GC before deleting the thread-pool and shutting down runtime as it
419   // restricts attaching new threads.
420   heap_->DisableGCForShutdown();
421   heap_->WaitForWorkersToBeCreated();
422   // Make sure to let the GC complete if it is running.
423   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
424 
425   {
426     ScopedTrace trace2("Wait for shutdown cond");
427     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
428     shutting_down_started_ = true;
429     while (threads_being_born_ > 0) {
430       shutdown_cond_->Wait(self);
431     }
432     SetShuttingDown();
433   }
434   // Shutdown and wait for the daemons.
435   CHECK(self != nullptr);
436   if (IsFinishedStarting()) {
437     ScopedTrace trace2("Waiting for Daemons");
438     self->ClearException();
439     ScopedObjectAccess soa(self);
440     WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self);
441   }
442 
443   // Shutdown any trace running.
444   Trace::Shutdown();
445 
446   // Report death. Clients may require a working thread, still, so do it before GC completes and
447   // all non-daemon threads are done.
448   {
449     ScopedObjectAccess soa(self);
450     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
451   }
452 
453   // Delete thread pools before detaching the current thread in case tasks
454   // getting deleted need to have access to Thread::Current.
455   heap_->DeleteThreadPool();
456   if (oat_file_manager_ != nullptr) {
457     oat_file_manager_->DeleteThreadPool();
458   }
459   DeleteThreadPool();
460   CHECK(thread_pool_ == nullptr);
461 
462   if (attach_shutdown_thread) {
463     DetachCurrentThread(/* should_run_callbacks= */ false);
464     self = nullptr;
465   }
466 
467   // Make sure our internal threads are dead before we start tearing down things they're using.
468   GetRuntimeCallbacks()->StopDebugger();
469   // Deletion ordering is tricky. Null out everything we've deleted.
470   delete signal_catcher_;
471   signal_catcher_ = nullptr;
472 
473   // Shutdown metrics reporting.
474   metrics_reporter_.reset();
475 
476   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
477   // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
478   // no longer access monitor and thread list data structures. We leak user daemon threads
479   // themselves, since we have no mechanism for shutting them down.
480   {
481     ScopedTrace trace2("Delete thread list");
482     thread_list_->ShutDown();
483   }
484 
485   // TODO Maybe do some locking.
486   for (auto& agent : agents_) {
487     agent->Unload();
488   }
489 
490   // TODO Maybe do some locking
491   for (auto& plugin : plugins_) {
492     plugin.Unload();
493   }
494 
495   // Finally delete the thread list.
496   // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
497   // We assume that by this point, we've waited long enough for things to quiesce.
498   delete thread_list_;
499   thread_list_ = nullptr;
500 
501   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
502   // accessing the instrumentation when we delete it.
503   if (jit_ != nullptr) {
504     VLOG(jit) << "Deleting jit";
505     jit_.reset(nullptr);
506     jit_code_cache_.reset(nullptr);
507   }
508 
509   // Shutdown the fault manager if it was initialized.
510   fault_manager.Shutdown();
511 
512   ScopedTrace trace2("Delete state");
513   delete monitor_list_;
514   monitor_list_ = nullptr;
515   delete monitor_pool_;
516   monitor_pool_ = nullptr;
517   delete class_linker_;
518   class_linker_ = nullptr;
519   delete small_lrt_allocator_;
520   small_lrt_allocator_ = nullptr;
521   delete heap_;
522   heap_ = nullptr;
523   delete intern_table_;
524   intern_table_ = nullptr;
525   delete oat_file_manager_;
526   oat_file_manager_ = nullptr;
527   Thread::Shutdown();
528   QuasiAtomic::Shutdown();
529   verifier::ClassVerifier::Shutdown();
530 
531   // Destroy allocators before shutting down the MemMap because they may use it.
532   java_vm_.reset();
533   linear_alloc_.reset();
534   delete ReleaseStartupLinearAlloc();
535   linear_alloc_arena_pool_.reset();
536   arena_pool_.reset();
537   jit_arena_pool_.reset();
538   protected_fault_page_.Reset();
539   MemMap::Shutdown();
540 
541   // TODO: acquire a static mutex on Runtime to avoid racing.
542   CHECK(instance_ == nullptr || instance_ == this);
543   instance_ = nullptr;
544 
545   // Well-known classes must be deleted or it is impossible to successfully start another Runtime
546   // instance. We rely on a small initialization order issue in Runtime::Start() that requires
547   // elements of WellKnownClasses to be null, see b/65500943.
548   WellKnownClasses::Clear();
549 }
550 
551 struct AbortState {
Dumpart::AbortState552   void Dump(std::ostream& os) const {
553     if (gAborting > 1) {
554       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
555       DumpRecursiveAbort(os);
556       return;
557     }
558     gAborting++;
559     os << "Runtime aborting...\n";
560     if (Runtime::Current() == nullptr) {
561       os << "(Runtime does not yet exist!)\n";
562       DumpNativeStack(os, GetTid(), "  native: ", nullptr);
563       return;
564     }
565     Thread* self = Thread::Current();
566 
567     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
568     // it improves the chance of relevant data surviving in the Android logs.
569 
570     DumpAllThreads(os, self);
571 
572     if (self == nullptr) {
573       os << "(Aborting thread was not attached to runtime!)\n";
574       DumpNativeStack(os, GetTid(), "  native: ", nullptr);
575     } else {
576       os << "Aborting thread:\n";
577       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
578         DumpThread(os, self);
579       } else {
580         if (Locks::mutator_lock_->SharedTryLock(self)) {
581           DumpThread(os, self);
582           Locks::mutator_lock_->SharedUnlock(self);
583         }
584       }
585     }
586   }
587 
588   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState589   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
590     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
591     self->Dump(os);
592     if (self->IsExceptionPending()) {
593       mirror::Throwable* exception = self->GetException();
594       os << "Pending exception " << exception->Dump();
595     }
596   }
597 
DumpAllThreadsart::AbortState598   void DumpAllThreads(std::ostream& os, Thread* self) const {
599     Runtime* runtime = Runtime::Current();
600     if (runtime != nullptr) {
601       ThreadList* thread_list = runtime->GetThreadList();
602       if (thread_list != nullptr) {
603         // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
604         // grabbed).
605         // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
606         //                    acquiring the locks.
607         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
608         bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
609         if (tll_already_held || tscl_already_held) {
610           os << "Skipping all-threads dump as locks are held:"
611              << (tll_already_held ? "" : " thread_list_lock")
612              << (tscl_already_held ? "" : " thread_suspend_count_lock")
613              << "\n";
614           return;
615         }
616         bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
617         if (ml_already_exlusively_held) {
618           os << "Skipping all-threads dump as mutator lock is exclusively held.";
619           return;
620         }
621         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
622         if (!ml_already_held) {
623           os << "Dumping all threads without mutator lock held\n";
624         }
625         os << "All threads:\n";
626         thread_list->Dump(os);
627       }
628     }
629   }
630 
631   // For recursive aborts.
DumpRecursiveAbortart::AbortState632   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
633     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
634     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
635     // die.
636     // Note: as we're using a global counter for the recursive abort detection, there is a potential
637     //       race here and it is not OK to just print when the counter is "2" (one from
638     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
639     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
640     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
641       gAborting++;
642       DumpNativeStack(os, GetTid());
643     }
644   }
645 };
646 
Abort(const char * msg)647 void Runtime::Abort(const char* msg) {
648   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
649 
650   // Only set the first abort message.
651   if (old_value == 0) {
652 #ifdef ART_TARGET_ANDROID
653     android_set_abort_message(msg);
654 #else
655     // Set the runtime fault message in case our unexpected-signal code will run.
656     Runtime* current = Runtime::Current();
657     if (current != nullptr) {
658       current->SetFaultMessage(msg);
659     }
660 #endif
661   }
662 
663   // May be coming from an unattached thread.
664   if (Thread::Current() == nullptr) {
665     Runtime* current = Runtime::Current();
666     if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
667       // We do not flag this to the unexpected-signal handler so that that may dump the stack.
668       abort();
669       UNREACHABLE();
670     }
671   }
672 
673   {
674     // Ensure that we don't have multiple threads trying to abort at once,
675     // which would result in significantly worse diagnostics.
676     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort);
677     Locks::abort_lock_->ExclusiveLock(Thread::Current());
678   }
679 
680   // Get any pending output out of the way.
681   fflush(nullptr);
682 
683   // Many people have difficulty distinguish aborts from crashes,
684   // so be explicit.
685   // Note: use cerr on the host to print log lines immediately, so we get at least some output
686   //       in case of recursive aborts. We lose annotation with the source file and line number
687   //       here, which is a minor issue. The same is significantly more complicated on device,
688   //       which is why we ignore the issue there.
689   AbortState state;
690   if (kIsTargetBuild) {
691     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
692   } else {
693     std::cerr << Dumpable<AbortState>(state);
694   }
695 
696   // Sometimes we dump long messages, and the Android abort message only retains the first line.
697   // In those cases, just log the message again, to avoid logcat limits.
698   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
699     LOG(FATAL_WITHOUT_ABORT) << msg;
700   }
701 
702   FlagRuntimeAbort();
703 
704   // Call the abort hook if we have one.
705   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
706     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
707     Runtime::Current()->abort_();
708     // notreached
709     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
710   }
711 
712   abort();
713   // notreached
714 }
715 
716 /**
717  * Update entrypoints of methods before the first fork. This
718  * helps sharing pages where ArtMethods are allocated between the zygote and
719  * forked apps.
720  */
721 class UpdateMethodsPreFirstForkVisitor : public ClassVisitor {
722  public:
UpdateMethodsPreFirstForkVisitor(ClassLinker * class_linker)723   explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker)
724       : class_linker_(class_linker),
725         can_use_nterp_(interpreter::CanRuntimeUseNterp()) {}
726 
operator ()(ObjPtr<mirror::Class> klass)727   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
728     bool is_initialized = klass->IsVisiblyInitialized();
729     for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) {
730       if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) {
731         const void* existing = method.GetEntryPointFromQuickCompiledCode();
732         if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) {
733           method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint());
734         }
735       }
736     }
737     return true;
738   }
739 
740  private:
741   ClassLinker* const class_linker_;
742   const bool can_use_nterp_;
743 
744   DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor);
745 };
746 
PreZygoteFork()747 void Runtime::PreZygoteFork() {
748   if (GetJit() != nullptr) {
749     GetJit()->PreZygoteFork();
750   }
751   if (!heap_->HasZygoteSpace()) {
752     Thread* self = Thread::Current();
753     // This is the first fork. Update ArtMethods in the boot classpath now to
754     // avoid having forked apps dirty the memory.
755 
756     // Ensure we call FixupStaticTrampolines on all methods that are
757     // initialized.
758     class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true);
759 
760     ScopedObjectAccess soa(self);
761     UpdateMethodsPreFirstForkVisitor visitor(class_linker_);
762     class_linker_->VisitClasses(&visitor);
763   }
764   heap_->PreZygoteFork();
765   PreZygoteForkNativeBridge();
766 }
767 
PostZygoteFork()768 void Runtime::PostZygoteFork() {
769   jit::Jit* jit = GetJit();
770   if (jit != nullptr) {
771     jit->PostZygoteFork();
772     // Ensure that the threads in the JIT pool have been created with the right
773     // priority.
774     if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
775       jit->GetThreadPool()->CheckPthreadPriority(
776           IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority()
777                      : jit->GetThreadPoolPthreadPriority());
778     }
779   }
780   // Reset all stats.
781   ResetStats(0xFFFFFFFF);
782 }
783 
CallExitHook(jint status)784 void Runtime::CallExitHook(jint status) {
785   if (exit_ != nullptr) {
786     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative);
787     exit_(status);
788     LOG(WARNING) << "Exit hook returned instead of exiting!";
789   }
790 }
791 
SweepSystemWeaks(IsMarkedVisitor * visitor)792 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
793   GetInternTable()->SweepInternTableWeaks(visitor);
794   GetMonitorList()->SweepMonitorList(visitor);
795   GetJavaVM()->SweepJniWeakGlobals(visitor);
796   GetHeap()->SweepAllocationRecords(visitor);
797   // Sweep JIT tables only if the GC is moving as in other cases the entries are
798   // not updated.
799   if (GetJit() != nullptr && GetHeap()->IsMovingGc()) {
800     // Visit JIT literal tables. Objects in these tables are classes and strings
801     // and only classes can be affected by class unloading. The strings always
802     // stay alive as they are strongly interned.
803     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
804     // from mutators. See b/32167580.
805     GetJit()->GetCodeCache()->SweepRootTables(visitor);
806   }
807 
808   // All other generic system-weak holders.
809   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
810     holder->Sweep(visitor);
811   }
812 }
813 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)814 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
815                            bool ignore_unrecognized,
816                            RuntimeArgumentMap* runtime_options) {
817   Locks::Init();
818   InitLogging(/* argv= */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
819   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
820   if (!parsed) {
821     LOG(ERROR) << "Failed to parse options";
822     return false;
823   }
824   return true;
825 }
826 
827 // Callback to check whether it is safe to call Abort (e.g., to use a call to
828 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
829 // properly initialized, and has not shut down.
