1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14
15 #include "config/aom_config.h"
16
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 #define USE_B_QUANT_NO_TRELLIS 1
35
36 #define MAX_MB_PLANE 3
37
38 #define MAX_DIFFWTD_MASK_BITS 1
39
40 #define INTERINTRA_WEDGE_SIGN 0
41
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47
48 /*!\cond */
49
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52 DIFFWTD_38 = 0,
53 DIFFWTD_38_INV,
54 DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56
57 enum {
58 KEY_FRAME = 0,
59 INTER_FRAME = 1,
60 INTRA_ONLY_FRAME = 2, // replaces intra-only
61 S_FRAME = 3,
62 FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64
is_comp_ref_allowed(BLOCK_SIZE bsize)65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68
is_inter_mode(PREDICTION_MODE mode)69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70 return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72
73 typedef struct {
74 uint8_t *plane[MAX_MB_PLANE];
75 int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77
is_inter_singleref_mode(PREDICTION_MODE mode)78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79 return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
is_inter_compound_mode(PREDICTION_MODE mode)81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82 return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84
compound_ref0_mode(PREDICTION_MODE mode)85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86 static const PREDICTION_MODE lut[] = {
87 DC_PRED, // DC_PRED
88 V_PRED, // V_PRED
89 H_PRED, // H_PRED
90 D45_PRED, // D45_PRED
91 D135_PRED, // D135_PRED
92 D113_PRED, // D113_PRED
93 D157_PRED, // D157_PRED
94 D203_PRED, // D203_PRED
95 D67_PRED, // D67_PRED
96 SMOOTH_PRED, // SMOOTH_PRED
97 SMOOTH_V_PRED, // SMOOTH_V_PRED
98 SMOOTH_H_PRED, // SMOOTH_H_PRED
99 PAETH_PRED, // PAETH_PRED
100 NEARESTMV, // NEARESTMV
101 NEARMV, // NEARMV
102 GLOBALMV, // GLOBALMV
103 NEWMV, // NEWMV
104 NEARESTMV, // NEAREST_NEARESTMV
105 NEARMV, // NEAR_NEARMV
106 NEARESTMV, // NEAREST_NEWMV
107 NEWMV, // NEW_NEARESTMV
108 NEARMV, // NEAR_NEWMV
109 NEWMV, // NEW_NEARMV
110 GLOBALMV, // GLOBAL_GLOBALMV
111 NEWMV, // NEW_NEWMV
112 };
113 assert(NELEMENTS(lut) == MB_MODE_COUNT);
114 assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115 return lut[mode];
116 }
117
compound_ref1_mode(PREDICTION_MODE mode)118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119 static const PREDICTION_MODE lut[] = {
120 MB_MODE_COUNT, // DC_PRED
121 MB_MODE_COUNT, // V_PRED
122 MB_MODE_COUNT, // H_PRED
123 MB_MODE_COUNT, // D45_PRED
124 MB_MODE_COUNT, // D135_PRED
125 MB_MODE_COUNT, // D113_PRED
126 MB_MODE_COUNT, // D157_PRED
127 MB_MODE_COUNT, // D203_PRED
128 MB_MODE_COUNT, // D67_PRED
129 MB_MODE_COUNT, // SMOOTH_PRED
130 MB_MODE_COUNT, // SMOOTH_V_PRED
131 MB_MODE_COUNT, // SMOOTH_H_PRED
132 MB_MODE_COUNT, // PAETH_PRED
133 MB_MODE_COUNT, // NEARESTMV
134 MB_MODE_COUNT, // NEARMV
135 MB_MODE_COUNT, // GLOBALMV
136 MB_MODE_COUNT, // NEWMV
137 NEARESTMV, // NEAREST_NEARESTMV
138 NEARMV, // NEAR_NEARMV
139 NEWMV, // NEAREST_NEWMV
140 NEARESTMV, // NEW_NEARESTMV
141 NEWMV, // NEAR_NEWMV
142 NEARMV, // NEW_NEARMV
143 GLOBALMV, // GLOBAL_GLOBALMV
144 NEWMV, // NEW_NEWMV
145 };
146 assert(NELEMENTS(lut) == MB_MODE_COUNT);
147 assert(is_inter_compound_mode(mode));
148 return lut[mode];
149 }
150
have_nearmv_in_inter_mode(PREDICTION_MODE mode)151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152 return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153 mode == NEW_NEARMV);
154 }
155
have_newmv_in_inter_mode(PREDICTION_MODE mode)156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157 return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158 mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160
is_masked_compound_type(COMPOUND_TYPE type)161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162 return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166 modes for the Y blocks to the left and above us; for interframes, there
167 is a single probability table. */
168
169 typedef struct {
170 // Value of base colors for Y, U, and V
171 uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172 // Number of base colors for Y (0) and UV (1)
173 uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175
176 typedef struct {
177 FILTER_INTRA_MODE filter_intra_mode;
178 uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182 DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188
189 typedef struct RD_STATS {
190 int rate;
191 int zero_rate;
192 int64_t dist;
193 // Please be careful of using rdcost, it's not guaranteed to be set all the
194 // time.
195 // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196 // these functions, make sure rdcost is always up-to-date according to
197 // rate/dist.
