1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <stdbool.h>
13 #include <stddef.h>
14 #include <stdint.h>
15
16 #include "aom_dsp/flow_estimation/disflow.h"
17 #include "aom_dsp/flow_estimation/flow_estimation.h"
18 #include "aom_dsp/flow_estimation/ransac.h"
19
20 #include "aom_scale/yv12config.h"
21
22 #include "av1/common/resize.h"
23
24 // Number of pyramid levels in disflow computation
25 #define N_LEVELS 2
26 // Size of square patches in the disflow dense grid
27 #define PATCH_SIZE 8
28 // Center point of square patch
29 #define PATCH_CENTER ((PATCH_SIZE + 1) >> 1)
30 // Step size between patches, lower value means greater patch overlap
31 #define PATCH_STEP 1
32 // Minimum size of border padding for disflow
33 #define MIN_PAD 7
34 // Warp error convergence threshold for disflow
35 #define DISFLOW_ERROR_TR 0.01
36 // Max number of iterations if warp convergence is not found
37 #define DISFLOW_MAX_ITR 10
38
39 // Struct for an image pyramid
40 typedef struct {
41 int n_levels;
42 int pad_size;
43 int has_gradient;
44 int widths[N_LEVELS];
45 int heights[N_LEVELS];
46 int strides[N_LEVELS];
47 int level_loc[N_LEVELS];
48 unsigned char *level_buffer;
49 double *level_dx_buffer;
50 double *level_dy_buffer;
51 } ImagePyramid;
52
53 // Don't use points around the frame border since they are less reliable
valid_point(int x,int y,int width,int height)54 static INLINE int valid_point(int x, int y, int width, int height) {
55 return (x > (PATCH_SIZE + PATCH_CENTER)) &&
56 (x < (width - PATCH_SIZE - PATCH_CENTER)) &&
57 (y > (PATCH_SIZE + PATCH_CENTER)) &&
58 (y < (height - PATCH_SIZE - PATCH_CENTER));
59 }
60
determine_disflow_correspondence(int * frm_corners,int num_frm_corners,double * flow_u,double * flow_v,int width,int height,int stride,double * correspondences)61 static int determine_disflow_correspondence(int *frm_corners,
62 int num_frm_corners, double *flow_u,
63 double *flow_v, int width,
64 int height, int stride,
65 double *correspondences) {
66 int num_correspondences = 0;
67 int x, y;
68 for (int i = 0; i < num_frm_corners; ++i) {
69 x = frm_corners[2 * i];
70 y = frm_corners[2 * i + 1];
71 if (valid_point(x, y, width, height)) {
72 correspondences[4 * num_correspondences] = x;
73 correspondences[4 * num_correspondences + 1] = y;
74 correspondences[4 * num_correspondences + 2] = x + flow_u[y * stride + x];
75 correspondences[4 * num_correspondences + 3] = y + flow_v[y * stride + x];
76 num_correspondences++;
77 }
78 }
79 return num_correspondences;
80 }
81
getCubicValue(double p[4],double x)82 static double getCubicValue(double p[4], double x) {
83 return p[1] + 0.5 * x *
84 (p[2] - p[0] +
85 x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
86 x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
87 }
88
get_subcolumn(unsigned char * ref,double col[4],int stride,int x,int y_start)89 static void get_subcolumn(unsigned char *ref, double col[4], int stride, int x,
90 int y_start) {
91 int i;
92 for (i = 0; i < 4; ++i) {
93 col[i] = ref[(i + y_start) * stride + x];
94 }
95 }
96
bicubic(unsigned char * ref,double x,double y,int stride)97 static double bicubic(unsigned char *ref, double x, double y, int stride) {
98 double arr[4];
99 int k;
100 int i = (int)x;
101 int j = (int)y;
102 for (k = 0; k < 4; ++k) {
103 double arr_temp[4];
104 get_subcolumn(ref, arr_temp, stride, i + k - 1, j - 1);
105 arr[k] = getCubicValue(arr_temp, y - j);
106 }
107 return getCubicValue(arr, x - i);
108 }
109
110 // Interpolate a warped block using bicubic interpolation when possible
interpolate(unsigned char * ref,double x,double y,int width,int height,int stride)111 static unsigned char interpolate(unsigned char *ref, double x, double y,