IsSafeToCallAbort()830 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
831   Runtime* runtime = Runtime::Current();
832   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
833 }
834 
AddGeneratedCodeRange(const void * start,size_t size)835 void Runtime::AddGeneratedCodeRange(const void* start, size_t size) {
836   if (HandlesSignalsInCompiledCode()) {
837     fault_manager.AddGeneratedCodeRange(start, size);
838   }
839 }
840 
RemoveGeneratedCodeRange(const void * start,size_t size)841 void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) {
842   if (HandlesSignalsInCompiledCode()) {
843     fault_manager.RemoveGeneratedCodeRange(start, size);
844   }
845 }
846 
Create(RuntimeArgumentMap && runtime_options)847 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
848   // TODO: acquire a static mutex on Runtime to avoid racing.
849   if (Runtime::instance_ != nullptr) {
850     return false;
851   }
852   instance_ = new Runtime;
853   Locks::SetClientCallback(IsSafeToCallAbort);
854   if (!instance_->Init(std::move(runtime_options))) {
855     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
856     // leak memory, instead. Fix the destructor. b/19100793.
857     // delete instance_;
858     instance_ = nullptr;
859     return false;
860   }
861   return true;
862 }
863 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)864 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
865   RuntimeArgumentMap runtime_options;
866   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
867       Create(std::move(runtime_options));
868 }
869 
CreateSystemClassLoader(Runtime * runtime)870 static jobject CreateSystemClassLoader(Runtime* runtime) {
871   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
872     return nullptr;
873   }
874 
875   ScopedObjectAccess soa(Thread::Current());
876   ClassLinker* cl = runtime->GetClassLinker();
877   auto pointer_size = cl->GetImagePointerSize();
878 
879   ObjPtr<mirror::Class> class_loader_class = GetClassRoot<mirror::ClassLoader>(cl);
880   DCHECK(class_loader_class->IsInitialized());  // Class roots have been initialized.
881 
882   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
883       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
884   CHECK(getSystemClassLoader != nullptr);
885   CHECK(getSystemClassLoader->IsStatic());
886 
887   ObjPtr<mirror::Object> system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self());
888   CHECK(system_class_loader != nullptr);
889 
890   ScopedAssertNoThreadSuspension sants(__FUNCTION__);
891   jobject g_system_class_loader =
892       runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader);
893   soa.Self()->SetClassLoaderOverride(g_system_class_loader);
894 
895   ObjPtr<mirror::Class> thread_class = WellKnownClasses::java_lang_Thread.Get();
896   ArtField* contextClassLoader =
897       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
898   CHECK(contextClassLoader != nullptr);
899 
900   // We can't run in a transaction yet.
901   contextClassLoader->SetObject<false>(soa.Self()->GetPeer(), system_class_loader);
902 
903   return g_system_class_loader;
904 }
905 
GetCompilerExecutable() const906 std::string Runtime::GetCompilerExecutable() const {
907   if (!compiler_executable_.empty()) {
908     return compiler_executable_;
909   }
910   std::string compiler_executable = GetArtBinDir() + "/dex2oat";
911   if (kIsDebugBuild) {
912     compiler_executable += 'd';
913   }
914   if (kIsTargetBuild) {
915     compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
916   }
917   return compiler_executable;
918 }
919 
RunRootClinits(Thread * self)920 void Runtime::RunRootClinits(Thread* self) {
921   class_linker_->RunRootClinits(self);
922 
923   GcRoot<mirror::Throwable>* exceptions[] = {
924       &pre_allocated_OutOfMemoryError_when_throwing_exception_,
925       // &pre_allocated_OutOfMemoryError_when_throwing_oome_,             // Same class as above.
926       // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,   // Same class as above.
927       &pre_allocated_NoClassDefFoundError_,
928   };
929   for (GcRoot<mirror::Throwable>* exception : exceptions) {
930     StackHandleScope<1> hs(self);
931     Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
932     class_linker_->EnsureInitialized(self, klass, true, true);
933     self->AssertNoPendingException();
934   }
935 }
936 
Start()937 bool Runtime::Start() {
938   VLOG(startup) << "Runtime::Start entering";
939 
940   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
941 
942   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
943   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
944 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
945   if (kIsDebugBuild) {
946     if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
947       PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
948     }
949   }
950 #endif
951 
952   // Restore main thread state to kNative as expected by native code.
953   Thread* self = Thread::Current();
954 
955   started_ = true;
956 
957   // Before running any clinit, set up the native methods provided by the runtime itself.
958   RegisterRuntimeNativeMethods(self->GetJniEnv());
959 
960   class_linker_->RunEarlyRootClinits(self);
961   InitializeIntrinsics();
962 
963   self->TransitionFromRunnableToSuspended(ThreadState::kNative);
964 
965   // InitNativeMethods needs to be after started_ so that the classes
966   // it touches will have methods linked to the oat file if necessary.
967   {
968     ScopedTrace trace2("InitNativeMethods");
969     InitNativeMethods();
970   }
971 
972   // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
973   // initializtion in InitNativeMethods().
974   art::hiddenapi::InitializeCorePlatformApiPrivateFields();
975 
976   // Initialize well known thread group values that may be accessed threads while attaching.
977   InitThreadGroups(self);
978 
979   Thread::FinishStartup();
980 
981   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
982   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
983   // ThreadGroup to exist.
984   //
985   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
986   // recoding profiles. Maybe we should consider changing the name to be more clear it's
987   // not only about compiling. b/28295073.
988   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
989     // Try to load compiler pre zygote to reduce PSS. b/27744947
990     std::string error_msg;
991     if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
992       LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
993     }
994     CreateJit();
995 #ifdef ADDRESS_SANITIZER
996     // (b/238730394): In older implementations of sanitizer + glibc there is a race between
997     // pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN
998     // uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to
999     // __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a
1000     // deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in
1001     // parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to
1002     // finish before going to the next phase. Creating a system class loader could need a dlopen so
1003     // we wait here till threads are initialized.
1004     // [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408
1005     // See this for more context: https://reviews.llvm.org/D98926
1006     // TODO(b/238730394): Revisit this workaround once we migrate to musl libc.
1007     if (jit_ != nullptr) {
1008       jit_->GetThreadPool()->WaitForWorkersToBeCreated();
1009     }
1010 #endif
1011   }
1012 
1013   // Send the start phase event. We have to wait till here as this is when the main thread peer
1014   // has just been generated, important root clinits have been run and JNI is completely functional.
1015   {
1016     ScopedObjectAccess soa(self);
1017     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
1018   }
1019 
1020   system_class_loader_ = CreateSystemClassLoader(this);
1021 
1022   if (!is_zygote_) {
1023     if (is_native_bridge_loaded_) {
1024       PreInitializeNativeBridge(".");
1025     }
1026     NativeBridgeAction action = force_native_bridge_
1027         ? NativeBridgeAction::kInitialize
1028         : NativeBridgeAction::kUnload;
1029     InitNonZygoteOrPostFork(self->GetJniEnv(),
1030                             /* is_system_server= */ false,
1031                             /* is_child_zygote= */ false,
1032                             action,
1033                             GetInstructionSetString(kRuntimeISA));
1034   }
1035 
1036   {
1037     ScopedObjectAccess soa(self);
1038     StartDaemonThreads();
1039     self->GetJniEnv()->AssertLocalsEmpty();
1040 
1041     // Send the initialized phase event. Send it after starting the Daemon threads so that agents
1042     // cannot delay the daemon threads from starting forever.
1043     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
1044     self->GetJniEnv()->AssertLocalsEmpty();
1045   }
1046 
1047   VLOG(startup) << "Runtime::Start exiting";
1048   finished_starting_ = true;
1049 
1050   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
1051     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart);
1052     int flags = 0;
1053     if (trace_config_->clock_source == TraceClockSource::kDual) {
1054       flags = Trace::TraceFlag::kTraceClockSourceWallClock |
1055               Trace::TraceFlag::kTraceClockSourceThreadCpu;
1056     } else if (trace_config_->clock_source == TraceClockSource::kWall) {
1057       flags = Trace::TraceFlag::kTraceClockSourceWallClock;
1058     } else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) {
1059       flags = Trace::TraceFlag::kTraceClockSourceThreadCpu;
1060     } else {
1061       LOG(ERROR) << "Unexpected clock source";
1062     }
1063     Trace::Start(trace_config_->trace_file.c_str(),
1064                  static_cast<int>(trace_config_->trace_file_size),
1065                  flags,
1066                  trace_config_->trace_output_mode,
1067                  trace_config_->trace_mode,
1068                  0);
1069   }
1070 
1071   // In case we have a profile path passed as a command line argument,
1072   // register the current class path for profiling now. Note that we cannot do
1073   // this before we create the JIT and having it here is the most convenient way.
1074   // This is used when testing profiles with dalvikvm command as there is no
1075   // framework to register the dex files for profiling.
1076   if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
1077       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
1078     std::vector<std::string> dex_filenames;
1079     Split(class_path_string_, ':', &dex_filenames);
1080 
1081     // We pass "" as the package name because at this point we don't know it. It could be the
1082     // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
1083     // post-fork or during RegisterAppInfo.
1084     //
1085     // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
1086     // a reference profile.
1087     RegisterAppInfo(
1088         /*package_name=*/ "",
1089         dex_filenames,
1090         jit_options_->GetProfileSaverOptions().GetProfilePath(),
1091         /*ref_profile_filename=*/ "",
1092         kVMRuntimePrimaryApk);
1093   }
1094 
1095   return true;
1096 }
1097 
EndThreadBirth()1098 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
1099   DCHECK_GT(threads_being_born_, 0U);
1100   threads_being_born_--;
1101   if (shutting_down_started_ && threads_being_born_ == 0) {
1102     shutdown_cond_->Broadcast(Thread::Current());
1103   }
1104 }
1105 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1106 void Runtime::InitNonZygoteOrPostFork(
1107     JNIEnv* env,
1108     bool is_system_server,
1109     // This is true when we are initializing a child-zygote. It requires
1110     // native bridge initialization to be able to run guest native code in
1111     // doPreload().
1112     bool is_child_zygote,
1113     NativeBridgeAction action,
1114     const char* isa,
1115     bool profile_system_server) {
1116   if (is_native_bridge_loaded_) {
1117     switch (action) {
1118       case NativeBridgeAction::kUnload:
1119         UnloadNativeBridge();
1120         is_native_bridge_loaded_ = false;
1121         break;
1122       case NativeBridgeAction::kInitialize:
1123         InitializeNativeBridge(env, isa);
1124         break;
1125     }
1126   }
1127 
1128   if (is_child_zygote) {
1129     // If creating a child-zygote we only initialize native bridge. The rest of
1130     // runtime post-fork logic would spin up threads for Binder and JDWP.
1131     // Instead, the Java side of the child process will call a static main in a
1132     // class specified by the parent.
1133     return;
1134   }
1135 
1136   DCHECK(!IsZygote());
1137 
1138   if (is_system_server) {
1139     // Register the system server code paths.
1140     // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
1141     // the method is only called when we set up the profile. It should be called all the time
1142     // (simillar to the apps). Once that's done this manual registration can be removed.
1143     const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
1144     if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
1145       LOG(WARNING) << "System server class path not set";
1146     } else {
1147       std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
1148       app_info_.RegisterAppInfo("android",
1149                                 jars,
1150                                 /*profile_output_filename=*/ "",
1151                                 /*ref_profile_filename=*/ "",
1152                                 AppInfo::CodeType::kPrimaryApk);
1153     }
1154 
1155     // Set the system server package name to "android".
1156     // This is used to tell the difference between samples provided by system server
1157     // and samples generated by other apps when processing boot image profiles.
1158     SetProcessPackageName("android");
1159     if (profile_system_server) {
1160       jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1161       VLOG(profiler) << "Enabling system server profiles";
1162     }
1163   }
1164 
1165   // Create the thread pools.
1166   // Avoid creating the runtime thread pool for system server since it will not be used and would
1167   // waste memory.
1168   if (!is_system_server) {
1169     ScopedTrace timing("CreateThreadPool");
1170     constexpr size_t kStackSize = 64 * KB;
1171     constexpr size_t kMaxRuntimeWorkers = 4u;
1172     const size_t num_workers =
1173         std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1174     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1175     CHECK(thread_pool_ == nullptr);
1176     thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1177     thread_pool_->StartWorkers(Thread::Current());
1178   }
1179 
1180   // Reset the gc performance data and metrics at zygote fork so that the events from
1181   // before fork aren't attributed to an app.
1182   heap_->ResetGcPerformanceInfo();
1183   GetMetrics()->Reset();
1184 
1185   if (metrics_reporter_ != nullptr) {
1186     // Now that we know if we are an app or system server, reload the metrics reporter config
1187     // in case there are any difference.
1188     metrics::ReportingConfig metrics_config =
1189         metrics::ReportingConfig::FromFlags(is_system_server);
1190 
1191     metrics_reporter_->ReloadConfig(metrics_config);
1192 
1193     metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
1194     // Start the session id from 1 to avoid clashes with the default value.
1195     // (better for debugability)
1196     session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
1197     // TODO: set session_data.compilation_reason and session_data.compiler_filter
1198     metrics_reporter_->MaybeStartBackgroundThread(session_data);
1199     // Also notify about any updates to the app info.
1200     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
1201   }
1202 
1203   StartSignalCatcher();
1204 
1205   ScopedObjectAccess soa(Thread::Current());
1206   if (IsPerfettoHprofEnabled() &&
1207       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1208        Runtime::Current()->IsSystemServer())) {
1209     std::string err;
1210     ScopedTrace tr("perfetto_hprof init.");
1211     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1212     if (!EnsurePerfettoPlugin(&err)) {
1213       LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1214     }
1215   }
1216   if (IsPerfettoJavaHeapStackProfEnabled() &&
1217       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1218        Runtime::Current()->IsSystemServer())) {
1219     // Marker used for dev tracing similar to above markers.