198 int64_t rdcost;
199 int64_t sse;
200 uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202 int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209 uint8_t *seg_mask;
210 int8_t wedge_index;
211 int8_t wedge_sign;
212 DIFFWTD_MASK_TYPE mask_type;
213 COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 /*!\endcond */
219
220 /*! \brief Stores the prediction/txfm mode of the current coding block
221 */
222 typedef struct MB_MODE_INFO {
223 /*****************************************************************************
224 * \name General Info of the Coding Block
225 ****************************************************************************/
226 /**@{*/
227 /*! \brief The block size of the current coding block */
228 BLOCK_SIZE bsize;
229 /*! \brief The partition type of the current coding block. */
230 PARTITION_TYPE partition;
231 /*! \brief The prediction mode used */
232 PREDICTION_MODE mode;
233 /*! \brief The UV mode when intra is used */
234 UV_PREDICTION_MODE uv_mode;
235 /*! \brief The q index for the current coding block. */
236 int current_qindex;
237 /**@}*/
238
239 /*****************************************************************************
240 * \name Inter Mode Info
241 ****************************************************************************/
242 /**@{*/
243 /*! \brief The motion vectors used by the current inter mode */
244 int_mv mv[2];
245 /*! \brief The reference frames for the MV */
246 MV_REFERENCE_FRAME ref_frame[2];
247 /*! \brief Filter used in subpel interpolation. */
248 int_interpfilters interp_filters;
249 /*! \brief The motion mode used by the inter prediction. */
250 MOTION_MODE motion_mode;
251 /*! \brief Number of samples used by warp causal */
252 uint8_t num_proj_ref;
253 /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
254 * mode. */
255 uint8_t overlappable_neighbors;
256 /*! \brief The parameters used in warp motion mode. */
257 WarpedMotionParams wm_params;
258 /*! \brief The type of intra mode used by inter-intra */
259 INTERINTRA_MODE interintra_mode;
260 /*! \brief The type of wedge used in interintra mode. */
261 int8_t interintra_wedge_index;
262 /*! \brief Struct that stores the data used in interinter compound mode. */
263 INTERINTER_COMPOUND_DATA interinter_comp;
264 /**@}*/
265
266 /*****************************************************************************
267 * \name Intra Mode Info
268 ****************************************************************************/
269 /**@{*/
270 /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
271 * step). */
272 int8_t angle_delta[PLANE_TYPES];
273 /*! \brief The type of filter intra mode used (if applicable). */
274 FILTER_INTRA_MODE_INFO filter_intra_mode_info;
275 /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
276 int8_t cfl_alpha_signs;
277 /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
278 uint8_t cfl_alpha_idx;
279 /*! \brief Stores the size and colors of palette mode */
280 PALETTE_MODE_INFO palette_mode_info;
281 /**@}*/
282
283 /*****************************************************************************
284 * \name Transform Info
285 ****************************************************************************/
286 /**@{*/
287 /*! \brief Whether to skip transforming and sending. */
288 uint8_t skip_txfm;
289 /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
290 TX_SIZE tx_size;
291 /*! \brief Transform size when recursive txfm tree is on. */
292 TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
293 /**@}*/
294
295 /*****************************************************************************
296 * \name Loop Filter Info
297 ****************************************************************************/
298 /**@{*/
299 /*! \copydoc MACROBLOCKD::delta_lf_from_base */
300 int8_t delta_lf_from_base;
301 /*! \copydoc MACROBLOCKD::delta_lf */
302 int8_t delta_lf[FRAME_LF_COUNT];
303 /**@}*/
304
305 /*****************************************************************************
306 * \name Bitfield for Memory Reduction
307 ****************************************************************************/
308 /**@{*/
309 /*! \brief The segment id */
310 uint8_t segment_id : 3;
311 /*! \brief Only valid when temporal update if off. */
312 uint8_t seg_id_predicted : 1;
313 /*! \brief Which ref_mv to use */
314 uint8_t ref_mv_idx : 2;
315 /*! \brief Inter skip mode */
316 uint8_t skip_mode : 1;
317 /*! \brief Whether intrabc is used. */
318 uint8_t use_intrabc : 1;
319 /*! \brief Indicates if masked compound is used(1) or not (0). */
320 uint8_t comp_group_idx : 1;
321 /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
322 uint8_t compound_idx : 1;
323 /*! \brief Whether to use interintra wedge */
324 uint8_t use_wedge_interintra : 1;
325 /*! \brief CDEF strength per BLOCK_64X64 */
326 int8_t cdef_strength : 4;
327 /**@}*/
328
329 #if CONFIG_RD_DEBUG
330 /*! \brief RD info used for debugging */
331 RD_STATS rd_stats;
332 /*! \brief The current row in unit of 4x4 blocks for debugging */
333 int mi_row;
334 /*! \brief The current col in unit of 4x4 blocks for debugging */
335 int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
338 /*! \brief Whether we are skipping the current rows or columns. */
339 int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342
343 /*!\cond */
344
is_intrabc_block(const MB_MODE_INFO * mbmi)345 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346 return mbmi->use_intrabc;
347 }
348
get_uv_mode(UV_PREDICTION_MODE mode)349 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350 assert(mode < UV_INTRA_MODES);
351 static const PREDICTION_MODE uv2y[] = {
352 DC_PRED, // UV_DC_PRED
353 V_PRED, // UV_V_PRED
354 H_PRED, // UV_H_PRED
355 D45_PRED, // UV_D45_PRED
356 D135_PRED, // UV_D135_PRED
357 D113_PRED, // UV_D113_PRED
358 D157_PRED, // UV_D157_PRED
359 D203_PRED, // UV_D203_PRED
360 D67_PRED, // UV_D67_PRED
361 SMOOTH_PRED, // UV_SMOOTH_PRED
362 SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
363 SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
364 PAETH_PRED, // UV_PAETH_PRED
365 DC_PRED, // UV_CFL_PRED
366 INTRA_INVALID, // UV_INTRA_MODES
367 INTRA_INVALID, // UV_MODE_INVALID
368 };
369 return uv2y[mode];
370 }
371
is_inter_block(const MB_MODE_INFO * mbmi)372 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
373 return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375
has_second_ref(const MB_MODE_INFO * mbmi)376 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
377 return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379
has_uni_comp_refs(const MB_MODE_INFO * mbmi)380 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381 return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382 (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384
comp_ref0(int ref_idx)385 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386 static const MV_REFERENCE_FRAME lut[] = {
387 LAST_FRAME, // LAST_LAST2_FRAMES,
388 LAST_FRAME, // LAST_LAST3_FRAMES,
389 LAST_FRAME, // LAST_GOLDEN_FRAMES,
390 BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
391 LAST2_FRAME, // LAST2_LAST3_FRAMES
392 LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
393 LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
394 BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
395 ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
396 };
397 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398 return lut[ref_idx];
399 }
400
comp_ref1(int ref_idx)401 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402 static const MV_REFERENCE_FRAME lut[] = {
403 LAST2_FRAME, // LAST_LAST2_FRAMES,
404 LAST3_FRAME, // LAST_LAST3_FRAMES,
405 GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
406 ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
407 LAST3_FRAME, // LAST2_LAST3_FRAMES
408 GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
409 GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
410 ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
411 ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
412 };
413 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414 return lut[ref_idx];
415 }
416
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)421 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422 TransformationType type) {
423 const PREDICTION_MODE mode = mbmi->mode;
424 const BLOCK_SIZE bsize = mbmi->bsize;
425 const int block_size_allowed =
426 AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427 return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428 block_size_allowed;
429 }
430
431 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)432 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433 int mi_row, int tx_blk_col, int tx_blk_row,
434 int subsampling_x, int subsampling_y) {
435 *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436 (tx_blk_col << MI_SIZE_LOG2);
437 *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438 (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443
444 struct buf_2d {
445 uint8_t *buf;
446 uint8_t *buf0;
447 int width;
448 int height;
449 int stride;
450 };
451
452 typedef struct eob_info {
453 uint16_t eob;
454 uint16_t max_scan_line;
455 } eob_info;
456
457 typedef struct {
458 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459 eob_info eob_data[MAX_MB_PLANE]
460 [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461 DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463
464 typedef struct macroblockd_plane {
465 PLANE_TYPE plane_type;
466 int subsampling_x;
467 int subsampling_y;
468 struct buf_2d dst;
469 struct buf_2d pre[2];
470 ENTROPY_CONTEXT *above_entropy_context;
471 ENTROPY_CONTEXT *left_entropy_context;
472
473 // The dequantizers below are true dequantizers used only in the
474 // dequantization process. They have the same coefficient
475 // shift/scale as TX.