112 int width, int height, int stride) {
113 if (x < 0 && y < 0)
114 return ref[0];
115 else if (x < 0 && y > height - 1)
116 return ref[(height - 1) * stride];
117 else if (x > width - 1 && y < 0)
118 return ref[width - 1];
119 else if (x > width - 1 && y > height - 1)
120 return ref[(height - 1) * stride + (width - 1)];
121 else if (x < 0) {
122 int v;
123 int i = (int)y;
124 double a = y - i;
125 if (y > 1 && y < height - 2) {
126 double arr[4];
127 get_subcolumn(ref, arr, stride, 0, i - 1);
128 return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
129 }
130 v = (int)(ref[i * stride] * (1 - a) + ref[(i + 1) * stride] * a + 0.5);
131 return clamp(v, 0, 255);
132 } else if (y < 0) {
133 int v;
134 int j = (int)x;
135 double b = x - j;
136 if (x > 1 && x < width - 2) {
137 double arr[4] = { ref[j - 1], ref[j], ref[j + 1], ref[j + 2] };
138 return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
139 }
140 v = (int)(ref[j] * (1 - b) + ref[j + 1] * b + 0.5);
141 return clamp(v, 0, 255);
142 } else if (x > width - 1) {
143 int v;
144 int i = (int)y;
145 double a = y - i;
146 if (y > 1 && y < height - 2) {
147 double arr[4];
148 get_subcolumn(ref, arr, stride, width - 1, i - 1);
149 return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
150 }
151 v = (int)(ref[i * stride + width - 1] * (1 - a) +
152 ref[(i + 1) * stride + width - 1] * a + 0.5);
153 return clamp(v, 0, 255);
154 } else if (y > height - 1) {
155 int v;
156 int j = (int)x;
157 double b = x - j;
158 if (x > 1 && x < width - 2) {
159 int row = (height - 1) * stride;
160 double arr[4] = { ref[row + j - 1], ref[row + j], ref[row + j + 1],
161 ref[row + j + 2] };
162 return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
163 }
164 v = (int)(ref[(height - 1) * stride + j] * (1 - b) +
165 ref[(height - 1) * stride + j + 1] * b + 0.5);
166 return clamp(v, 0, 255);
167 } else if (x > 1 && y > 1 && x < width - 2 && y < height - 2) {
168 return clamp((int)(bicubic(ref, x, y, stride) + 0.5), 0, 255);
169 } else {
170 int i = (int)y;
171 int j = (int)x;
172 double a = y - i;
173 double b = x - j;
174 int v = (int)(ref[i * stride + j] * (1 - a) * (1 - b) +
175 ref[i * stride + j + 1] * (1 - a) * b +
176 ref[(i + 1) * stride + j] * a * (1 - b) +
177 ref[(i + 1) * stride + j + 1] * a * b);
178 return clamp(v, 0, 255);
179 }
180 }
181
182 // Warps a block using flow vector [u, v] and computes the mse
compute_warp_and_error(unsigned char * ref,unsigned char * frm,int width,int height,int stride,int x,int y,double u,double v,int16_t * dt)183 static double compute_warp_and_error(unsigned char *ref, unsigned char *frm,
184 int width, int height, int stride, int x,
185 int y, double u, double v, int16_t *dt) {
186 int i, j;
187 unsigned char warped;
188 double x_w, y_w;
189 double mse = 0;
190 int16_t err = 0;
191 for (i = y; i < y + PATCH_SIZE; ++i)
192 for (j = x; j < x + PATCH_SIZE; ++j) {
193 x_w = (double)j + u;
194 y_w = (double)i + v;
195 warped = interpolate(ref, x_w, y_w, width, height, stride);
196 err = warped - frm[j + i * stride];
197 mse += err * err;
198 dt[(i - y) * PATCH_SIZE + (j - x)] = err;
199 }
200
201 mse /= (PATCH_SIZE * PATCH_SIZE);
202 return mse;
203 }
204
205 // Computes the components of the system of equations used to solve for
206 // a flow vector. This includes:
207 // 1.) The hessian matrix for optical flow. This matrix is in the
208 // form of:
209 //
210 // M = |sum(dx * dx) sum(dx * dy)|
211 // |sum(dx * dy) sum(dy * dy)|
212 //
213 // 2.) b = |sum(dx * dt)|
214 // |sum(dy * dt)|
215 // Where the sums are computed over a square window of PATCH_SIZE.