1220     ScopedTrace tr("perfetto_javaheapprof init.");
1221   }
1222   if (Runtime::Current()->IsSystemServer()) {
1223     std::string err;
1224     ScopedTrace tr("odrefresh and device stats logging");
1225     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1226     // Report stats if available. This should be moved into ART Services when they are ready.
1227     if (!odrefresh::UploadStatsIfAvailable(&err)) {
1228       LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
1229     }
1230     metrics::ReportDeviceMetrics();
1231   }
1232 
1233   if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1234     if (IsJavaDebuggable()) {
1235       SetJniIdType(JniIdType::kIndices);
1236     } else {
1237       SetJniIdType(JniIdType::kPointer);
1238     }
1239   }
1240   ATraceIntegerValue(
1241       "profilebootclasspath",
1242       static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
1243   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1244   // this will pause the runtime (in the internal debugger implementation), so we probably want
1245   // this to come last.
1246   GetRuntimeCallbacks()->StartDebugger();
1247 }
1248 
StartSignalCatcher()1249 void Runtime::StartSignalCatcher() {
1250   if (!is_zygote_) {
1251     signal_catcher_ = new SignalCatcher();
1252   }
1253 }
1254 
IsShuttingDown(Thread * self)1255 bool Runtime::IsShuttingDown(Thread* self) {
1256   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1257   return IsShuttingDownLocked();
1258 }
1259 
StartDaemonThreads()1260 void Runtime::StartDaemonThreads() {
1261   ScopedTrace trace(__FUNCTION__);
1262   VLOG(startup) << "Runtime::StartDaemonThreads entering";
1263 
1264   Thread* self = Thread::Current();
1265 
1266   DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1267 
1268   WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self);
1269   if (UNLIKELY(self->IsExceptionPending())) {
1270     LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump();
1271   }
1272 
1273   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1274 }
1275 
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,ArrayRef<const int> dex_fds,std::vector<std::unique_ptr<const DexFile>> * dex_files)1276 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1277                                ArrayRef<const std::string> dex_locations,
1278                                ArrayRef<const int> dex_fds,
1279                                std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1280   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1281   size_t failure_count = 0;
1282   for (size_t i = 0; i < dex_filenames.size(); i++) {
1283     const char* dex_filename = dex_filenames[i].c_str();
1284     const char* dex_location = dex_locations[i].c_str();
1285     const int dex_fd = i < dex_fds.size() ? dex_fds[i] : -1;
1286     static constexpr bool kVerifyChecksum = true;
1287     std::string error_msg;
1288     if (!OS::FileExists(dex_filename) && dex_fd < 0) {
1289       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1290       continue;
1291     }
1292     bool verify = Runtime::Current()->IsVerificationEnabled();
1293     ArtDexFileLoader dex_file_loader(dex_filename, dex_fd, dex_location);
1294     if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, dex_files)) {
1295       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << dex_fd
1296                    << ": " << error_msg;
1297       ++failure_count;
1298     }
1299   }
1300   return failure_count;
1301 }
1302 
SetSentinel(ObjPtr<mirror::Object> sentinel)1303 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1304   CHECK(sentinel_.Read() == nullptr);
1305   CHECK(sentinel != nullptr);
1306   CHECK(!heap_->IsMovableObject(sentinel));
1307   sentinel_ = GcRoot<mirror::Object>(sentinel);
1308 }
1309 
GetSentinel()1310 GcRoot<mirror::Object> Runtime::GetSentinel() {
1311   return sentinel_;
1312 }
1313 
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1314 static inline void CreatePreAllocatedException(Thread* self,
1315                                                Runtime* runtime,
1316                                                GcRoot<mirror::Throwable>* exception,
1317                                                const char* exception_class_descriptor,
1318                                                const char* msg)
1319     REQUIRES_SHARED(Locks::mutator_lock_) {
1320   DCHECK_EQ(self, Thread::Current());
1321   ClassLinker* class_linker = runtime->GetClassLinker();
1322   // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1323   ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1324   CHECK(klass != nullptr);
1325   gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1326   ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1327       klass->Alloc(self, allocator_type));
1328   CHECK(exception_object != nullptr);
1329   *exception = GcRoot<mirror::Throwable>(exception_object);
1330   // Initialize the "detailMessage" field.
1331   ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1332   CHECK(message != nullptr);
1333   ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1334   ArtField* detailMessageField =
1335       throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1336   CHECK(detailMessageField != nullptr);
1337   detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1338 }
1339 
GetApexVersions(ArrayRef<const std::string> boot_class_path_locations)1340 std::string Runtime::GetApexVersions(ArrayRef<const std::string> boot_class_path_locations) {
1341   std::vector<std::string_view> bcp_apexes;
1342   for (std::string_view jar : boot_class_path_locations) {
1343     std::string_view apex = ApexNameFromLocation(jar);
1344     if (!apex.empty()) {
1345       bcp_apexes.push_back(apex);
1346     }
1347   }
1348   static const char* kApexFileName = "/apex/apex-info-list.xml";
1349   // Start with empty markers.
1350   std::string empty_apex_versions(bcp_apexes.size(), '/');
1351   // When running on host or chroot, we just use empty markers.
1352   if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
1353     return empty_apex_versions;
1354   }
1355 #ifdef ART_TARGET_ANDROID
1356   if (access(kApexFileName, R_OK) != 0) {
1357     PLOG(WARNING) << "Failed to read " << kApexFileName;
1358     return empty_apex_versions;
1359   }
1360   auto info_list = apex::readApexInfoList(kApexFileName);
1361   if (!info_list.has_value()) {
1362     LOG(WARNING) << "Failed to parse " << kApexFileName;
1363     return empty_apex_versions;
1364   }
1365 
1366   std::string result;
1367   std::map<std::string_view, const apex::ApexInfo*> apex_infos;
1368   for (const apex::ApexInfo& info : info_list->getApexInfo()) {
1369     if (info.getIsActive()) {
1370       apex_infos.emplace(info.getModuleName(), &info);
1371     }
1372   }
1373   for (const std::string_view& str : bcp_apexes) {
1374     auto info = apex_infos.find(str);
1375     if (info == apex_infos.end() || info->second->getIsFactory()) {
1376       result += '/';
1377     } else {
1378       // In case lastUpdateMillis field is populated in apex-info-list.xml, we
1379       // prefer to use it as version scheme. If the field is missing we
1380       // fallback to the version code of the APEX.
1381       uint64_t version = info->second->hasLastUpdateMillis()
1382           ? info->second->getLastUpdateMillis()
1383           : info->second->getVersionCode();
1384       android::base::StringAppendF(&result, "/%" PRIu64, version);
1385     }
1386   }
1387   return result;
1388 #else
1389   return empty_apex_versions;  // Not an Android build.
1390 #endif
1391 }
1392 
InitializeApexVersions()1393 void Runtime::InitializeApexVersions() {
1394   apex_versions_ =
1395       GetApexVersions(ArrayRef<const std::string>(Runtime::Current()->GetBootClassPathLocations()));
1396 }
1397 
ReloadAllFlags(const std::string & caller)1398 void Runtime::ReloadAllFlags(const std::string& caller) {
1399   FlagBase::ReloadAllFlags(caller);
1400 }
1401 
Init(RuntimeArgumentMap && runtime_options_in)1402 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1403   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1404   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1405   env_snapshot_.TakeSnapshot();
1406 
1407   using Opt = RuntimeArgumentMap;
1408   Opt runtime_options(std::move(runtime_options_in));
1409   ScopedTrace trace(__FUNCTION__);
1410   CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), kPageSize);
1411 
1412   // Reload all the flags value (from system properties and device configs).
1413   ReloadAllFlags(__FUNCTION__);
1414 
1415   deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
1416   if (deny_art_apex_data_files_) {
1417     // We will run slower without those files if the system has taken an ART APEX update.
1418     LOG(WARNING) << "ART APEX data files are untrusted.";
1419   }
1420 
1421   // Early override for logging output.
1422   if (runtime_options.Exists(Opt::UseStderrLogger)) {
1423     android::base::SetLogger(android::base::StderrLogger);
1424   }
1425 
1426   MemMap::Init();
1427 
1428   verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1429   force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
1430   perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1431   perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
1432 
1433   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1434   // If we cannot reserve it, log a warning.
1435   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1436   //       is out-of-the-way enough that it should not collide with boot image mapping.
1437   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1438   //       leading to logspam.
1439   {
1440     constexpr uintptr_t kSentinelAddr =
1441         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1442     protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1443                                                  reinterpret_cast<uint8_t*>(kSentinelAddr),
1444                                                  kPageSize,
1445                                                  PROT_NONE,
1446                                                  /*low_4gb=*/ true,
1447                                                  /*reuse=*/ false,
1448                                                  /*reservation=*/ nullptr,
1449                                                  /*error_msg=*/ nullptr);
1450     if (!protected_fault_page_.IsValid()) {
1451       LOG(WARNING) << "Could not reserve sentinel fault page";
1452     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
1453       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1454       protected_fault_page_.Reset();
1455     }
1456   }
1457 
1458   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1459 
1460   QuasiAtomic::Startup();
1461 
1462   oat_file_manager_ = new OatFileManager();
1463 
1464   jni_id_manager_.reset(new jni::JniIdManager());
1465 
1466   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1467   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1468                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1469 
1470   image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image);
1471 
1472   SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1473   boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1474   boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1475   DCHECK(boot_class_path_locations_.empty() ||
1476          boot_class_path_locations_.size() == boot_class_path_.size());
1477   if (boot_class_path_.empty()) {
1478     LOG(ERROR) << "Boot classpath is empty";
1479     return false;
1480   }
1481 
1482   boot_class_path_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathFds);
1483   if (!boot_class_path_fds_.empty() && boot_class_path_fds_.size() != boot_class_path_.size()) {
1484     LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in "
1485                << "-Xbootclasspath.";
1486     return false;
1487   }
1488 
1489   boot_class_path_image_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds);
1490   boot_class_path_vdex_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds);
1491   boot_class_path_oat_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds);
1492   CHECK(boot_class_path_image_fds_.empty() ||
1493         boot_class_path_image_fds_.size() == boot_class_path_.size());
1494   CHECK(boot_class_path_vdex_fds_.empty() ||
1495         boot_class_path_vdex_fds_.size() == boot_class_path_.size());
1496   CHECK(boot_class_path_oat_fds_.empty() ||
1497         boot_class_path_oat_fds_.size() == boot_class_path_.size());
1498 
1499   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1500   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1501 
1502   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1503   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1504   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1505   is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1506   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1507   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1508   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1509   allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation);
1510 
1511   if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
1512     oat_file_manager_->SetOnlyUseTrustedOatFiles();
1513   }
1514 
1515   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1516   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1517   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1518 
1519   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1520 
1521   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1522   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1523   for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1524     if (option == "--debuggable") {
1525       SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit);
1526       break;
1527     }
1528   }
1529   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1530 
1531   finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1532   max_spins_before_thin_lock_inflation_ =
1533       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1534 
1535   monitor_list_ = new MonitorList;
1536   monitor_pool_ = MonitorPool::Create();
1537   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1538   intern_table_ = new InternTable;
1539 
1540   monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
1541   int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
1542   if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
1543     LOG(WARNING) << "Monitor timeout too short: Increasing";
1544     monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
1545   }
1546   if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
1547     LOG(WARNING) << "Monitor timeout too long: Decreasing";
1548     monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
1549   }
1550   monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
1551 
1552   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1553 
1554   target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1555 
1556   // Set hidden API enforcement policy. The checks are disabled by default and
1557   // we only enable them if:
1558   // (a) runtime was started with a command line flag that enables the checks, or
1559   // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1560   hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1561   DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1562 
1563   // Set core platform API enforcement policy. The checks are disabled by default and
1564   // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1565   // a system property is set.
1566   core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1567   if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1568     LOG(INFO) << "Core platform API reporting enabled, enforcing="
1569         << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1570   }
1571 
1572   // Dex2Oat's Runtime does not need the signal chain or the fault handler
1573   // and it passes the `NoSigChain` option to `Runtime` to indicate this.
1574   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1575   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1576 
1577   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1578 
1579   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1580 
1581   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1582     GetInstrumentation()->ForceInterpretOnly();
1583   }
1584 
1585   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1586   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1587   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1588   madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
1589   madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
1590   madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
1591 
1592   jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1593   automatically_set_jni_ids_indirection_ =
1594       runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1595 
1596   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1597   agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1598   // TODO Add back in -agentlib
1599   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1600   //   agents_.push_back(lib);
1601   // }
1602 
1603   float foreground_heap_growth_multiplier;
1604   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1605     // If low memory mode, use 1.0 as the multiplier by default.
1606     foreground_heap_growth_multiplier = 1.0f;
1607   } else {
1608     // Extra added to the default heap growth multiplier for concurrent GC
1609     // compaction algorithms. This is done for historical reasons.
1610     // TODO: remove when we revisit heap configurations.
1611     foreground_heap_growth_multiplier =
1612         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f;
1613   }
1614   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1615 
1616   // Generational CC collection is currently only compatible with Baker read barriers.
1617   bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1618 
1619   // Cache the apex versions.