476 int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477 // Pointer to color index map of:
478 // - Current coding block, on encoder side.
479 // - Current superblock, on decoder side.
480 uint8_t *color_index_map;
481
482 // block size in pixels
483 uint8_t width, height;
484
485 qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486 qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488
489 #define BLOCK_OFFSET(i) ((i) << 4)
490
491 /*!\endcond */
492
493 /*!\brief Parameters related to Wiener Filter */
494 typedef struct {
495 /*!
496 * Vertical filter kernel.
497 */
498 DECLARE_ALIGNED(16, InterpKernel, vfilter);
499
500 /*!
501 * Horizontal filter kernel.
502 */
503 DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505
506 /*!\brief Parameters related to Sgrproj Filter */
507 typedef struct {
508 /*!
509 * Parameter index.
510 */
511 int ep;
512
513 /*!
514 * Weights for linear combination of filtered versions
515 */
516 int xqd[2];
517 } SgrprojInfo;
518
519 /*!\cond */
520
521 #if CONFIG_DEBUG
522 #define CFL_SUB8X8_VAL_MI_SIZE (4)
523 #define CFL_SUB8X8_VAL_MI_SQUARE \
524 (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
525 #endif // CONFIG_DEBUG
526 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
527 #define CFL_BUF_LINE (32)
528 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
529 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
530 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
531 typedef struct cfl_ctx {
532 // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
533 // shifts)
534 uint16_t recon_buf_q3[CFL_BUF_SQUARE];
535 // Q3 AC contributions (reconstructed luma pixels - tx block avg)
536 int16_t ac_buf_q3[CFL_BUF_SQUARE];
537
538 // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
539 // for every scaling parameter
540 int dc_pred_is_cached[CFL_PRED_PLANES];
541 // The DC_PRED cache is disable when decoding
542 int use_dc_pred_cache;
543 // Only cache the first row of the DC_PRED
544 int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
545
546 // Height and width currently used in the CfL prediction buffer.
547 int buf_height, buf_width;
548
549 int are_parameters_computed;
550
551 // Chroma subsampling
552 int subsampling_x, subsampling_y;
553
554 // Whether the reconstructed luma pixels need to be stored
555 int store_y;
556 } CFL_CTX;
557
558 typedef struct dist_wtd_comp_params {
559 int use_dist_wtd_comp_avg;
560 int fwd_offset;
561 int bck_offset;
562 } DIST_WTD_COMP_PARAMS;
563
564 struct scale_factors;
565
566 /*!\endcond */
567
568 /*! \brief Variables related to current coding block.
569 *
570 * This is a common set of variables used by both encoder and decoder.
571 * Most/all of the pointers are mere pointers to actual arrays are allocated
572 * elsewhere. This is mostly for coding convenience.
573 */
574 typedef struct macroblockd {
575 /**
576 * \name Position of current macroblock in mi units
577 */
578 /**@{*/
579 int mi_row; /*!< Row position in mi units. */
580 int mi_col; /*!< Column position in mi units. */
581 /**@}*/
582
583 /*!
584 * Same as cm->mi_params.mi_stride, copied here for convenience.
585 */
586 int mi_stride;
587
588 /*!
589 * True if current block transmits chroma information.
590 * More detail:
591 * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
592 * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
593 * blocks smaller than 8x8 maybe combined into one chroma block.
594 * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
595 * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
596 * these four luma blocks. This is implemented in bitstream as follows:
597 * - There are four MB_MODE_INFO structs for the four luma blocks.
598 * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
599 * any information for chroma planes.
600 * - Last block will have is_chroma_ref = true and transmits chroma
601 * information for the 4x4 chroma block that covers whole 8x8 area covered by
602 * four luma blocks.
603 * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
604 */
605 bool is_chroma_ref;
606
607 /*!
608 * Info specific to each plane.
609 */
610 struct macroblockd_plane plane[MAX_MB_PLANE];
611
612 /*!
613 * Tile related info.
614 */
615 TileInfo tile;
616
617 /*!
618 * Appropriate offset inside cm->mi_params.mi_grid_base based on current
619 * mi_row and mi_col.
620 */
621 MB_MODE_INFO **mi;
622
623 /*!
624 * True if 4x4 block above the current block is available.
625 */
626 bool up_available;
627 /*!
628 * True if 4x4 block to the left of the current block is available.
629 */
630 bool left_available;
631 /*!
632 * True if the above chrome reference block is available.
633 */
634 bool chroma_up_available;
635 /*!
636 * True if the left chrome reference block is available.