compute_flow_system(const double * dx,int dx_stride,const double * dy,int dy_stride,const int16_t * dt,int dt_stride,double * M,double * b)216 static INLINE void compute_flow_system(const double *dx, int dx_stride,
217 const double *dy, int dy_stride,
218 const int16_t *dt, int dt_stride,
219 double *M, double *b) {
220 for (int i = 0; i < PATCH_SIZE; i++) {
221 for (int j = 0; j < PATCH_SIZE; j++) {
222 M[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
223 M[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
224 M[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
225
226 b[0] += dx[i * dx_stride + j] * dt[i * dt_stride + j];
227 b[1] += dy[i * dy_stride + j] * dt[i * dt_stride + j];
228 }
229 }
230
231 M[2] = M[1];
232 }
233
234 // Solves a general Mx = b where M is a 2x2 matrix and b is a 2x1 matrix
solve_2x2_system(const double * M,const double * b,double * output_vec)235 static INLINE void solve_2x2_system(const double *M, const double *b,
236 double *output_vec) {
237 double M_0 = M[0];
238 double M_3 = M[3];
239 double det = (M_0 * M_3) - (M[1] * M[2]);
240 if (det < 1e-5) {
241 // Handle singular matrix
242 // TODO(sarahparker) compare results using pseudo inverse instead
243 M_0 += 1e-10;
244 M_3 += 1e-10;
245 det = (M_0 * M_3) - (M[1] * M[2]);
246 }
247 const double det_inv = 1 / det;
248 const double mult_b0 = det_inv * b[0];
249 const double mult_b1 = det_inv * b[1];
250 output_vec[0] = M_3 * mult_b0 - M[1] * mult_b1;
251 output_vec[1] = -M[2] * mult_b0 + M_0 * mult_b1;
252 }
253
254 /*
255 static INLINE void image_difference(const uint8_t *src, int src_stride,
256 const uint8_t *ref, int ref_stride,
257 int16_t *dst, int dst_stride, int height,
258 int width) {
259 const int block_unit = 8;
260 // Take difference in 8x8 blocks to make use of optimized diff function
261 for (int i = 0; i < height; i += block_unit) {
262 for (int j = 0; j < width; j += block_unit) {
263 aom_subtract_block(block_unit, block_unit, dst + i * dst_stride + j,
264 dst_stride, src + i * src_stride + j, src_stride,
265 ref + i * ref_stride + j, ref_stride);
266 }
267 }
268 }
269 */
270
convolve_2d_sobel_y(const uint8_t * src,int src_stride,double * dst,int dst_stride,int w,int h,int dir,double norm)271 static INLINE void convolve_2d_sobel_y(const uint8_t *src, int src_stride,
272 double *dst, int dst_stride, int w,
273 int h, int dir, double norm) {
274 int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
275 DECLARE_ALIGNED(256, static const int16_t, sobel_a[3]) = { 1, 0, -1 };
276 DECLARE_ALIGNED(256, static const int16_t, sobel_b[3]) = { 1, 2, 1 };
277 const int taps = 3;
278 int im_h = h + taps - 1;
279 int im_stride = w;
280 const int fo_vert = 1;
281 const int fo_horiz = 1;
282
283 // horizontal filter
284 const uint8_t *src_horiz = src - fo_vert * src_stride;
285 const int16_t *x_filter = dir ? sobel_a : sobel_b;
286 for (int y = 0; y < im_h; ++y) {
287 for (int x = 0; x < w; ++x) {
288 int16_t sum = 0;
289 for (int k = 0; k < taps; ++k) {
290 sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
291 }
292 im_block[y * im_stride + x] = sum;
293 }
294 }
295
296 // vertical filter
297 int16_t *src_vert = im_block + fo_vert * im_stride;
298 const int16_t *y_filter = dir ? sobel_b : sobel_a;
299 for (int y = 0; y < h; ++y) {
300 for (int x = 0; x < w; ++x) {
301 int16_t sum = 0;
302 for (int k = 0; k < taps; ++k) {
303 sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
304 }
305 dst[y * dst_stride + x] = sum * norm;
306 }
307 }
308 }
309
310 // Compute an image gradient using a sobel filter.