1620   InitializeApexVersions();
1621 
1622   BackgroundGcOption background_gc =
1623       gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1624                       : (gUseUserfaultfd ? BackgroundGcOption(xgc_option.collector_type_)
1625                                          : runtime_options.GetOrDefault(Opt::BackgroundGc));
1626 
1627   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1628                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1629                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1630                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1631                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1632                        foreground_heap_growth_multiplier,
1633                        runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1634                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1635                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1636                        GetBootClassPath(),
1637                        GetBootClassPathLocations(),
1638                        GetBootClassPathFds(),
1639                        GetBootClassPathImageFds(),
1640                        GetBootClassPathVdexFds(),
1641                        GetBootClassPathOatFds(),
1642                        image_locations_,
1643                        instruction_set_,
1644                        // Override the collector type to CC if the read barrier config.
1645                        gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1646                        background_gc,
1647                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1648                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1649                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1650                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1651                        runtime_options.Exists(Opt::LowMemoryMode),
1652                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1653                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1654                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1655                        runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1656                        runtime_options.GetOrDefault(Opt::UseTLAB),
1657                        xgc_option.verify_pre_gc_heap_,
1658                        xgc_option.verify_pre_sweeping_heap_,
1659                        xgc_option.verify_post_gc_heap_,
1660                        xgc_option.verify_pre_gc_rosalloc_,
1661                        xgc_option.verify_pre_sweeping_rosalloc_,
1662                        xgc_option.verify_post_gc_rosalloc_,
1663                        xgc_option.gcstress_,
1664                        xgc_option.measure_,
1665                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1666                        use_generational_cc,
1667                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1668                        runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1669                        runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
1670 
1671   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1672 
1673   bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
1674   jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1675   jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1676                                             IsJavaDebuggable());
1677   switch (jdwp_provider_) {
1678     case JdwpProvider::kNone: {
1679       VLOG(jdwp) << "Disabling all JDWP support.";
1680       if (!jdwp_options_.empty()) {
1681         bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1682         std::string adb_connection_args =
1683             std::string("  -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1684         if (has_explicit_jdwp_options) {
1685           LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1686                       << "jdwp with one of:" << std::endl
1687                       << "  -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1688                       << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1689                       << (has_transport ? "" : adb_connection_args);
1690         }
1691       }
1692       break;
1693     }
1694     case JdwpProvider::kAdbConnection: {
1695       constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1696                                                         : "libadbconnection.so";
1697       plugins_.push_back(Plugin::Create(plugin_name));
1698       break;
1699     }
1700     case JdwpProvider::kUnset: {
1701       LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1702     }
1703   }
1704   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1705 
1706   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1707   if (IsAotCompiler()) {
1708     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1709     // this case.
1710     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1711     // null and we don't create the jit.
1712     jit_options_->SetUseJitCompilation(false);
1713     jit_options_->SetSaveProfilingInfo(false);
1714   }
1715 
1716   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1717   // can't be trimmed as easily.
1718   const bool use_malloc = IsAotCompiler();
1719   if (use_malloc) {
1720     arena_pool_.reset(new MallocArenaPool());
1721     jit_arena_pool_.reset(new MallocArenaPool());
1722   } else {
1723     arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1724     jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1725   }
1726 
1727   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
1728   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
1729   // when we have 64 bit ArtMethod pointers.
1730   const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA);
1731   if (gUseUserfaultfd) {
1732     linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote()));
1733   } else if (low_4gb) {
1734     linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb));
1735   }
1736   linear_alloc_.reset(CreateLinearAlloc());
1737   startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed);
1738 
1739   small_lrt_allocator_ = new jni::SmallLrtAllocator();
1740 
1741   BlockSignals();
1742   InitPlatformSignalHandlers();
1743 
1744   // Change the implicit checks flags based on runtime architecture.
1745   switch (kRuntimeISA) {
1746     case InstructionSet::kArm64:
1747       implicit_suspend_checks_ = true;
1748       FALLTHROUGH_INTENDED;
1749     case InstructionSet::kArm:
1750     case InstructionSet::kThumb2:
1751     case InstructionSet::kX86:
1752     case InstructionSet::kX86_64:
1753       implicit_null_checks_ = true;
1754       // Historical note: Installing stack protection was not playing well with Valgrind.
1755       implicit_so_checks_ = true;
1756       break;
1757     default:
1758       // Keep the defaults.
1759       break;
1760   }
1761 
1762   fault_manager.Init(!no_sig_chain_);
1763   if (!no_sig_chain_) {
1764     if (HandlesSignalsInCompiledCode()) {
1765       // These need to be in a specific order.  The null point check handler must be
1766       // after the suspend check and stack overflow check handlers.
1767       //
1768       // Note: the instances attach themselves to the fault manager and are handled by it. The
1769       //       manager will delete the instance on Shutdown().
1770       if (implicit_suspend_checks_) {
1771         new SuspensionHandler(&fault_manager);
1772       }
1773 
1774       if (implicit_so_checks_) {
1775         new StackOverflowHandler(&fault_manager);
1776       }
1777 
1778       if (implicit_null_checks_) {
1779         new NullPointerHandler(&fault_manager);
1780       }
1781 
1782       if (kEnableJavaStackTraceHandler) {
1783         new JavaStackTraceHandler(&fault_manager);
1784       }
1785 
1786       if (interpreter::CanRuntimeUseNterp()) {
1787         // Nterp code can use signal handling just like the compiled managed code.
1788         OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader;
1789         fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize());
1790       }
1791     }
1792   }
1793 
1794   verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1795 
1796   std::string error_msg;
1797   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1798   if (java_vm_.get() == nullptr) {
1799     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1800     return false;
1801   }
1802 
1803   // Add the JniEnv handler.
1804   // TODO Refactor this stuff.
1805   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1806 
1807   Thread::Startup();
1808 
1809   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1810   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1811   // thread, we do not get a java peer.
1812   Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true);
1813   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1814   CHECK(self != nullptr);
1815 
1816   self->SetIsRuntimeThread(IsAotCompiler());
1817 
1818   // Set us to runnable so tools using a runtime can allocate and GC by default
1819   self->TransitionFromSuspendedToRunnable();
1820 
1821   // Now we're attached, we can take the heap locks and validate the heap.
1822   GetHeap()->EnableObjectValidation();
1823 
1824   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1825 
1826   if (UNLIKELY(IsAotCompiler())) {
1827     class_linker_ = new AotClassLinker(intern_table_);
1828   } else {
1829     class_linker_ = new ClassLinker(
1830         intern_table_,
1831         runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1832   }
1833   if (GetHeap()->HasBootImageSpace()) {
1834     bool result = class_linker_->InitFromBootImage(&error_msg);
1835     if (!result) {
1836       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1837       return false;
1838     }
1839     if (kIsDebugBuild) {
1840       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1841         image_space->VerifyImageAllocations();
1842       }
1843     }
1844     {
1845       ScopedTrace trace2("AddImageStringsToTable");
1846       for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1847         GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1848       }
1849     }
1850 
1851     const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
1852         ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
1853     if (total_components != GetBootClassPath().size()) {
1854       // The boot image did not contain all boot class path components. Load the rest.
1855       CHECK_LT(total_components, GetBootClassPath().size());
1856       size_t start = total_components;
1857       DCHECK_LT(start, GetBootClassPath().size());
1858       std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1859       if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1860         extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1861       } else {
1862         ArrayRef<const int> bcp_fds = start < GetBootClassPathFds().size()
1863             ? ArrayRef<const int>(GetBootClassPathFds()).SubArray(start)
1864             : ArrayRef<const int>();
1865         OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1866                          ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1867                          bcp_fds,
1868                          &extra_boot_class_path);
1869       }
1870       class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
1871     }
1872     if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
1873       // Deoptimize the boot image if debuggable  as the code may have been compiled non-debuggable.
1874       // Also deoptimize if we are profiling the boot class path.
1875       ScopedThreadSuspension sts(self, ThreadState::kNative);
1876       ScopedSuspendAll ssa(__FUNCTION__);
1877       DeoptimizeBootImage();
1878     }
1879   } else {
1880     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1881     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1882       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1883     } else {
1884       OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
1885                        ArrayRef<const std::string>(GetBootClassPathLocations()),
1886                        ArrayRef<const int>(GetBootClassPathFds()),
1887                        &boot_class_path);
1888     }
1889     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1890       LOG(ERROR) << "Could not initialize without image: " << error_msg;
1891       return false;
1892     }
1893 
1894     // TODO: Should we move the following to InitWithoutImage?
1895     SetInstructionSet(instruction_set_);
1896     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1897       CalleeSaveType type = CalleeSaveType(i);
1898       if (!HasCalleeSaveMethod(type)) {
1899         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1900       }
1901     }
1902   }
1903 
1904   // Now that the boot image space is set, cache the boot classpath checksums,
1905   // to be used when validating oat files.
1906   ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
1907   ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
1908   boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
1909                                                                                 bcp_dex_files);
1910 
1911   CHECK(class_linker_ != nullptr);
1912 
1913   verifier::ClassVerifier::Init(class_linker_);
1914 
1915   if (runtime_options.Exists(Opt::MethodTrace)) {
1916     trace_config_.reset(new TraceConfig());
1917     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1918     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1919     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1920     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1921         Trace::TraceOutputMode::kStreaming :
1922         Trace::TraceOutputMode::kFile;
1923     trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock);
1924   }
1925 
1926   // TODO: Remove this in a follow up CL. This isn't used anywhere.
1927   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1928 
1929   if (GetHeap()->HasBootImageSpace()) {
1930     const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
1931     ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1932         ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1933             image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1934     pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
1935         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
1936     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
1937                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1938     pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
1939         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
1940     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
1941                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1942     pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
1943         boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
1944     DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
1945                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1946     pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
1947         boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
1948     DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
1949                ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
1950   } else {
1951     // Pre-allocate an OutOfMemoryError for the case when we fail to
1952     // allocate the exception to be thrown.
1953     CreatePreAllocatedException(self,
1954                                 this,
1955                                 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1956                                 "Ljava/lang/OutOfMemoryError;",
1957                                 "OutOfMemoryError thrown while trying to throw an exception; "
1958                                     "no stack trace available");
1959     // Pre-allocate an OutOfMemoryError for the double-OOME case.
1960     CreatePreAllocatedException(self,
1961                                 this,
1962                                 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1963                                 "Ljava/lang/OutOfMemoryError;",
1964                                 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1965                                     "no stack trace available");
1966     // Pre-allocate an OutOfMemoryError for the case when we fail to
1967     // allocate while handling a stack overflow.
1968     CreatePreAllocatedException(self,
1969                                 this,
1970                                 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1971                                 "Ljava/lang/OutOfMemoryError;",
1972                                 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1973                                     "no stack trace available");
1974 
1975     // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1976     // ahead of checking the application's class loader.
1977     CreatePreAllocatedException(self,
1978                                 this,
1979                                 &pre_allocated_NoClassDefFoundError_,
1980                                 "Ljava/lang/NoClassDefFoundError;",
1981                                 "Class not found using the boot class loader; "
1982                                     "no stack trace available");
1983   }
1984 
1985   // Class-roots are setup, we can now finish initializing the JniIdManager.
1986   GetJniIdManager()->Init(self);
1987 
1988   InitMetrics();
1989 
1990   // Runtime initialization is largely done now.
1991   // We load plugins first since that can modify the runtime state slightly.
1992   // Load all plugins
1993   {
1994     // The init method of plugins expect the state of the thread to be non runnable.
1995     ScopedThreadSuspension sts(self, ThreadState::kNative);
1996     for (auto& plugin : plugins_) {
1997       std::string err;
1998       if (!plugin.Load(&err)) {
1999         LOG(FATAL) << plugin << " failed to load: " << err;
2000       }
2001     }
2002   }
2003 
2004   // Look for a native bridge.
2005   //
2006   // The intended flow here is, in the case of a running system:
2007   //
2008   // Runtime::Init() (zygote):
2009   //   LoadNativeBridge -> dlopen from cmd line parameter.
2010   //  |
2011   //  V
2012   // Runtime::Start() (zygote):
2013   //   No-op wrt native bridge.
2014   //  |
2015   //  | start app
2016   //  V
2017   // DidForkFromZygote(action)
2018   //   action = kUnload -> dlclose native bridge.
2019   //   action = kInitialize -> initialize library
2020   //
2021   //
2022   // The intended flow here is, in the case of a simple dalvikvm call:
2023   //
2024   // Runtime::Init():
2025   //   LoadNativeBridge -> dlopen from cmd line parameter.
2026   //  |
2027   //  V
2028   // Runtime::Start():
2029   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
2030   //   No-op wrt native bridge.
2031   {
2032     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
2033     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
2034   }
2035 
2036   // Startup agents
2037   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
2038   for (auto& agent_spec : agent_specs_) {
2039     // TODO Check err
2040     int res = 0;
2041     std::string err = "";
2042     ti::LoadError error;
2043     std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
2044 
2045     if (agent != nullptr) {
2046       agents_.push_back(std::move(agent));
2047       continue;
2048     }
2049 
2050     switch (error) {
2051       case ti::LoadError::kInitializationError:
2052         LOG(FATAL) << "Unable to initialize agent!";
2053         UNREACHABLE();
2054 
2055       case ti::LoadError::kLoadingError:
2056         LOG(ERROR) << "Unable to load an agent: " << err;
2057         continue;
2058 
2059       case ti::LoadError::kNoError:
2060         break;
2061     }
2062     LOG(FATAL) << "Unreachable";
2063     UNREACHABLE();
2064   }
2065   {
2066     ScopedObjectAccess soa(self);
2067     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
2068   }
2069 
2070   if (IsZygote() && IsPerfettoHprofEnabled()) {
2071     constexpr const char* plugin_name = kIsDebugBuild ?