637 */
638 bool chroma_left_available;
639
640 /*!
641 * MB_MODE_INFO for 4x4 block to the left of the current block, if
642 * left_available == true; otherwise NULL.
643 */
644 MB_MODE_INFO *left_mbmi;
645 /*!
646 * MB_MODE_INFO for 4x4 block above the current block, if
647 * up_available == true; otherwise NULL.
648 */
649 MB_MODE_INFO *above_mbmi;
650 /*!
651 * Above chroma reference block if is_chroma_ref == true for the current block
652 * and chroma_up_available == true; otherwise NULL.
653 * See also: the special case logic when current chroma block covers more than
654 * one luma blocks in set_mi_row_col().
655 */
656 MB_MODE_INFO *chroma_left_mbmi;
657 /*!
658 * Left chroma reference block if is_chroma_ref == true for the current block
659 * and chroma_left_available == true; otherwise NULL.
660 * See also: the special case logic when current chroma block covers more than
661 * one luma blocks in set_mi_row_col().
662 */
663 MB_MODE_INFO *chroma_above_mbmi;
664
665 /*!
666 * Appropriate offset based on current 'mi_row' and 'mi_col', inside
667 * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
668 * 'MACROBLOCK' structs.
669 */
670 uint8_t *tx_type_map;
671 /*!
672 * Stride for 'tx_type_map'. Note that this may / may not be same as
673 * 'mi_stride', depending on which actual array 'tx_type_map' points to.
674 */
675 int tx_type_map_stride;
676
677 /**
678 * \name Distance of this macroblock from frame edges in 1/8th pixel units.
679 */
680 /**@{*/
681 int mb_to_left_edge; /*!< Distance from left edge */
682 int mb_to_right_edge; /*!< Distance from right edge */
683 int mb_to_top_edge; /*!< Distance from top edge */
684 int mb_to_bottom_edge; /*!< Distance from bottom edge */
685 /**@}*/
686
687 /*!
688 * Scale factors for reference frames of the current block.
689 * These are pointers into 'cm->ref_scale_factors'.
690 */
691 const struct scale_factors *block_ref_scale_factors[2];
692
693 /*!
694 * - On encoder side: points to cpi->source, which is the buffer containing
695 * the current *source* frame (maybe filtered).
696 * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
697 * which current frame is being *decoded*.
698 */
699 const YV12_BUFFER_CONFIG *cur_buf;
700
701 /*!
702 * Entropy contexts for the above blocks.
703 * above_entropy_context[i][j] corresponds to above entropy context for ith
704 * plane and jth mi column of this *frame*, wrt current 'mi_row'.
705 * These are pointers into 'cm->above_contexts.entropy'.
706 */
707 ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
708 /*!
709 * Entropy contexts for the left blocks.
710 * left_entropy_context[i][j] corresponds to left entropy context for ith
711 * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
712 * Note: These contain actual data, NOT pointers.
713 */
714 ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
715
716 /*!
717 * Partition contexts for the above blocks.
718 * above_partition_context[i] corresponds to above partition context for ith
719 * mi column of this *frame*, wrt current 'mi_row'.
720 * This is a pointer into 'cm->above_contexts.partition'.
721 */
722 PARTITION_CONTEXT *above_partition_context;
723 /*!
724 * Partition contexts for the left blocks.
725 * left_partition_context[i] corresponds to left partition context for ith
726 * mi row of this *superblock*, wrt current 'mi_col'.
727 * Note: These contain actual data, NOT pointers.
728 */
729 PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
730
731 /*!
732 * Transform contexts for the above blocks.
733 * above_txfm_context[i] corresponds to above transform context for ith mi col
734 * from the current position (mi row and mi column) for this *frame*.
735 * This is a pointer into 'cm->above_contexts.txfm'.
736 */
737 TXFM_CONTEXT *above_txfm_context;
738 /*!
739 * Transform contexts for the left blocks.
740 * left_txfm_context[i] corresponds to left transform context for ith mi row
741 * from the current position (mi_row and mi_col) for this *superblock*.
742 * This is a pointer into 'left_txfm_context_buffer'.
743 */
744 TXFM_CONTEXT *left_txfm_context;
745 /*!
746 * left_txfm_context_buffer[i] is the left transform context for ith mi_row
747 * in this *superblock*.
748 * Behaves like an internal actual buffer which 'left_txt_context' points to,
749 * and never accessed directly except to fill in initial default values.
750 */
751 TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
752
753 /**
754 * \name Default values for the two restoration filters for each plane.
755 * Default values for the two restoration filters for each plane.
756 * These values are used as reference values when writing the bitstream. That
757 * is, we transmit the delta between the actual values in
758 * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
759 */
760 /**@{*/
761 WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/
762 SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
763 /**@}*/
764
765 /**
766 * \name Block dimensions in MB_MODE_INFO units.
767 */
768 /**@{*/
769 uint8_t width; /*!< Block width in MB_MODE_INFO units */
770 uint8_t height; /*!< Block height in MB_MODE_INFO units */
771 /**@}*/
772
773 /*!
774 * Contains the motion vector candidates found during motion vector prediction
775 * process. ref_mv_stack[i] contains the candidates for ith type of
776 * reference frame (single/compound). The actual number of candidates found in
777 * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
778 * or mbmi_ext->ref_mv_count[i] (encoder side).
779 */
780 CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
781 /*!
782 * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
783 * DRL (dynamic reference list) mode contexts.
784 */
785 uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
786
787 /*!
788 * True if this is the last vertical rectangular block in a VERTICAL or
789 * VERTICAL_4 partition.
790 */
791 bool is_last_vertical_rect;
792 /*!
793 * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
794 * HORIZONTAL_4 partition.
795 */
796 bool is_first_horizontal_rect;
797
798 /*!
799 * Counts of each reference frame in the above and left neighboring blocks.
800 * NOTE: Take into account both single and comp references.
801 */
802 uint8_t neighbors_ref_counts[REF_FRAMES];
803
804 /*!
805 * Current CDFs of all the symbols for the current tile.
806 */
807 FRAME_CONTEXT *tile_ctx;
808
809 /*!