311 // If dir == 1, compute the x gradient. If dir == 0, compute y. This function
312 // assumes the images have been padded so that they can be processed in units
313 // of 8.
sobel_xy_image_gradient(const uint8_t * src,int src_stride,double * dst,int dst_stride,int height,int width,int dir)314 static INLINE void sobel_xy_image_gradient(const uint8_t *src, int src_stride,
315 double *dst, int dst_stride,
316 int height, int width, int dir) {
317 double norm = 1.0;
318 // TODO(sarahparker) experiment with doing this over larger block sizes
319 const int block_unit = 8;
320 // Filter in 8x8 blocks to eventually make use of optimized convolve function
321 for (int i = 0; i < height; i += block_unit) {
322 for (int j = 0; j < width; j += block_unit) {
323 convolve_2d_sobel_y(src + i * src_stride + j, src_stride,
324 dst + i * dst_stride + j, dst_stride, block_unit,
325 block_unit, dir, norm);
326 }
327 }
328 }
329
free_pyramid(ImagePyramid * pyr)330 static void free_pyramid(ImagePyramid *pyr) {
331 aom_free(pyr->level_buffer);
332 if (pyr->has_gradient) {
333 aom_free(pyr->level_dx_buffer);
334 aom_free(pyr->level_dy_buffer);
335 }
336 aom_free(pyr);
337 }
338
alloc_pyramid(int width,int height,int pad_size,int compute_gradient)339 static ImagePyramid *alloc_pyramid(int width, int height, int pad_size,
340 int compute_gradient) {
341 ImagePyramid *pyr = aom_calloc(1, sizeof(*pyr));
342 if (!pyr) return NULL;
343 pyr->has_gradient = compute_gradient;
344 // 2 * width * height is the upper bound for a buffer that fits
345 // all pyramid levels + padding for each level
346 const int buffer_size = sizeof(*pyr->level_buffer) * 2 * width * height +
347 (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
348 pyr->level_buffer = aom_malloc(buffer_size);
349 if (!pyr->level_buffer) {
350 free_pyramid(pyr);
351 return NULL;
352 }
353 memset(pyr->level_buffer, 0, buffer_size);
354
355 if (compute_gradient) {
356 const int gradient_size =
357 sizeof(*pyr->level_dx_buffer) * 2 * width * height +
358 (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
359 pyr->level_dx_buffer = aom_calloc(1, gradient_size);
360 pyr->level_dy_buffer = aom_calloc(1, gradient_size);
361 if (!(pyr->level_dx_buffer && pyr->level_dy_buffer)) {
362 free_pyramid(pyr);
363 return NULL;
364 }
365 }
366 return pyr;
367 }
368
update_level_dims(ImagePyramid * frm_pyr,int level)369 static INLINE void update_level_dims(ImagePyramid *frm_pyr, int level) {
370 frm_pyr->widths[level] = frm_pyr->widths[level - 1] >> 1;
371 frm_pyr->heights[level] = frm_pyr->heights[level - 1] >> 1;
372 frm_pyr->strides[level] = frm_pyr->widths[level] + 2 * frm_pyr->pad_size;
373 // Point the beginning of the next level buffer to the correct location inside
374 // the padded border
375 frm_pyr->level_loc[level] =
376 frm_pyr->level_loc[level - 1] +
377 frm_pyr->strides[level - 1] *
378 (2 * frm_pyr->pad_size + frm_pyr->heights[level - 1]);
379 }
380
381 // Compute coarse to fine pyramids for a frame
compute_flow_pyramids(unsigned char * frm,const int frm_width,const int frm_height,const int frm_stride,int n_levels,int pad_size,int compute_grad,ImagePyramid * frm_pyr)382 static void compute_flow_pyramids(unsigned char *frm, const int frm_width,
383 const int frm_height, const int frm_stride,
384 int n_levels, int pad_size, int compute_grad,