2072         "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2073     // Load eagerly in Zygote to improve app startup times. This will make
2074     // subsequent dlopens for the library no-ops.
2075     dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
2076   }
2077 
2078   VLOG(startup) << "Runtime::Init exiting";
2079 
2080   return true;
2081 }
2082 
InitMetrics()2083 void Runtime::InitMetrics() {
2084   metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
2085   metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
2086 }
2087 
RequestMetricsReport(bool synchronous)2088 void Runtime::RequestMetricsReport(bool synchronous) {
2089   if (metrics_reporter_) {
2090     metrics_reporter_->RequestMetricsReport(synchronous);
2091   }
2092 }
2093 
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)2094 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
2095   // Is the plugin already loaded?
2096   for (const Plugin& p : plugins_) {
2097     if (p.GetLibrary() == plugin_name) {
2098       return true;
2099     }
2100   }
2101   Plugin new_plugin = Plugin::Create(plugin_name);
2102 
2103   if (!new_plugin.Load(error_msg)) {
2104     return false;
2105   }
2106   plugins_.push_back(std::move(new_plugin));
2107   return true;
2108 }
2109 
EnsurePerfettoPlugin(std::string * error_msg)2110 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
2111   constexpr const char* plugin_name = kIsDebugBuild ?
2112     "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2113   return EnsurePluginLoaded(plugin_name, error_msg);
2114 }
2115 
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)2116 static bool EnsureJvmtiPlugin(Runtime* runtime,
2117                               std::string* error_msg) {
2118   // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
2119   DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
2120       << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
2121   // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
2122   // specifically allowed.
2123   if (!Dbg::IsJdwpAllowed()) {
2124     *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
2125     return false;
2126   }
2127 
2128   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
2129   return runtime->EnsurePluginLoaded(plugin_name, error_msg);
2130 }
2131 
2132 // Attach a new agent and add it to the list of runtime agents
2133 //
2134 // TODO: once we decide on the threading model for agents,
2135 //   revisit this and make sure we're doing this on the right thread
2136 //   (and we synchronize access to any shared data structures like "agents_")
2137 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)2138 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
2139   std::string error_msg;
2140   if (!EnsureJvmtiPlugin(this, &error_msg)) {
2141     LOG(WARNING) << "Could not load plugin: " << error_msg;
2142     ScopedObjectAccess soa(Thread::Current());
2143     ThrowIOException("%s", error_msg.c_str());
2144     return;
2145   }
2146 
2147   ti::AgentSpec agent_spec(agent_arg);
2148 
2149   int res = 0;
2150   ti::LoadError error;
2151   std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
2152 
2153   if (agent != nullptr) {
2154     agents_.push_back(std::move(agent));
2155   } else {
2156     LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
2157     ScopedObjectAccess soa(Thread::Current());
2158     ThrowIOException("%s", error_msg.c_str());
2159   }
2160 }
2161 
InitNativeMethods()2162 void Runtime::InitNativeMethods() {
2163   VLOG(startup) << "Runtime::InitNativeMethods entering";
2164   Thread* self = Thread::Current();
2165   JNIEnv* env = self->GetJniEnv();
2166 
2167   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
2168   CHECK_EQ(self->GetState(), ThreadState::kNative);
2169 
2170   // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
2171   // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
2172   // just use System.loadLibrary, but libcore can't because it's the library
2173   // that implements System.loadLibrary!
2174   //
2175   // By setting calling class to java.lang.Object, the caller location for these
2176   // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
2177   // com_android_art linker namespace.
2178   jclass java_lang_Object;
2179   {
2180     // Use global JNI reference to keep the local references empty. If we allocated a
2181     // local reference here, the `PushLocalFrame(128)` that these internal libraries do
2182     // in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding.
2183     ScopedObjectAccess soa(self);
2184     java_lang_Object = reinterpret_cast<jclass>(
2185         GetJavaVM()->AddGlobalRef(self, GetClassRoot<mirror::Object>(GetClassLinker())));
2186   }
2187 
2188   // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
2189   // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
2190   {
2191     std::string error_msg;
2192     if (!java_vm_->LoadNativeLibrary(
2193           env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) {
2194       LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
2195     }
2196   }
2197   {
2198     std::string error_msg;
2199     if (!java_vm_->LoadNativeLibrary(
2200           env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) {
2201       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
2202     }
2203   }
2204   {
2205     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
2206                                                 ? "libopenjdkd.so"
2207                                                 : "libopenjdk.so";
2208     std::string error_msg;
2209     if (!java_vm_->LoadNativeLibrary(
2210           env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) {
2211       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
2212     }
2213   }
2214   env->DeleteGlobalRef(java_lang_Object);
2215 
2216   // Initialize well known classes that may invoke runtime native methods.
2217   WellKnownClasses::LateInit(env);
2218 
2219   VLOG(startup) << "Runtime::InitNativeMethods exiting";
2220 }
2221 
ReclaimArenaPoolMemory()2222 void Runtime::ReclaimArenaPoolMemory() {
2223   arena_pool_->LockReclaimMemory();
2224 }
2225 
InitThreadGroups(Thread * self)2226 void Runtime::InitThreadGroups(Thread* self) {
2227   ScopedObjectAccess soa(self);
2228   ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup;
2229   ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup;
2230   // Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on
2231   // `ThreadGroup` and `Thread` being initialized.
2232   // TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*`
2233   // (and therefore the `WellKnownClasses::Init()` shall not initialize any classes).
2234   StackHandleScope<2u> hs(self);
2235   Handle<mirror::Class> thread_group_class =
2236       hs.NewHandle(main_thread_group_field->GetDeclaringClass());
2237   bool initialized = GetClassLinker()->EnsureInitialized(
2238       self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2239   CHECK(initialized);
2240   Handle<mirror::Class> thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get());
2241   initialized = GetClassLinker()->EnsureInitialized(
2242       self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
2243   CHECK(initialized);
2244   main_thread_group_ =
2245       soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get()));
2246   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2247   system_thread_group_ =
2248       soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get()));
2249   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2250 }
2251 
GetMainThreadGroup() const2252 jobject Runtime::GetMainThreadGroup() const {
2253   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2254   return main_thread_group_;
2255 }
2256 
GetSystemThreadGroup() const2257 jobject Runtime::GetSystemThreadGroup() const {
2258   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2259   return system_thread_group_;
2260 }
2261 
GetSystemClassLoader() const2262 jobject Runtime::GetSystemClassLoader() const {
2263   CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler());
2264   return system_class_loader_;
2265 }
2266 
RegisterRuntimeNativeMethods(JNIEnv * env)2267 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
2268   register_dalvik_system_DexFile(env);
2269   register_dalvik_system_BaseDexClassLoader(env);
2270   register_dalvik_system_VMDebug(env);
2271   register_dalvik_system_VMRuntime(env);
2272   register_dalvik_system_VMStack(env);
2273   register_dalvik_system_ZygoteHooks(env);
2274   register_java_lang_Class(env);
2275   register_java_lang_Object(env);
2276   register_java_lang_invoke_MethodHandle(env);
2277   register_java_lang_invoke_MethodHandleImpl(env);
2278   register_java_lang_ref_FinalizerReference(env);
2279   register_java_lang_reflect_Array(env);
2280   register_java_lang_reflect_Constructor(env);
2281   register_java_lang_reflect_Executable(env);
2282   register_java_lang_reflect_Field(env);
2283   register_java_lang_reflect_Method(env);
2284   register_java_lang_reflect_Parameter(env);
2285   register_java_lang_reflect_Proxy(env);
2286   register_java_lang_ref_Reference(env);
2287   register_java_lang_StackStreamFactory(env);
2288   register_java_lang_String(env);
2289   register_java_lang_StringFactory(env);
2290   register_java_lang_System(env);
2291   register_java_lang_Thread(env);
2292   register_java_lang_Throwable(env);
2293   register_java_lang_VMClassLoader(env);
2294   register_java_util_concurrent_atomic_AtomicLong(env);
2295   register_jdk_internal_misc_Unsafe(env);
2296   register_libcore_io_Memory(env);
2297   register_libcore_util_CharsetUtils(env);
2298   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
2299   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
2300   register_sun_misc_Unsafe(env);
2301 }
2302 
operator <<(std::ostream & os,const DeoptimizationKind & kind)2303 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
2304   os << GetDeoptimizationKindName(kind);
2305   return os;
2306 }
2307 
DumpDeoptimizations(std::ostream & os)2308 void Runtime::DumpDeoptimizations(std::ostream& os) {
2309   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2310     if (deoptimization_counts_[i] != 0) {
2311       os << "Number of "
2312          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2313          << " deoptimizations: "
2314          << deoptimization_counts_[i]
2315          << "\n";
2316     }
2317   }
2318 }
2319 
DumpForSigQuit(std::ostream & os)2320 void Runtime::DumpForSigQuit(std::ostream& os) {
2321   // Print backtraces first since they are important do diagnose ANRs,
2322   // and ANRs can often be trimmed to limit upload size.
2323   thread_list_->DumpForSigQuit(os);
2324   GetClassLinker()->DumpForSigQuit(os);
2325   GetInternTable()->DumpForSigQuit(os);
2326   GetJavaVM()->DumpForSigQuit(os);
2327   GetHeap()->DumpForSigQuit(os);
2328   oat_file_manager_->DumpForSigQuit(os);
2329   if (GetJit() != nullptr) {
2330     GetJit()->DumpForSigQuit(os);
2331   } else {
2332     os << "Running non JIT\n";
2333   }
2334   DumpDeoptimizations(os);
2335   TrackedAllocators::Dump(os);
2336   GetMetrics()->DumpForSigQuit(os);
2337   os << "\n";
2338 
2339   BaseMutex::DumpAll(os);
2340 
2341   // Inform anyone else who is interested in SigQuit.
2342   {
2343     ScopedObjectAccess soa(Thread::Current());
2344     callbacks_->SigQuit();
2345   }
2346 }
2347 
DumpLockHolders(std::ostream & os)2348 void Runtime::DumpLockHolders(std::ostream& os) {
2349   pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2350   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2351   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2352   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2353   if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2354     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2355        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2356        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2357        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2358   }
2359 }
2360 
SetStatsEnabled(bool new_state)2361 void Runtime::SetStatsEnabled(bool new_state) {
2362   Thread* self = Thread::Current();
2363   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2364   if (new_state == true) {
2365     GetStats()->Clear(~0);
2366     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2367     self->GetStats()->Clear(~0);
2368     if (stats_enabled_ != new_state) {
2369       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2370     }
2371   } else if (stats_enabled_ != new_state) {
2372     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2373   }
2374   stats_enabled_ = new_state;
2375 }
2376 
ResetStats(int kinds)2377 void Runtime::ResetStats(int kinds) {
2378   GetStats()->Clear(kinds & 0xffff);
2379   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2380   Thread::Current()->GetStats()->Clear(kinds >> 16);
2381 }
2382 
GetStat(int kind)2383 uint64_t Runtime::GetStat(int kind) {
2384   RuntimeStats* stats;
2385   if (kind < (1<<16)) {
2386     stats = GetStats();
2387   } else {
2388     stats = Thread::Current()->GetStats();
2389     kind >>= 16;
2390   }
2391   switch (kind) {
2392   case KIND_ALLOCATED_OBJECTS:
2393     return stats->allocated_objects;
2394   case KIND_ALLOCATED_BYTES:
2395     return stats->allocated_bytes;
2396   case KIND_FREED_OBJECTS:
2397     return stats->freed_objects;
2398   case KIND_FREED_BYTES:
2399     return stats->freed_bytes;
2400   case KIND_GC_INVOCATIONS:
2401     return stats->gc_for_alloc_count;
2402   case KIND_CLASS_INIT_COUNT:
2403     return stats->class_init_count;
2404   case KIND_CLASS_INIT_TIME:
2405     return stats->class_init_time_ns;
2406   case KIND_EXT_ALLOCATED_OBJECTS:
2407   case KIND_EXT_ALLOCATED_BYTES:
2408   case KIND_EXT_FREED_OBJECTS:
2409   case KIND_EXT_FREED_BYTES:
2410     return 0;  // backward compatibility
2411   default:
2412     LOG(FATAL) << "Unknown statistic " << kind;
2413     UNREACHABLE();
2414   }
2415 }
2416 
BlockSignals()2417 void Runtime::BlockSignals() {
2418   SignalSet signals;
2419   signals.Add(SIGPIPE);
2420   // SIGQUIT is used to dump the runtime's state (including stack traces).
2421   signals.Add(SIGQUIT);
2422   // SIGUSR1 is used to initiate a GC.
2423   signals.Add(SIGUSR1);
2424   signals.Block();
2425 }
2426 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)2427 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2428                                   bool create_peer, bool should_run_callbacks) {
2429   ScopedTrace trace(__FUNCTION__);
2430   Thread* self = Thread::Attach(thread_name,
2431                                 as_daemon,
2432                                 thread_group,
2433                                 create_peer,
2434                                 should_run_callbacks);
2435   // Run ThreadGroup.add to notify the group that this thread is now started.