810 * Bit depth: copied from cm->seq_params->bit_depth for convenience.
811 */
812 int bd;
813
814 /*!
815 * Quantizer index for each segment (base qindex + delta for each segment).
816 */
817 int qindex[MAX_SEGMENTS];
818 /*!
819 * lossless[s] is true if segment 's' is coded losslessly.
820 */
821 int lossless[MAX_SEGMENTS];
822 /*!
823 * Q index for the coding blocks in this superblock will be stored in
824 * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
825 * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
826 * the base, and adding any transmitted delta qindex on top of it.
827 * Precisely, this is the latest qindex used by the first coding block of a
828 * non-skip superblock in the current tile; OR
829 * same as cm->quant_params.base_qindex (if not explicitly set yet).
830 * Note: This is 'CurrentQIndex' in the AV1 spec.
831 */
832 int current_base_qindex;
833
834 /*!
835 * Same as cm->features.cur_frame_force_integer_mv.
836 */
837 int cur_frame_force_integer_mv;
838
839 /*!
840 * Pointer to cm->error.
841 */
842 struct aom_internal_error_info *error_info;
843
844 /*!
845 * Same as cm->global_motion.
846 */
847 const WarpedMotionParams *global_motion;
848
849 /*!
850 * Since actual frame level loop filtering level value is not available
851 * at the beginning of the tile (only available during actual filtering)
852 * at encoder side.we record the delta_lf (against the frame level loop
853 * filtering level) and code the delta between previous superblock's delta
854 * lf and current delta lf. It is equivalent to the delta between previous
855 * superblock's actual lf and current lf.
856 */
857 int8_t delta_lf_from_base;
858 /*!
859 * We have four frame filter levels for different plane and direction. So, to
860 * support the per superblock update, we need to add a few more params:
861 * 0. delta loop filter level for y plane vertical
862 * 1. delta loop filter level for y plane horizontal
863 * 2. delta loop filter level for u plane
864 * 3. delta loop filter level for v plane
865 * To make it consistent with the reference to each filter level in segment,
866 * we need to -1, since
867 * - SEG_LVL_ALT_LF_Y_V = 1;
868 * - SEG_LVL_ALT_LF_Y_H = 2;
869 * - SEG_LVL_ALT_LF_U = 3;
870 * - SEG_LVL_ALT_LF_V = 4;
871 */
872 int8_t delta_lf[FRAME_LF_COUNT];
873 /*!
874 * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
875 * current superblock has already been read from (decoder) / written to
876 * (encoder) the bitstream; and false otherwise.
877 * More detail:
878 * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
879 * non-skip coding block. So, we need this array to keep track of whether CDEF
880 * strengths for the given CDEF units have been transmitted yet or not.
881 * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
882 * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
883 * superblock size is 128x128). Hence the array size is 4.
884 * 3. In the current implementation, CDEF strength for this CDEF unit is
885 * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
886 * cm->mi_params.mi_grid_base).
887 */
888 bool cdef_transmitted[4];
889
890 /*!
891 * Mask for this block used for compound prediction.
892 */
893 uint8_t *seg_mask;
894
895 /*!
896 * CFL (chroma from luma) related parameters.
897 */
898 CFL_CTX cfl;
899
900 /*!
901 * Offset to plane[p].color_index_map.
902 * Currently:
903 * - On encoder side, this is always 0 as 'color_index_map' is allocated per
904 * *coding block* there.
905 * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
906 * memory pointing to the base of a *superblock* there, and we need an offset
907 * to it to get the color index map for current coding block.
908 */
909 uint16_t color_index_map_offset[2];
910
911 /*!
912 * Temporary buffer used for convolution in case of compound reference only
913 * for (weighted or uniform) averaging operation.
914 * There are pointers to actual buffers allocated elsewhere: e.g.
915 * - In decoder, 'pbi->td.tmp_conv_dst' or
916 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
917 * - In encoder, 'x->tmp_conv_dst' or
918 * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
919 */
920 CONV_BUF_TYPE *tmp_conv_dst;
921 /*!
922 * Temporary buffers used to build OBMC prediction by above (index 0) and left
923 * (index 1) predictors respectively.
924 * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
925 * There are pointers to actual buffers allocated elsewhere: e.g.
926 * - In decoder, 'pbi->td.tmp_obmc_bufs' or
927 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
928 * -In encoder, 'x->tmp_pred_bufs' or
929 * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
930 */
931 uint8_t *tmp_obmc_bufs[2];
932 } MACROBLOCKD;
933
934 /*!\cond */
935
is_cur_buf_hbd(const MACROBLOCKD * xd)936 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
937 #if CONFIG_AV1_HIGHBITDEPTH
938 return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
939 #else
940 (void)xd;
941 return 0;
942 #endif
943 }
944
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)945 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
946 #if CONFIG_AV1_HIGHBITDEPTH
947 return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
948 ? CONVERT_TO_BYTEPTR(buf16)
949 : buf16;
950 #else
951 (void)xd;
952 return buf16;
953 #endif
954 }
955
956 typedef struct BitDepthInfo {
957 int bit_depth;
958 /*! Is the image buffer high bit depth?
959 * Low bit depth buffer uses uint8_t.
960 * High bit depth buffer uses uint16_t.
961 * Equivalent to cm->seq_params->use_highbitdepth
962 */
963 int use_highbitdepth_buf;
964 } BitDepthInfo;
965
get_bit_depth_info(const MACROBLOCKD * xd)966 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
967 BitDepthInfo bit_depth_info;
968 bit_depth_info.bit_depth = xd->bd;
969 bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
970 assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
971 bit_depth_info.bit_depth == 8));
972 return bit_depth_info;
973 }
974
get_sqr_bsize_idx(BLOCK_SIZE bsize)975 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
976 switch (bsize) {
977 case BLOCK_4X4: return 0;
978 case BLOCK_8X8: return 1;
979 case BLOCK_16X16: return 2;
980 case BLOCK_32X32: return 3;
981 case BLOCK_64X64: return 4;
982 case BLOCK_128X128: return 5;
983 default: return SQR_BLOCK_SIZES;
984 }
985 }
986
987 // For a square block size 'bsize', returns the size of the sub-blocks used by
988 // the given partition type. If the partition produces sub-blocks of different
989 // sizes, then the function returns the largest sub-block size.