385 ImagePyramid *frm_pyr) {
386 int cur_width, cur_height, cur_stride, cur_loc;
387 assert((frm_width >> n_levels) > 0);
388 assert((frm_height >> n_levels) > 0);
389
390 // Initialize first level
391 frm_pyr->n_levels = n_levels;
392 frm_pyr->pad_size = pad_size;
393 frm_pyr->widths[0] = frm_width;
394 frm_pyr->heights[0] = frm_height;
395 frm_pyr->strides[0] = frm_width + 2 * frm_pyr->pad_size;
396 // Point the beginning of the level buffer to the location inside
397 // the padded border
398 frm_pyr->level_loc[0] =
399 frm_pyr->strides[0] * frm_pyr->pad_size + frm_pyr->pad_size;
400 // This essentially copies the original buffer into the pyramid buffer
401 // without the original padding
402 av1_resize_plane(frm, frm_height, frm_width, frm_stride,
403 frm_pyr->level_buffer + frm_pyr->level_loc[0],
404 frm_pyr->heights[0], frm_pyr->widths[0],
405 frm_pyr->strides[0]);
406
407 if (compute_grad) {
408 cur_width = frm_pyr->widths[0];
409 cur_height = frm_pyr->heights[0];
410 cur_stride = frm_pyr->strides[0];
411 cur_loc = frm_pyr->level_loc[0];
412 assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
413 frm_pyr->level_dy_buffer != NULL);
414 // Computation x gradient
415 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
416 frm_pyr->level_dx_buffer + cur_loc, cur_stride,
417 cur_height, cur_width, 1);
418
419 // Computation y gradient
420 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
421 frm_pyr->level_dy_buffer + cur_loc, cur_stride,
422 cur_height, cur_width, 0);
423 }
424
425 // Start at the finest level and resize down to the coarsest level
426 for (int level = 1; level < n_levels; ++level) {
427 update_level_dims(frm_pyr, level);
428 cur_width = frm_pyr->widths[level];
429 cur_height = frm_pyr->heights[level];
430 cur_stride = frm_pyr->strides[level];
431 cur_loc = frm_pyr->level_loc[level];
432
433 av1_resize_plane(frm_pyr->level_buffer + frm_pyr->level_loc[level - 1],
434 frm_pyr->heights[level - 1], frm_pyr->widths[level - 1],
435 frm_pyr->strides[level - 1],
436 frm_pyr->level_buffer + cur_loc, cur_height, cur_width,
437 cur_stride);
438
439 if (compute_grad) {
440 assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
441 frm_pyr->level_dy_buffer != NULL);
442 // Computation x gradient
443 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
444 frm_pyr->level_dx_buffer + cur_loc, cur_stride,
445 cur_height, cur_width, 1);
446
447 // Computation y gradient
448 sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
449 frm_pyr->level_dy_buffer + cur_loc, cur_stride,
450 cur_height, cur_width, 0);
451 }
452 }
453 }
454
compute_flow_at_point(unsigned char * frm,unsigned char * ref,double * dx,double * dy,int x,int y,int width,int height,int stride,double * u,double * v)455 static INLINE void compute_flow_at_point(unsigned char *frm, unsigned char *ref,
456 double *dx, double *dy, int x, int y,
457 int width, int height, int stride,
458 double *u, double *v) {
459 double M[4] = { 0 };
460 double b[2] = { 0 };
461 double tmp_output_vec[2] = { 0 };
462 double error = 0;
463 int16_t dt[PATCH_SIZE * PATCH_SIZE];
464 double o_u = *u;
465 double o_v = *v;
466
467 for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
468 error = compute_warp_and_error(ref, frm, width, height, stride, x, y, *u,
469 *v, dt);