2436   if (self != nullptr && create_peer && !IsAotCompiler()) {
2437     ScopedObjectAccess soa(self);
2438     self->NotifyThreadGroup(soa, thread_group);
2439   }
2440   return self != nullptr;
2441 }
2442 
DetachCurrentThread(bool should_run_callbacks)2443 void Runtime::DetachCurrentThread(bool should_run_callbacks) {
2444   ScopedTrace trace(__FUNCTION__);
2445   Thread* self = Thread::Current();
2446   if (self == nullptr) {
2447     LOG(FATAL) << "attempting to detach thread that is not attached";
2448   }
2449   if (self->HasManagedStack()) {
2450     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2451   }
2452   thread_list_->Unregister(self, should_run_callbacks);
2453 }
2454 
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2455 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2456   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2457   if (oome == nullptr) {
2458     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2459   }
2460   return oome;
2461 }
2462 
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2463 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2464   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2465   if (oome == nullptr) {
2466     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2467   }
2468   return oome;
2469 }
2470 
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2471 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2472   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2473   if (oome == nullptr) {
2474     LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2475   }
2476   return oome;
2477 }
2478 
GetPreAllocatedNoClassDefFoundError()2479 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2480   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2481   if (ncdfe == nullptr) {
2482     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2483   }
2484   return ncdfe;
2485 }
2486 
VisitConstantRoots(RootVisitor * visitor)2487 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2488   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2489   // null.
2490   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2491   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2492   if (HasResolutionMethod()) {
2493     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2494   }
2495   if (HasImtConflictMethod()) {
2496     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2497   }
2498   if (imt_unimplemented_method_ != nullptr) {
2499     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2500   }
2501   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2502     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2503     if (m != nullptr) {
2504       m->VisitRoots(buffered_visitor, pointer_size);
2505     }
2506   }
2507 }
2508 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2509 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2510   intern_table_->VisitRoots(visitor, flags);
2511   class_linker_->VisitRoots(visitor, flags);
2512   jni_id_manager_->VisitRoots(visitor);
2513   heap_->VisitAllocationRecords(visitor);
2514   if (jit_ != nullptr) {
2515     jit_->GetCodeCache()->VisitRoots(visitor);
2516   }
2517   if ((flags & kVisitRootFlagNewRoots) == 0) {
2518     // Guaranteed to have no new roots in the constant roots.
2519     VisitConstantRoots(visitor);
2520   }
2521 }
2522 
VisitTransactionRoots(RootVisitor * visitor)2523 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2524   for (Transaction& transaction : preinitialization_transactions_) {
2525     transaction.VisitRoots(visitor);
2526   }
2527 }
2528 
VisitNonThreadRoots(RootVisitor * visitor)2529 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2530   java_vm_->VisitRoots(visitor);
2531   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2532   pre_allocated_OutOfMemoryError_when_throwing_exception_
2533       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2534   pre_allocated_OutOfMemoryError_when_throwing_oome_
2535       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2536   pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2537       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2538   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2539   VisitImageRoots(visitor);
2540   verifier::ClassVerifier::VisitStaticRoots(visitor);
2541   VisitTransactionRoots(visitor);
2542 }
2543 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2544 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2545   VisitThreadRoots(visitor, flags);
2546   VisitNonThreadRoots(visitor);
2547 }
2548 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2549 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2550   thread_list_->VisitRoots(visitor, flags);
2551 }
2552 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2553 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2554   VisitNonConcurrentRoots(visitor, flags);
2555   VisitConcurrentRoots(visitor, flags);
2556 }
2557 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2558 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2559   thread_list_->VisitReflectiveTargets(visitor);
2560   heap_->VisitReflectiveTargets(visitor);
2561   jni_id_manager_->VisitReflectiveTargets(visitor);
2562   callbacks_->VisitReflectiveTargets(visitor);
2563 }
2564 
VisitImageRoots(RootVisitor * visitor)2565 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2566   // We only confirm that image roots are unchanged.
2567   if (kIsDebugBuild) {
2568     for (auto* space : GetHeap()->GetContinuousSpaces()) {
2569       if (space->IsImageSpace()) {
2570         auto* image_space = space->AsImageSpace();
2571         const auto& image_header = image_space->GetImageHeader();
2572         for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2573           mirror::Object* obj =
2574               image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2575           if (obj != nullptr) {
2576             mirror::Object* after_obj = obj;
2577             visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2578             CHECK_EQ(after_obj, obj);
2579           }
2580         }
2581       }
2582     }
2583   }
2584 }
2585 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2586 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2587     REQUIRES_SHARED(Locks::mutator_lock_) {
2588   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2589   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2590   const size_t method_size = ArtMethod::Size(image_pointer_size);
2591   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2592       Thread::Current(),
2593       linear_alloc,
2594       1);
2595   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2596   CHECK(method != nullptr);
2597   method->SetDexMethodIndex(dex::kDexNoIndex);
2598   CHECK(method->IsRuntimeMethod());
2599   return method;
2600 }
2601 
CreateImtConflictMethod(LinearAlloc * linear_alloc)2602 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2603   ClassLinker* const class_linker = GetClassLinker();
2604   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2605   // When compiling, the code pointer will get set later when the image is loaded.
2606   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2607   if (IsAotCompiler()) {
2608     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2609   } else {
2610     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2611   }
2612   // Create empty conflict table.
2613   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2614                               pointer_size);
2615   return method;
2616 }
2617 
SetImtConflictMethod(ArtMethod * method)2618 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2619   CHECK(method != nullptr);
2620   CHECK(method->IsRuntimeMethod());
2621   imt_conflict_method_ = method;
2622 }
2623 
CreateResolutionMethod()2624 ArtMethod* Runtime::CreateResolutionMethod() {
2625   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2626   // When compiling, the code pointer will get set later when the image is loaded.
2627   if (IsAotCompiler()) {
2628     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2629     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2630     method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2631   } else {
2632     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2633     method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2634   }
2635   return method;
2636 }
2637 
CreateCalleeSaveMethod()2638 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2639   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2640   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2641   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2642   DCHECK_NE(instruction_set_, InstructionSet::kNone);
2643   DCHECK(method->IsRuntimeMethod());
2644   return method;
2645 }
2646 
DisallowNewSystemWeaks()2647 void Runtime::DisallowNewSystemWeaks() {
2648   CHECK(!gUseReadBarrier);
2649   monitor_list_->DisallowNewMonitors();
2650   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2651   java_vm_->DisallowNewWeakGlobals();
2652   heap_->DisallowNewAllocationRecords();
2653   if (GetJit() != nullptr) {
2654     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2655   }
2656 
2657   // All other generic system-weak holders.
2658   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2659     holder->Disallow();
2660   }
2661 }
2662 
AllowNewSystemWeaks()2663 void Runtime::AllowNewSystemWeaks() {
2664   CHECK(!gUseReadBarrier);
2665   monitor_list_->AllowNewMonitors();
2666   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
2667   java_vm_->AllowNewWeakGlobals();
2668   heap_->AllowNewAllocationRecords();
2669   if (GetJit() != nullptr) {
2670     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2671   }
2672 
2673   // All other generic system-weak holders.
2674   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2675     holder->Allow();
2676   }
2677 }
2678 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2679 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2680   // This is used for the read barrier case that uses the thread-local
2681   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2682   // (see ThreadList::RunCheckpoint).
2683   monitor_list_->BroadcastForNewMonitors();
2684   intern_table_->BroadcastForNewInterns();
2685   java_vm_->BroadcastForNewWeakGlobals();
2686   heap_->BroadcastForNewAllocationRecords();
2687   if (GetJit() != nullptr) {
2688     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2689   }
2690 
2691   // All other generic system-weak holders.
2692   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2693     holder->Broadcast(broadcast_for_checkpoint);
2694   }
2695 }
2696 
SetInstructionSet(InstructionSet instruction_set)2697 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2698   instruction_set_ = instruction_set;
2699   switch (instruction_set) {
2700     case InstructionSet::kThumb2:
2701       // kThumb2 is the same as kArm, use the canonical value.
2702       instruction_set_ = InstructionSet::kArm;
2703       break;
2704     case InstructionSet::kArm:
2705     case InstructionSet::kArm64:
2706     case InstructionSet::kRiscv64:
2707     case InstructionSet::kX86:
2708     case InstructionSet::kX86_64:
2709       break;
2710     default:
2711       UNIMPLEMENTED(FATAL) << instruction_set_;
2712       UNREACHABLE();
2713   }
2714 }
2715 
ClearInstructionSet()2716 void Runtime::ClearInstructionSet() {
2717   instruction_set_ = InstructionSet::kNone;
2718 }
2719 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2720 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2721   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2722   CHECK(method != nullptr);
2723   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2724 }
2725 
ClearCalleeSaveMethods()2726 void Runtime::ClearCalleeSaveMethods() {
2727   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2728     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2729   }
2730 }
2731 
RegisterAppInfo(const std::string & package_name,const std::vector<std::string> & code_paths,const std::string & profile_output_filename,const std::string & ref_profile_filename,int32_t code_type)2732 void Runtime::RegisterAppInfo(const std::string& package_name,
2733                               const std::vector<std::string>& code_paths,
2734                               const std::string& profile_output_filename,
2735                               const std::string& ref_profile_filename,
2736                               int32_t code_type) {
2737   app_info_.RegisterAppInfo(
2738       package_name,
2739       code_paths,
2740       profile_output_filename,
2741       ref_profile_filename,
2742       AppInfo::FromVMRuntimeConstants(code_type));
2743 
2744   if (metrics_reporter_ != nullptr) {
2745     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
2746   }
2747 
2748   if (jit_.get() == nullptr) {
2749     // We are not JITing. Nothing to do.
2750     return;
2751   }
2752 
2753   VLOG(profiler) << "Register app with " << profile_output_filename
2754       << " " << android::base::Join(code_paths, ':');
2755   VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
2756 
2757   if (profile_output_filename.empty()) {
2758     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2759     return;
2760   }
2761   if (code_paths.empty()) {
2762     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2763     return;
2764   }
2765 
2766   // Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code
2767   // so that we don't unnecessarily create profiles for them or write bootclasspath profiling info
2768   // to those profiles.
2769   bool has_code = false;
2770   for (const std::string& path : code_paths) {
2771     std::string error_msg;
2772     std::vector<uint32_t> checksums;
2773     std::vector<std::string> dex_locations;
2774     if (!ArtDexFileLoader::GetMultiDexChecksums(
2775             path.c_str(), &checksums, &dex_locations, &error_msg)) {
2776       LOG(WARNING) << error_msg;
2777       continue;
2778     }
2779     if (dex_locations.size() > 0) {
2780       has_code = true;
2781       break;
2782     }
2783   }
2784   if (!has_code) {
2785     VLOG(profiler) << "JIT profile information will not be recorded: no dex code in '" +
2786                           android::base::Join(code_paths, ',') + "'.";
2787     return;
2788   }
2789 
2790   jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename);
2791 }
2792 
2793 // Transaction support.
IsActiveTransaction() const2794 bool Runtime::IsActiveTransaction() const {
2795   return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2796 }
2797 
EnterTransactionMode(bool strict,mirror::Class * root)2798 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2799   DCHECK(IsAotCompiler());
2800   ArenaPool* arena_pool = nullptr;
2801   ArenaStack* arena_stack = nullptr;
2802   if (preinitialization_transactions_.empty()) {  // Top-level transaction?
2803     // Make initialized classes visibly initialized now. If that happened during the transaction
2804     // and then the transaction was aborted, we would roll back the status update but not the
2805     // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
2806     {
2807       Thread* self = Thread::Current();
2808       StackHandleScope<1> hs(self);
2809       HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(&root));
2810       ScopedThreadSuspension sts(self, ThreadState::kNative);
2811       GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
2812     }
2813     // Pass the runtime `ArenaPool` to the transaction.
2814     arena_pool = GetArenaPool();
2815   } else {
2816     // Pass the `ArenaStack` from previous transaction to the new one.
2817     arena_stack = preinitialization_transactions_.front().GetArenaStack();
2818   }
2819   preinitialization_transactions_.emplace_front(strict, root, arena_stack, arena_pool);
2820 }
2821 
ExitTransactionMode()2822 void Runtime::ExitTransactionMode() {
2823   DCHECK(IsAotCompiler());
2824   DCHECK(IsActiveTransaction());
2825   preinitialization_transactions_.pop_front();
2826 }
2827 
RollbackAndExitTransactionMode()2828 void Runtime::RollbackAndExitTransactionMode() {
2829   DCHECK(IsAotCompiler());
2830   DCHECK(IsActiveTransaction());
2831   preinitialization_transactions_.front().Rollback();
2832   preinitialization_transactions_.pop_front();
2833 }
2834 
IsTransactionAborted() const2835 bool Runtime::IsTransactionAborted() const {
2836   if (!IsActiveTransaction()) {
2837     return false;
2838   } else {
2839     DCHECK(IsAotCompiler());
2840     return GetTransaction()->IsAborted();
2841   }
2842 }
2843 
RollbackAllTransactions()2844 void Runtime::RollbackAllTransactions() {
2845   // If transaction is aborted, all transactions will be kept in the list.
2846   // Rollback and exit all of them.