990 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
991 // Conversion tables).
992 // Note: the input block size should be square.
993 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)994 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
995 PARTITION_TYPE partition) {
996 if (partition == PARTITION_INVALID) {
997 return BLOCK_INVALID;
998 } else {
999 const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
1000 return sqr_bsize_idx >= SQR_BLOCK_SIZES
1001 ? BLOCK_INVALID
1002 : subsize_lookup[partition][sqr_bsize_idx];
1003 }
1004 }
1005
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)1006 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1007 PLANE_TYPE plane_type) {
1008 static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1009 DCT_DCT, // DC_PRED
1010 ADST_DCT, // V_PRED
1011 DCT_ADST, // H_PRED
1012 DCT_DCT, // D45_PRED
1013 ADST_ADST, // D135_PRED
1014 ADST_DCT, // D113_PRED
1015 DCT_ADST, // D157_PRED
1016 DCT_ADST, // D203_PRED
1017 ADST_DCT, // D67_PRED
1018 ADST_ADST, // SMOOTH_PRED
1019 ADST_DCT, // SMOOTH_V_PRED
1020 DCT_ADST, // SMOOTH_H_PRED
1021 ADST_ADST, // PAETH_PRED
1022 };
1023 const PREDICTION_MODE mode =
1024 (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1025 assert(mode < INTRA_MODES);
1026 return _intra_mode_to_tx_type[mode];
1027 }
1028
is_rect_tx(TX_SIZE tx_size)1029 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1030
block_signals_txsize(BLOCK_SIZE bsize)1031 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1032 return bsize > BLOCK_4X4;
1033 }
1034
1035 // Number of transform types in each set type
1036 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1037 1, 2, 5, 7, 12, 16,
1038 };
1039
1040 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1041 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1042 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1043 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1044 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1045 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1046 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1047 };
1048
1049 // The bitmask corresponds to the transform types as defined in
1050 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1051 // the use of the corresponding transform type in that table.
1052 // The av1_derived_intra_tx_used_flag table is used when
1053 // use_reduced_intra_txset is set to 2, where one only searches
1054 // the transform types derived from residual statistics.
1055 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1056 0x0209, // DC_PRED: 0000 0010 0000 1001
1057 0x0403, // V_PRED: 0000 0100 0000 0011
1058 0x0805, // H_PRED: 0000 1000 0000 0101
1059 0x020F, // D45_PRED: 0000 0010 0000 1111
1060 0x0009, // D135_PRED: 0000 0000 0000 1001
1061 0x0009, // D113_PRED: 0000 0000 0000 1001
1062 0x0009, // D157_PRED: 0000 0000 0000 1001
1063 0x0805, // D203_PRED: 0000 1000 0000 0101
1064 0x0403, // D67_PRED: 0000 0100 0000 0011
1065 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1066 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1067 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1068 0x0209, // PAETH_PRED: 0000 0010 0000 1001
1069 };
1070
1071 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1072 0x080F, // DC_PRED: 0000 1000 0000 1111
1073 0x040F, // V_PRED: 0000 0100 0000 1111
1074 0x080F, // H_PRED: 0000 1000 0000 1111
1075 0x020F, // D45_PRED: 0000 0010 0000 1111
1076 0x080F, // D135_PRED: 0000 1000 0000 1111
1077 0x040F, // D113_PRED: 0000 0100 0000 1111
1078 0x080F, // D157_PRED: 0000 1000 0000 1111
1079 0x080F, // D203_PRED: 0000 1000 0000 1111
1080 0x040F, // D67_PRED: 0000 0100 0000 1111
1081 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1082 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1083 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1084 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1085 };
1086
1087 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1088 0x0001, // 0000 0000 0000 0001
1089 0x0201, // 0000 0010 0000 0001
1090 0x020F, // 0000 0010 0000 1111
1091 0x0E0F, // 0000 1110 0000 1111
1092 0x0FFF, // 0000 1111 1111 1111
1093 0xFFFF, // 1111 1111 1111 1111
1094 };
1095
1096 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1097 { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1098 { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1099 };
1100
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)1101 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1102 int use_reduced_set) {
1103 const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1104 if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1105 if (tx_size_sqr_up == TX_32X32)
1106 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1107 if (use_reduced_set)
1108 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1109 const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1110 return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1111 }
1112
1113 // Maps tx set types to the indices.
1114 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1115 { // Intra
1116 0, -1, 2, 1, -1, -1 },
1117 { // Inter
1118 0, 3, -1, -1, 2, 1 },
1119 };
1120
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)1121 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1122 int use_reduced_set) {
1123 const TxSetType set_type =
1124 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1125 return ext_tx_set_index[is_inter][set_type];
1126 }
1127
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)1128 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1129 int use_reduced_set) {
1130 const int set_type =
1131 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1132 return av1_num_ext_tx_set[set_type];
1133 }
1134
1135 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1136 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1137
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)1138 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1139 const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1140 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1141 if (bsize == BLOCK_4X4)
1142 return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1143 if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1144 return max_rect_tx_size;
1145 else
1146 return largest_tx_size;
1147 }
1148
1149 static const uint8_t mode_to_angle_map[] = {
1150 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1151 };
1152
1153 // Converts block_index for given transform size to index of the block in raster
1154 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)1155 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1156 int block_idx) {
1157 // For transform size 4x8, the possible block_idx values are 0 & 2, because
1158 // block_idx values are incremented in steps of size 'tx_width_unit x
1159 // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1160 // block number 1 in raster order, inside an 8x8 MI block.
1161 // For any other transform size, the two indices are equivalent.
1162 return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1163 }
1164
1165 // Inverse of above function.