470 if (error <= DISFLOW_ERROR_TR) break;
471 compute_flow_system(dx, stride, dy, stride, dt, PATCH_SIZE, M, b);
472 solve_2x2_system(M, b, tmp_output_vec);
473 *u += tmp_output_vec[0];
474 *v += tmp_output_vec[1];
475 }
476 if (fabs(*u - o_u) > PATCH_SIZE || fabs(*v - o_u) > PATCH_SIZE) {
477 *u = o_u;
478 *v = o_v;
479 }
480 }
481
482 // make sure flow_u and flow_v start at 0
compute_flow_field(ImagePyramid * frm_pyr,ImagePyramid * ref_pyr,double * flow_u,double * flow_v)483 static bool compute_flow_field(ImagePyramid *frm_pyr, ImagePyramid *ref_pyr,
484 double *flow_u, double *flow_v) {
485 int cur_width, cur_height, cur_stride, cur_loc, patch_loc, patch_center;
486 double *u_upscale =
487 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
488 double *v_upscale =
489 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
490 if (!(u_upscale && v_upscale)) {
491 aom_free(u_upscale);
492 aom_free(v_upscale);
493 return false;
494 }
495
496 assert(frm_pyr->n_levels == ref_pyr->n_levels);
497
498 // Compute flow field from coarsest to finest level of the pyramid
499 for (int level = frm_pyr->n_levels - 1; level >= 0; --level) {
500 cur_width = frm_pyr->widths[level];
501 cur_height = frm_pyr->heights[level];
502 cur_stride = frm_pyr->strides[level];
503 cur_loc = frm_pyr->level_loc[level];
504
505 for (int i = PATCH_SIZE; i < cur_height - PATCH_SIZE; i += PATCH_STEP) {
506 for (int j = PATCH_SIZE; j < cur_width - PATCH_SIZE; j += PATCH_STEP) {
507 patch_loc = i * cur_stride + j;
508 patch_center = patch_loc + PATCH_CENTER * cur_stride + PATCH_CENTER;
509 compute_flow_at_point(frm_pyr->level_buffer + cur_loc,
510 ref_pyr->level_buffer + cur_loc,
511 frm_pyr->level_dx_buffer + cur_loc + patch_loc,
512 frm_pyr->level_dy_buffer + cur_loc + patch_loc, j,
513 i, cur_width, cur_height, cur_stride,
514 flow_u + patch_center, flow_v + patch_center);
515 }
516 }
517 // TODO(sarahparker) Replace this with upscale function in resize.c
518 if (level > 0) {
519 int h_upscale = frm_pyr->heights[level - 1];
520 int w_upscale = frm_pyr->widths[level - 1];
521 int s_upscale = frm_pyr->strides[level - 1];
522 for (int i = 0; i < h_upscale; ++i) {
523 for (int j = 0; j < w_upscale; ++j) {
524 u_upscale[j + i * s_upscale] =
525 flow_u[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
526 v_upscale[j + i * s_upscale] =
527 flow_v[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
528 }
529 }
530 memcpy(flow_u, u_upscale,
531 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
532 memcpy(flow_v, v_upscale,
533 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
534 }
535 }
536 aom_free(u_upscale);
537 aom_free(v_upscale);
538 return true;
539 }
540
av1_compute_global_motion_disflow_based(TransformationType type,unsigned char * frm_buffer,int frm_width,int frm_height,int frm_stride,int * frm_corners,int num_frm_corners,YV12_BUFFER_CONFIG * ref,int bit_depth,int * num_inliers_by_motion,MotionModel * params_by_motion,int num_motions)541 int av1_compute_global_motion_disflow_based(
542 TransformationType type, unsigned char *frm_buffer, int frm_width,
543 int frm_height, int frm_stride, int *frm_corners, int num_frm_corners,
544 YV12_BUFFER_CONFIG *ref, int bit_depth, int *num_inliers_by_motion,
545 MotionModel *params_by_motion, int num_motions) {
546 unsigned char *ref_buffer = ref->y_buffer;