2847   while (IsActiveTransaction()) {
2848     RollbackAndExitTransactionMode();
2849   }
2850 }
2851 
IsActiveStrictTransactionMode() const2852 bool Runtime::IsActiveStrictTransactionMode() const {
2853   return IsActiveTransaction() && GetTransaction()->IsStrict();
2854 }
2855 
GetTransaction() const2856 const Transaction* Runtime::GetTransaction() const {
2857   DCHECK(!preinitialization_transactions_.empty());
2858   return &preinitialization_transactions_.front();
2859 }
2860 
GetTransaction()2861 Transaction* Runtime::GetTransaction() {
2862   DCHECK(!preinitialization_transactions_.empty());
2863   return &preinitialization_transactions_.front();
2864 }
2865 
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2866 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2867   DCHECK(IsAotCompiler());
2868   DCHECK(IsActiveTransaction());
2869   // Throwing an exception may cause its class initialization. If we mark the transaction
2870   // aborted before that, we may warn with a false alarm. Throwing the exception before
2871   // marking the transaction aborted avoids that.
2872   // But now the transaction can be nested, and abort the transaction will relax the constraints
2873   // for constructing stack trace.
2874   GetTransaction()->Abort(abort_message);
2875   GetTransaction()->ThrowAbortError(self, &abort_message);
2876 }
2877 
ThrowTransactionAbortError(Thread * self)2878 void Runtime::ThrowTransactionAbortError(Thread* self) {
2879   DCHECK(IsAotCompiler());
2880   DCHECK(IsActiveTransaction());
2881   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2882   GetTransaction()->ThrowAbortError(self, nullptr);
2883 }
2884 
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile)2885 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj,
2886                                       MemberOffset field_offset,
2887                                       uint8_t value,
2888                                       bool is_volatile) {
2889   DCHECK(IsAotCompiler());
2890   DCHECK(IsActiveTransaction());
2891   GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2892 }
2893 
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile)2894 void Runtime::RecordWriteFieldByte(mirror::Object* obj,
2895                                    MemberOffset field_offset,
2896                                    int8_t value,
2897                                    bool is_volatile) {
2898   DCHECK(IsAotCompiler());
2899   DCHECK(IsActiveTransaction());
2900   GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2901 }
2902 
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile)2903 void Runtime::RecordWriteFieldChar(mirror::Object* obj,
2904                                    MemberOffset field_offset,
2905                                    uint16_t value,
2906                                    bool is_volatile) {
2907   DCHECK(IsAotCompiler());
2908   DCHECK(IsActiveTransaction());
2909   GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2910 }
2911 
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile)2912 void Runtime::RecordWriteFieldShort(mirror::Object* obj,
2913                                     MemberOffset field_offset,
2914                                     int16_t value,
2915                                     bool is_volatile) {
2916   DCHECK(IsAotCompiler());
2917   DCHECK(IsActiveTransaction());
2918   GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2919 }
2920 
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile)2921 void Runtime::RecordWriteField32(mirror::Object* obj,
2922                                  MemberOffset field_offset,
2923                                  uint32_t value,
2924                                  bool is_volatile) {
2925   DCHECK(IsAotCompiler());
2926   DCHECK(IsActiveTransaction());
2927   GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2928 }
2929 
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile)2930 void Runtime::RecordWriteField64(mirror::Object* obj,
2931                                  MemberOffset field_offset,
2932                                  uint64_t value,
2933                                  bool is_volatile) {
2934   DCHECK(IsAotCompiler());
2935   DCHECK(IsActiveTransaction());
2936   GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2937 }
2938 
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile)2939 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2940                                         MemberOffset field_offset,
2941                                         ObjPtr<mirror::Object> value,
2942                                         bool is_volatile) {
2943   DCHECK(IsAotCompiler());
2944   DCHECK(IsActiveTransaction());
2945   GetTransaction()->RecordWriteFieldReference(obj, field_offset, value.Ptr(), is_volatile);
2946 }
2947 
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value)2948 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) {
2949   DCHECK(IsAotCompiler());
2950   DCHECK(IsActiveTransaction());
2951   GetTransaction()->RecordWriteArray(array, index, value);
2952 }
2953 
RecordStrongStringInsertion(ObjPtr<mirror::String> s)2954 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) {
2955   DCHECK(IsAotCompiler());
2956   DCHECK(IsActiveTransaction());
2957   GetTransaction()->RecordStrongStringInsertion(s);
2958 }
2959 
RecordWeakStringInsertion(ObjPtr<mirror::String> s)2960 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) {
2961   DCHECK(IsAotCompiler());
2962   DCHECK(IsActiveTransaction());
2963   GetTransaction()->RecordWeakStringInsertion(s);
2964 }
2965 
RecordStrongStringRemoval(ObjPtr<mirror::String> s)2966 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) {
2967   DCHECK(IsAotCompiler());
2968   DCHECK(IsActiveTransaction());
2969   GetTransaction()->RecordStrongStringRemoval(s);
2970 }
2971 
RecordWeakStringRemoval(ObjPtr<mirror::String> s)2972 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) {
2973   DCHECK(IsAotCompiler());
2974   DCHECK(IsActiveTransaction());
2975   GetTransaction()->RecordWeakStringRemoval(s);
2976 }
2977 
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx)2978 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2979                                   dex::StringIndex string_idx) {
2980   DCHECK(IsAotCompiler());
2981   DCHECK(IsActiveTransaction());
2982   GetTransaction()->RecordResolveString(dex_cache, string_idx);
2983 }
2984 
RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache,dex::ProtoIndex proto_idx)2985 void Runtime::RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache,
2986                                       dex::ProtoIndex proto_idx) {
2987   DCHECK(IsAotCompiler());
2988   DCHECK(IsActiveTransaction());
2989   GetTransaction()->RecordResolveMethodType(dex_cache, proto_idx);
2990 }
2991 
SetFaultMessage(const std::string & message)2992 void Runtime::SetFaultMessage(const std::string& message) {
2993   std::string* new_msg = new std::string(message);
2994   std::string* cur_msg = fault_message_.exchange(new_msg);
2995   delete cur_msg;
2996 }
2997 
GetFaultMessage()2998 std::string Runtime::GetFaultMessage() {
2999   // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
3000   // the string in parallel.
3001   std::string* cur_msg = fault_message_.exchange(nullptr);
3002 
3003   // Make a copy of the string.
3004   std::string ret = cur_msg == nullptr ? "" : *cur_msg;
3005 
3006   // Put the message back if it hasn't been updated.
3007   std::string* null_str = nullptr;
3008   if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
3009     // Already replaced.
3010     delete cur_msg;
3011   }
3012 
3013   return ret;
3014 }
3015 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const3016 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
3017     const {
3018   if (GetInstrumentation()->InterpretOnly()) {
3019     argv->push_back("--compiler-filter=quicken");
3020   }
3021 
3022   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
3023   // architecture support, dex2oat may be compiled as a different instruction-set than that
3024   // currently being executed.
3025   std::string instruction_set("--instruction-set=");
3026   instruction_set += GetInstructionSetString(kRuntimeISA);
3027   argv->push_back(instruction_set);
3028 
3029   if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
3030     argv->push_back("--instruction-set-features=runtime");
3031   } else {
3032     std::unique_ptr<const InstructionSetFeatures> features(
3033         InstructionSetFeatures::FromCppDefines());
3034     std::string feature_string("--instruction-set-features=");
3035     feature_string += features->GetFeatureString();
3036     argv->push_back(feature_string);
3037   }
3038 }
3039 
CreateJit()3040 void Runtime::CreateJit() {
3041   DCHECK(jit_code_cache_ == nullptr);
3042   DCHECK(jit_ == nullptr);
3043   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
3044     DCHECK(!jit_options_->UseJitCompilation());
3045   }
3046 
3047   if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
3048     return;
3049   }
3050 
3051   if (IsSafeMode()) {
3052     LOG(INFO) << "Not creating JIT because of SafeMode.";
3053     return;
3054   }
3055 
3056   std::string error_msg;
3057   bool profiling_only = !jit_options_->UseJitCompilation();
3058   jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
3059                                                   /*rwx_memory_allowed=*/ true,
3060                                                   IsZygote(),
3061                                                   &error_msg));
3062   if (jit_code_cache_.get() == nullptr) {
3063     LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
3064     return;
3065   }
3066 
3067   jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
3068   jit_.reset(jit);
3069   if (jit == nullptr) {
3070     LOG(WARNING) << "Failed to allocate JIT";
3071     // Release JIT code cache resources (several MB of memory).
3072     jit_code_cache_.reset();
3073   } else {
3074     jit->CreateThreadPool();
3075   }
3076 }
3077 
CanRelocate() const3078 bool Runtime::CanRelocate() const {
3079   return !IsAotCompiler();
3080 }
3081 
IsCompilingBootImage() const3082 bool Runtime::IsCompilingBootImage() const {
3083   return IsCompiler() && compiler_callbacks_->IsBootImage();
3084 }
3085 
SetResolutionMethod(ArtMethod * method)3086 void Runtime::SetResolutionMethod(ArtMethod* method) {
3087   CHECK(method != nullptr);
3088   CHECK(method->IsRuntimeMethod()) << method;
3089   resolution_method_ = method;
3090 }
3091 
SetImtUnimplementedMethod(ArtMethod * method)3092 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
3093   CHECK(method != nullptr);
3094   CHECK(method->IsRuntimeMethod());
3095   imt_unimplemented_method_ = method;
3096 }
3097 
FixupConflictTables()3098 void Runtime::FixupConflictTables() {
3099   // We can only do this after the class linker is created.
3100   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
3101   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
3102     imt_unimplemented_method_->SetImtConflictTable(
3103         ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3104         pointer_size);
3105   }
3106   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
3107     imt_conflict_method_->SetImtConflictTable(
3108           ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3109           pointer_size);
3110   }
3111 }
3112 
DisableVerifier()3113 void Runtime::DisableVerifier() {
3114   verify_ = verifier::VerifyMode::kNone;
3115 }
3116 
IsVerificationEnabled() const3117 bool Runtime::IsVerificationEnabled() const {
3118   return verify_ == verifier::VerifyMode::kEnable ||
3119       verify_ == verifier::VerifyMode::kSoftFail;
3120 }
3121 
IsVerificationSoftFail() const3122 bool Runtime::IsVerificationSoftFail() const {
3123   return verify_ == verifier::VerifyMode::kSoftFail;
3124 }
3125 
IsAsyncDeoptimizeable(ArtMethod * method,uintptr_t code) const3126 bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const {
3127   if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
3128     if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
3129       return true;
3130     }
3131   }
3132 
3133   // We only support async deopt (ie the compiled code is not explicitly asking for
3134   // deopt, but something else like the debugger) in debuggable JIT code.
3135   // We could look at the oat file where `code` is being defined,
3136   // and check whether it's been compiled debuggable, but we decided to
3137   // only rely on the JIT for debuggable apps.
3138   // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
3139   // region as well.
3140   if (GetJit() != nullptr &&
3141       GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code))) {
3142     // If the code is JITed code then check if it was compiled as debuggable.
3143     const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code);
3144     return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr());
3145   }
3146 
3147   return false;
3148 }
3149 
3150 
CreateLinearAlloc()3151 LinearAlloc* Runtime::CreateLinearAlloc() {
3152   ArenaPool* pool = linear_alloc_arena_pool_.get();
3153   return pool != nullptr
3154       ? new LinearAlloc(pool, gUseUserfaultfd)
3155       : new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false);
3156 }
3157 
3158 class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor {
3159  public:
SetupLinearAllocForZygoteFork(Thread * self)3160   explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {}
3161 
Visit(LinearAlloc * alloc)3162   bool Visit(LinearAlloc* alloc) override {
3163     alloc->SetupForPostZygoteFork(self_);
3164     return true;
3165   }
3166 
3167  private:
3168   Thread* self_;
3169 };
3170 
SetupLinearAllocForPostZygoteFork(Thread * self)3171 void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) {
3172   if (gUseUserfaultfd) {
3173     // Setup all the linear-allocs out there for post-zygote fork. This will
3174     // basically force the arena allocator to ask for a new arena for the next
3175     // allocation. All arenas allocated from now on will be in the userfaultfd
3176     // visited space.
3177     if (GetLinearAlloc() != nullptr) {
3178       GetLinearAlloc()->SetupForPostZygoteFork(self);
3179     }
3180     if (GetStartupLinearAlloc() != nullptr) {
3181       GetStartupLinearAlloc()->SetupForPostZygoteFork(self);
3182     }
3183     {
3184       Locks::mutator_lock_->AssertNotHeld(self);
3185       ReaderMutexLock mu2(self, *Locks::mutator_lock_);
3186       ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_);
3187       SetupLinearAllocForZygoteFork visitor(self);
3188       GetClassLinker()->VisitAllocators(&visitor);
3189     }
3190     static_cast<GcVisitedArenaPool*>(GetLinearAllocArenaPool())->SetupPostZygoteMode();
3191   }
3192 }
3193 
GetHashTableMinLoadFactor() const3194 double Runtime::GetHashTableMinLoadFactor() const {
3195   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
3196 }
3197 
GetHashTableMaxLoadFactor() const3198 double Runtime::GetHashTableMaxLoadFactor() const {
3199   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
3200 }
3201 
UpdateProcessState(ProcessState process_state)3202 void Runtime::UpdateProcessState(ProcessState process_state) {
3203   ProcessState old_process_state = process_state_;
3204   process_state_ = process_state;
3205   GetHeap()->UpdateProcessState(old_process_state, process_state);
3206 }
3207 
RegisterSensitiveThread() const3208 void Runtime::RegisterSensitiveThread() const {
3209   Thread::SetJitSensitiveThread();
3210 }
3211 
3212 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const3213 bool Runtime::UseJitCompilation() const {
3214   return (jit_ != nullptr) && jit_->UseJitCompilation();
3215 }
3216 
TakeSnapshot()3217 void Runtime::EnvSnapshot::TakeSnapshot() {
3218   char** env = GetEnviron();
3219   for (size_t i = 0; env[i] != nullptr; ++i) {
3220     name_value_pairs_.emplace_back(new std::string(env[i]));
3221   }
3222   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
3223   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
3224   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
3225   for (size_t i = 0; env[i] != nullptr; ++i) {
3226     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
3227   }
3228   c_env_vector_[name_value_pairs_.size()] = nullptr;
3229 }
3230 
GetSnapshot() const3231 char** Runtime::EnvSnapshot::GetSnapshot() const {
3232   return c_env_vector_.get();
3233 }
3234 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3235 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3236   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3237                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3238                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3239   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
3240   //       a critical section.