1166 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)1167 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1168 int raster_order) {
1169 assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1170 // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1171 return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1172 }
1173
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int use_screen_content_tools)1174 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1175 const MACROBLOCKD *xd,
1176 TX_SIZE tx_size,
1177 int use_screen_content_tools) {
1178 const MB_MODE_INFO *const mbmi = xd->mi[0];
1179
1180 if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1181 xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1182 use_screen_content_tools)
1183 return DEFAULT_INTER_TX_TYPE;
1184
1185 return intra_mode_to_tx_type(mbmi, plane_type);
1186 }
1187
1188 // Implements the get_plane_residual_size() function in the spec (Section
1189 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1190 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1191 int subsampling_x,
1192 int subsampling_y) {
1193 assert(bsize < BLOCK_SIZES_ALL);
1194 assert(subsampling_x >= 0 && subsampling_x < 2);
1195 assert(subsampling_y >= 0 && subsampling_y < 2);
1196 return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1197 }
1198
1199 /*
1200 * Logic to generate the lookup tables:
1201 *
1202 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1203 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1204 * txs = sub_tx_size_map[txs];
1205 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1206 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1207 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1208 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1209 */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1210 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1211 int blk_col) {
1212 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1213 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1214 };
1215 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1216 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1217 };
1218 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1219 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1220 };
1221 const int index =
1222 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1223 (blk_col >> tw_w_log2_table[bsize]);
1224 assert(index < INTER_TX_SIZE_BUF_LEN);
1225 return index;
1226 }
1227
1228 #if CONFIG_INSPECTION
1229 /*
1230 * Here is the logic to generate the lookup tables:
1231 *
1232 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1233 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1234 * txs = sub_tx_size_map[txs];
1235 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1236 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1237 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1238 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1239 */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1240 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1241 int blk_col) {
1242 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1243 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1244 };
1245 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1246 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1247 };
1248 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1249 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1250 };
1251 const int index =
1252 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1253 (blk_col >> tw_w_log2_table[bsize]);
1254 assert(index < TXK_TYPE_BUF_LEN);
1255 return index;
1256 }
1257 #endif // CONFIG_INSPECTION
1258
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)1259 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1260 int blk_col, TX_SIZE tx_size,
1261 TX_TYPE tx_type) {
1262 const int stride = xd->tx_type_map_stride;
1263 xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1264
1265 const int txw = tx_size_wide_unit[tx_size];
1266 const int txh = tx_size_high_unit[tx_size];
1267 // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1268 // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1269 // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1270 // the intricacy, cover all the 16x16 units inside a 64 level transform.
1271 if (txw == tx_size_wide_unit[TX_64X64] ||
1272 txh == tx_size_high_unit[TX_64X64]) {
1273 const int tx_unit = tx_size_wide_unit[TX_16X16];
1274 for (int idy = 0; idy < txh; idy += tx_unit) {
1275 for (int idx = 0; idx < txw; idx += tx_unit) {
1276 xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1277 }
1278 }
1279 }
1280 }
1281
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)1282 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1283 PLANE_TYPE plane_type, int blk_row,
1284 int blk_col, TX_SIZE tx_size,
1285 int reduced_tx_set) {
1286 const MB_MODE_INFO *const mbmi = xd->mi[0];
1287 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1288 return DCT_DCT;
1289 }
1290
1291 TX_TYPE tx_type;
1292 if (plane_type == PLANE_TYPE_Y) {
1293 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1294 } else {
1295 if (is_inter_block(mbmi)) {
1296 // scale back to y plane's coordinate
1297 const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1298 blk_row <<= pd->subsampling_y;
1299 blk_col <<= pd->subsampling_x;
1300 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1301 } else {
1302 // In intra mode, uv planes don't share the same prediction mode as y
1303 // plane, so the tx_type should not be shared
1304 tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1305 }
1306 const TxSetType tx_set_type =
1307 av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1308 if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1309 }
1310 assert(tx_type < TX_TYPES);
1311 assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1312 reduced_tx_set)][tx_type]);
1313 return tx_type;
1314 }
1315
1316 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1317 const int num_planes);
1318
1319 /*
1320 * Logic to generate the lookup table:
1321 *
1322 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1323 * int depth = 0;
1324 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1325 * depth++;
1326 * tx_size = sub_tx_size_map[tx_size];
1327 * }
1328 */
bsize_to_max_depth(BLOCK_SIZE bsize)1329 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1330 static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1331 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1332 };
1333 return bsize_to_max_depth_table[bsize];
1334 }
1335
1336 /*
1337 * Logic to generate the lookup table:
1338 *
1339 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1340 * assert(tx_size != TX_4X4);
1341 * int depth = 0;
1342 * while (tx_size != TX_4X4) {
1343 * depth++;
1344 * tx_size = sub_tx_size_map[tx_size];
1345 * }
1346 * assert(depth < 10);
1347 */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1348 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1349 assert(bsize < BLOCK_SIZES_ALL);
1350 static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1351 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1352 };
1353 const int depth = bsize_to_tx_size_depth_table[bsize];
1354 assert(depth <= MAX_TX_CATS);
1355 return depth - 1;
1356 }
1357
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1358 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1359 TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1360 TX_SIZE tx_size = max_tx_size;
1361 for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1362 return tx_size;
1363 }
1364
av1_get_adjusted_tx_size(TX_SIZE tx_size)1365 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1366 switch (tx_size) {
1367 case TX_64X64:
1368 case TX_64X32:
1369 case TX_32X64: return TX_32X32;
1370 case TX_64X16: return TX_32X16;
1371 case TX_16X64: return TX_16X32;
1372 default: return tx_size;
1373 }
1374 }
1375
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1376 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1377 int subsampling_y) {
1378 const BLOCK_SIZE plane_bsize =
1379 get_plane_block_size(bsize, subsampling_x, subsampling_y);
1380 assert(plane_bsize < BLOCK_SIZES_ALL);
1381 const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1382 return av1_get_adjusted_tx_size(uv_tx);
1383 }
1384
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1385 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1386 const MB_MODE_INFO *mbmi = xd->mi[0];
1387 if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1388 if (plane == 0) return mbmi->tx_size;