547 const int ref_width = ref->y_width;
548 const int ref_height = ref->y_height;
549 const int pad_size = AOMMAX(PATCH_SIZE, MIN_PAD);
550 int num_correspondences;
551 double *correspondences;
552 RansacFuncDouble ransac = av1_get_ransac_double_prec_type(type);
553 assert(frm_width == ref_width);
554 assert(frm_height == ref_height);
555
556 // Ensure the number of pyramid levels will work with the frame resolution
557 const int msb =
558 frm_width < frm_height ? get_msb(frm_width) : get_msb(frm_height);
559 const int n_levels = AOMMIN(msb, N_LEVELS);
560
561 if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
562 ref_buffer = av1_downconvert_frame(ref, bit_depth);
563 }
564
565 // TODO(sarahparker) We will want to do the source pyramid computation
566 // outside of this function so it doesn't get recomputed for every
567 // reference. We also don't need to compute every pyramid level for the
568 // reference in advance, since lower levels can be overwritten once their
569 // flow field is computed and upscaled. I'll add these optimizations
570 // once the full implementation is working.
571 // Allocate frm image pyramids
572 int compute_gradient = 1;
573 ImagePyramid *frm_pyr =
574 alloc_pyramid(frm_width, frm_height, pad_size, compute_gradient);
575 if (!frm_pyr) return 0;
576 compute_flow_pyramids(frm_buffer, frm_width, frm_height, frm_stride, n_levels,
577 pad_size, compute_gradient, frm_pyr);
578 // Allocate ref image pyramids
579 compute_gradient = 0;
580 ImagePyramid *ref_pyr =
581 alloc_pyramid(ref_width, ref_height, pad_size, compute_gradient);
582 if (!ref_pyr) {
583 free_pyramid(frm_pyr);
584 return 0;
585 }
586 compute_flow_pyramids(ref_buffer, ref_width, ref_height, ref->y_stride,
587 n_levels, pad_size, compute_gradient, ref_pyr);
588
589 int ret = 0;
590 double *flow_u =
591 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
592 double *flow_v =
593 aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
594 if (!(flow_u && flow_v)) goto Error;
595
596 memset(flow_u, 0,
597 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
598 memset(flow_v, 0,
599 frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
600
601 if (!compute_flow_field(frm_pyr, ref_pyr, flow_u, flow_v)) goto Error;
602
603 // find correspondences between the two images using the flow field
604 correspondences = aom_malloc(num_frm_corners * 4 * sizeof(*correspondences));
605 if (!correspondences) goto Error;
606 num_correspondences = determine_disflow_correspondence(
607 frm_corners, num_frm_corners, flow_u, flow_v, frm_width, frm_height,
608 frm_pyr->strides[0], correspondences);
609 ransac(correspondences, num_correspondences, num_inliers_by_motion,
610 params_by_motion, num_motions);
611
612 // Set num_inliers = 0 for motions with too few inliers so they are ignored.
613 for (int i = 0; i < num_motions; ++i) {
614 if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
615 num_inliers_by_motion[i] = 0;
616 }
617 }
618
619 // Return true if any one of the motions has inliers.
620 for (int i = 0; i < num_motions; ++i) {
621 if (num_inliers_by_motion[i] > 0) {
622 ret = 1;
623 break;
624 }
625 }
626
627 aom_free(correspondences);
628 Error:
629 free_pyramid(frm_pyr);
630 free_pyramid(ref_pyr);
631 aom_free(flow_u);
632 aom_free(flow_v);
633 return ret;
634 }
635