3241   system_weak_holders_.push_back(holder);
3242 }
3243 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3244 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3245   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3246                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3247                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3248   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
3249   if (it != system_weak_holders_.end()) {
3250     system_weak_holders_.erase(it);
3251   }
3252 }
3253 
GetRuntimeCallbacks()3254 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
3255   return callbacks_.get();
3256 }
3257 
3258 // Used to patch boot image method entry point to interpreter bridge.
3259 class UpdateEntryPointsClassVisitor : public ClassVisitor {
3260  public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)3261   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
3262       : instrumentation_(instrumentation) {}
3263 
operator ()(ObjPtr<mirror::Class> klass)3264   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
3265     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
3266     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
3267     for (auto& m : klass->GetMethods(pointer_size)) {
3268       const void* code = m.GetEntryPointFromQuickCompiledCode();
3269       if (!m.IsInvokable()) {
3270         continue;
3271       }
3272       // For java debuggable runtimes we also deoptimize native methods. For other cases (boot
3273       // image profiling) we don't need to deoptimize native methods. If this changes also
3274       // update Instrumentation::CanUseAotCode.
3275       bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable();
3276       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
3277           (!m.IsNative() || deoptimize_native_methods) &&
3278           !m.IsProxyMethod()) {
3279         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3280       }
3281 
3282       if (Runtime::Current()->GetJit() != nullptr &&
3283           Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
3284           (!m.IsNative() || deoptimize_native_methods)) {
3285         DCHECK(!m.IsProxyMethod());
3286         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3287       }
3288 
3289       if (m.IsPreCompiled()) {
3290         // Precompilation is incompatible with debuggable, so clear the flag
3291         // and update the entrypoint in case it has been compiled.
3292         m.ClearPreCompiled();
3293         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3294       }
3295     }
3296     return true;
3297   }
3298 
3299  private:
3300   instrumentation::Instrumentation* const instrumentation_;
3301 };
3302 
SetRuntimeDebugState(RuntimeDebugState state)3303 void Runtime::SetRuntimeDebugState(RuntimeDebugState state) {
3304   if (state != RuntimeDebugState::kJavaDebuggableAtInit) {
3305     // We never change the state if we started as a debuggable runtime.
3306     DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit);
3307   }
3308   runtime_debug_state_ = state;
3309 }
3310 
DeoptimizeBootImage()3311 void Runtime::DeoptimizeBootImage() {
3312   // If we've already started and we are setting this runtime to debuggable,
3313   // we patch entry points of methods in boot image to interpreter bridge, as
3314   // boot image code may be AOT compiled as not debuggable.
3315   UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
3316   GetClassLinker()->VisitClasses(&visitor);
3317   jit::Jit* jit = GetJit();
3318   if (jit != nullptr) {
3319     // Code previously compiled may not be compiled debuggable.
3320     jit->GetCodeCache()->TransitionToDebuggable();
3321   }
3322 }
3323 
ScopedThreadPoolUsage()3324 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
3325     : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
3326 
~ScopedThreadPoolUsage()3327 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
3328   Runtime::Current()->ReleaseThreadPool();
3329 }
3330 
DeleteThreadPool()3331 bool Runtime::DeleteThreadPool() {
3332   // Make sure workers are started to prevent thread shutdown errors.
3333   WaitForThreadPoolWorkersToStart();
3334   std::unique_ptr<ThreadPool> thread_pool;
3335   {
3336     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3337     if (thread_pool_ref_count_ == 0) {
3338       thread_pool = std::move(thread_pool_);
3339     }
3340   }
3341   return thread_pool != nullptr;
3342 }
3343 
AcquireThreadPool()3344 ThreadPool* Runtime::AcquireThreadPool() {
3345   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3346   ++thread_pool_ref_count_;
3347   return thread_pool_.get();
3348 }
3349 
ReleaseThreadPool()3350 void Runtime::ReleaseThreadPool() {
3351   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3352   CHECK_GT(thread_pool_ref_count_, 0u);
3353   --thread_pool_ref_count_;
3354 }
3355 
WaitForThreadPoolWorkersToStart()3356 void Runtime::WaitForThreadPoolWorkersToStart() {
3357   // Need to make sure workers are created before deleting the pool.
3358   ScopedThreadPoolUsage stpu;
3359   if (stpu.GetThreadPool() != nullptr) {
3360     stpu.GetThreadPool()->WaitForWorkersToBeCreated();
3361   }
3362 }
3363 
ResetStartupCompleted()3364 void Runtime::ResetStartupCompleted() {
3365   startup_completed_.store(false, std::memory_order_seq_cst);
3366 }
3367 
NotifyStartupCompleted()3368 bool Runtime::NotifyStartupCompleted() {
3369   DCHECK(!IsZygote());
3370   bool expected = false;
3371   if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3372     // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3373     // once externally. For this reason there are no asserts.
3374     return false;
3375   }
3376 
3377   VLOG(startup) << app_info_;
3378 
3379   ProfileSaver::NotifyStartupCompleted();
3380 
3381   if (metrics_reporter_ != nullptr) {
3382     metrics_reporter_->NotifyStartupCompleted();
3383   }
3384   return true;
3385 }
3386 
NotifyDexFileLoaded()3387 void Runtime::NotifyDexFileLoaded() {
3388   if (metrics_reporter_ != nullptr) {
3389     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
3390   }
3391 }
3392 
GetStartupCompleted() const3393 bool Runtime::GetStartupCompleted() const {
3394   return startup_completed_.load(std::memory_order_seq_cst);
3395 }
3396 
SetSignalHookDebuggable(bool value)3397 void Runtime::SetSignalHookDebuggable(bool value) {
3398   SkipAddSignalHandler(value);
3399 }
3400 
SetJniIdType(JniIdType t)3401 void Runtime::SetJniIdType(JniIdType t) {
3402   CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3403   if (t == GetJniIdType()) {
3404     return;
3405   }
3406   jni_ids_indirection_ = t;
3407   JNIEnvExt::ResetFunctionTable();
3408   WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3409 }
3410 
IsSystemServerProfiled() const3411 bool Runtime::IsSystemServerProfiled() const {
3412   return IsSystemServer() && jit_options_->GetSaveProfilingInfo();
3413 }
3414 
GetOatFilesExecutable() const3415 bool Runtime::GetOatFilesExecutable() const {
3416   return !IsAotCompiler() && !IsSystemServerProfiled();
3417 }
3418 
MadviseFileForRange(size_t madvise_size_limit_bytes,size_t map_size_bytes,const uint8_t * map_begin,const uint8_t * map_end,const std::string & file_name)3419 void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
3420                                   size_t map_size_bytes,
3421                                   const uint8_t* map_begin,
3422                                   const uint8_t* map_end,
3423                                   const std::string& file_name) {
3424   map_begin = AlignDown(map_begin, kPageSize);
3425   map_size_bytes = RoundUp(map_size_bytes, kPageSize);
3426 #ifdef ART_TARGET_ANDROID
3427   // Short-circuit the madvise optimization for background processes. This
3428   // avoids IO and memory contention with foreground processes, particularly
3429   // those involving app startup.
3430   // Note: We can only safely short-circuit the madvise on T+, as it requires
3431   // the framework to always immediately notify ART of process states.
3432   static const int kApiLevel = android_get_device_api_level();
3433   const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__;
3434   if (accurate_process_state_at_startup) {
3435     const Runtime* runtime = Runtime::Current();
3436     if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) {
3437       return;
3438     }
3439   }
3440 #endif  // ART_TARGET_ANDROID
3441 
3442   // Ideal blockTransferSize for madvising files (128KiB)
3443   static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
3444 
3445   size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
3446 
3447   if (target_size_bytes > 0) {
3448     ScopedTrace madvising_trace("madvising "
3449                                 + file_name
3450                                 + " size="
3451                                 + std::to_string(target_size_bytes));
3452 
3453     // Based on requested size (target_size_bytes)
3454     const uint8_t* target_pos = map_begin + target_size_bytes;
3455 
3456     // Clamp endOfFile if its past map_end
3457     if (target_pos > map_end) {
3458       target_pos = map_end;
3459     }
3460 
3461     // Madvise the whole file up to target_pos in chunks of
3462     // kIdealIoTransferSizeBytes (to MADV_WILLNEED)
3463     // Note:
3464     // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
3465     // block size for device) per call, hence the need for chunks. (128KB is a
3466     // good default.)
3467     for (const uint8_t* madvise_start = map_begin;
3468          madvise_start < target_pos;
3469          madvise_start += kIdealIoTransferSizeBytes) {
3470       void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
3471       size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
3472                                        static_cast<size_t>(target_pos - madvise_start));
3473       int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
3474       // In case of error we stop madvising rest of the file
3475       if (status < 0) {
3476         LOG(ERROR) << "Failed to madvise file " << file_name
3477                    << " for size:" << map_size_bytes
3478                    << ": " << strerror(errno);
3479         break;
3480       }
3481     }
3482   }
3483 }
3484 
3485 // Return whether a boot image has a profile. This means we'll need to pre-JIT
3486 // methods in that profile for performance.
HasImageWithProfile() const3487 bool Runtime::HasImageWithProfile() const {
3488   for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) {
3489     if (!space->GetProfileFiles().empty()) {
3490       return true;
3491     }
3492   }
3493   return false;
3494 }
3495 
AppendToBootClassPath(const std::string & filename,const std::string & location)3496 void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) {
3497   DCHECK(!DexFileLoader::IsMultiDexLocation(filename.c_str()));
3498   boot_class_path_.push_back(filename);
3499   if (!boot_class_path_locations_.empty()) {
3500     DCHECK(!DexFileLoader::IsMultiDexLocation(location.c_str()));
3501     boot_class_path_locations_.push_back(location);
3502   }
3503 }
3504 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::unique_ptr<const art::DexFile>> & dex_files)3505 void Runtime::AppendToBootClassPath(
3506     const std::string& filename,
3507     const std::string& location,
3508     const std::vector<std::unique_ptr<const art::DexFile>>& dex_files) {
3509   AppendToBootClassPath(filename, location);
3510   ScopedObjectAccess soa(Thread::Current());
3511   for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3512     // The first element must not be at a multi-dex location, while other elements must be.
3513     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str()),
3514               dex_file.get() == dex_files.begin()->get());
3515     GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get());
3516   }
3517 }
3518 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<const art::DexFile * > & dex_files)3519 void Runtime::AppendToBootClassPath(const std::string& filename,
3520                                     const std::string& location,
3521                                     const std::vector<const art::DexFile*>& dex_files) {
3522   AppendToBootClassPath(filename, location);
3523   ScopedObjectAccess soa(Thread::Current());
3524   for (const art::DexFile* dex_file : dex_files) {
3525     // The first element must not be at a multi-dex location, while other elements must be.
3526     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str()),
3527               dex_file == *dex_files.begin());
3528     GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file);
3529   }
3530 }
3531 
AppendToBootClassPath(const std::string & filename,const std::string & location,const std::vector<std::pair<const art::DexFile *,ObjPtr<mirror::DexCache>>> & dex_files_and_cache)3532 void Runtime::AppendToBootClassPath(
3533     const std::string& filename,
3534     const std::string& location,
3535     const std::vector<std::pair<const art::DexFile*, ObjPtr<mirror::DexCache>>>&
3536         dex_files_and_cache) {
3537   AppendToBootClassPath(filename, location);
3538   ScopedObjectAccess soa(Thread::Current());
3539   for (const auto& [dex_file, dex_cache] : dex_files_and_cache) {
3540     // The first element must not be at a multi-dex location, while other elements must be.
3541     DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str()),
3542               dex_file == dex_files_and_cache.begin()->first);
3543     GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache);
3544   }
3545 }
3546 
AddExtraBootDexFiles(const std::string & filename,const std::string & location,std::vector<std::unique_ptr<const art::DexFile>> && dex_files)3547 void Runtime::AddExtraBootDexFiles(const std::string& filename,
3548                                    const std::string& location,
3549                                    std::vector<std::unique_ptr<const art::DexFile>>&& dex_files) {
3550   AppendToBootClassPath(filename, location);
3551   ScopedObjectAccess soa(Thread::Current());
3552   if (kIsDebugBuild) {
3553     for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
3554       // The first element must not be at a multi-dex location, while other elements must be.
3555       DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str()),
3556                 dex_file.get() == dex_files.begin()->get());
3557     }
3558   }
3559   GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files));
3560 }
3561 
3562 }  // namespace art
3563