1389 const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1390 return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1391 pd->subsampling_y);
1392 }
1393
1394 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1395 const int num_planes);
1396
1397 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1398
1399 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1400
1401 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1402 int blk_row, int blk_col,
1403 BLOCK_SIZE plane_bsize,
1404 TX_SIZE tx_size, void *arg);
1405
1406 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1407 struct macroblockd_plane *pd, int plane,
1408 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1409 int has_eob, int aoff, int loff);
1410
1411 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1412 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1413 return (mbmi->ref_frame[0] > INTRA_FRAME &&
1414 mbmi->ref_frame[1] == INTRA_FRAME);
1415 }
1416
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1417 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1418 return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1419 }
1420
is_interintra_allowed_mode(const PREDICTION_MODE mode)1421 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1422 return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1423 }
1424
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1425 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1426 return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1427 }
1428
is_interintra_allowed(const MB_MODE_INFO * mbmi)1429 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1430 return is_interintra_allowed_bsize(mbmi->bsize) &&
1431 is_interintra_allowed_mode(mbmi->mode) &&
1432 is_interintra_allowed_ref(mbmi->ref_frame);
1433 }
1434
is_interintra_allowed_bsize_group(int group)1435 static INLINE int is_interintra_allowed_bsize_group(int group) {
1436 int i;
1437 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1438 if (size_group_lookup[i] == group &&
1439 is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1440 return 1;
1441 }
1442 }
1443 return 0;
1444 }
1445
is_interintra_pred(const MB_MODE_INFO * mbmi)1446 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1447 return mbmi->ref_frame[0] > INTRA_FRAME &&
1448 mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1449 }
1450
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1451 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1452 int plane) {
1453 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1454 const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1455 if (plane == 0) return max_txsize; // luma
1456 return av1_get_adjusted_tx_size(max_txsize); // chroma
1457 }
1458
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1459 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1460 assert(bsize < BLOCK_SIZES_ALL);
1461 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1462 }
1463
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1464 static INLINE int is_motion_variation_allowed_compound(
1465 const MB_MODE_INFO *mbmi) {
1466 return !has_second_ref(mbmi);
1467 }
1468
1469 // input: log2 of length, 0(4), 1(8), ...
1470 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1471
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1472 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1473 return mbmi->overlappable_neighbors != 0;
1474 }
1475
1476 static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1477 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1478 const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1479 if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1480 if (xd->cur_frame_force_integer_mv == 0) {
1481 const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1482 if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1483 }
1484 if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1485 is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1486 is_motion_variation_allowed_compound(mbmi)) {
1487 assert(!has_second_ref(mbmi));
1488 if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1489 !xd->cur_frame_force_integer_mv &&
1490 !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1491 return WARPED_CAUSAL;
1492 }
1493 return OBMC_CAUSAL;
1494 }
1495 return SIMPLE_TRANSLATION;
1496 }
1497
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1498 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1499 return (is_inter_block(mbmi));
1500 }
1501
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1502 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1503 BLOCK_SIZE sb_type) {
1504 assert(sb_type < BLOCK_SIZES_ALL);
1505 return allow_screen_content_tools &&
1506 block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1507 block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1508 sb_type >= BLOCK_8X8;
1509 }
1510
1511 // Returns sub-sampled dimensions of the given block.
1512 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1513 // differ from 'height' and 'width' when part of the block is outside the
1514 // right
1515 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1516 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1517 const MACROBLOCKD *xd, int *width,
1518 int *height,
1519 int *rows_within_bounds,
1520 int *cols_within_bounds) {
1521 const int block_height = block_size_high[bsize];
1522 const int block_width = block_size_wide[bsize];
1523 const int block_rows = (xd->mb_to_bottom_edge >= 0)
1524 ? block_height
1525 : (xd->mb_to_bottom_edge >> 3) + block_height;
1526 const int block_cols = (xd->mb_to_right_edge >= 0)
1527 ? block_width
1528 : (xd->mb_to_right_edge >> 3) + block_width;
1529 const struct macroblockd_plane *const pd = &xd->plane[plane];
1530 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1531 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1532 assert(block_width >= block_cols);
1533 assert(block_height >= block_rows);
1534 const int plane_block_width = block_width >> pd->subsampling_x;
1535 const int plane_block_height = block_height >> pd->subsampling_y;
1536 // Special handling for chroma sub8x8.
1537 const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1538 const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1539 if (width) {
1540 *width = plane_block_width + 2 * is_chroma_sub8_x;
1541 assert(*width >= 0);
1542 }
1543 if (height) {
1544 *height = plane_block_height + 2 * is_chroma_sub8_y;
1545 assert(*height >= 0);
1546 }
1547 if (rows_within_bounds) {
1548 *rows_within_bounds =
1549 (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1550 assert(*rows_within_bounds >= 0);
1551 }
1552 if (cols_within_bounds) {
1553 *cols_within_bounds =
1554 (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1555 assert(*cols_within_bounds >= 0);
1556 }
1557 }
1558
1559 /* clang-format off */
1560 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1561 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1562 [CDF_SIZE(PALETTE_COLORS)];
1563 // Pointer to a const three-dimensional array whose first dimension is
1564 // PALETTE_SIZES.
1565 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1566 /* clang-format on */
1567
1568 typedef struct {
1569 int rows;
1570 int cols;
1571 int n_colors;
1572 int plane_width;
1573 int plane_height;
1574 uint8_t *color_map;
1575 MapCdf map_cdf;
1576 ColorCost color_cost;
1577 } Av1ColorMapParam;
1578
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1579 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1580 const MB_MODE_INFO *mbmi) {
1581 int ref;
1582
1583 // First check if all modes are GLOBALMV
1584 if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1585
1586 if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1587 return 0;
1588
1589 // Now check if all global motion is non translational
1590 for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1591 if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1592 }
1593 return 1;
1594 }
1595
get_plane_type(int plane)1596 static INLINE PLANE_TYPE get_plane_type(int plane) {
1597 return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1598 }
1599
av1_get_max_eob(TX_SIZE tx_size)1600 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1601 if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1602 return 1024;
1603 }
1604 if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1605 return 512;
1606 }
1607 return tx_size_2d[tx_size];
1608 }
1609
1610 /*!\endcond */
1611
1612 #ifdef __cplusplus
1613 } // extern "C"
1614 #endif
1615
1616 #endif // AOM_AV1_COMMON_BLOCKD_H_
1617