1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 12 #define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 13 14 // MSVC++ requires this to be set before any other includes to get M_PI. 15 #ifndef _USE_MATH_DEFINES 16 #define _USE_MATH_DEFINES 17 #endif 18 19 #include <math.h> 20 #include <stddef.h> // size_t 21 #include <stdio.h> // FILE 22 #include <string.h> 23 24 #include <vector> 25 26 #include "absl/strings/string_view.h" 27 #include "absl/types/optional.h" 28 #include "api/array_view.h" 29 #include "api/audio/echo_canceller3_config.h" 30 #include "api/audio/echo_control.h" 31 #include "api/scoped_refptr.h" 32 #include "modules/audio_processing/include/audio_processing_statistics.h" 33 #include "rtc_base/arraysize.h" 34 #include "rtc_base/ref_count.h" 35 #include "rtc_base/system/file_wrapper.h" 36 #include "rtc_base/system/rtc_export.h" 37 38 namespace rtc { 39 class TaskQueue; 40 } // namespace rtc 41 42 namespace webrtc { 43 44 class AecDump; 45 class AudioBuffer; 46 47 class StreamConfig; 48 class ProcessingConfig; 49 50 class EchoDetector; 51 class CustomAudioAnalyzer; 52 class CustomProcessing; 53 54 // The Audio Processing Module (APM) provides a collection of voice processing 55 // components designed for real-time communications software. 56 // 57 // APM operates on two audio streams on a frame-by-frame basis. Frames of the 58 // primary stream, on which all processing is applied, are passed to 59 // `ProcessStream()`. Frames of the reverse direction stream are passed to 60 // `ProcessReverseStream()`. On the client-side, this will typically be the 61 // near-end (capture) and far-end (render) streams, respectively. APM should be 62 // placed in the signal chain as close to the audio hardware abstraction layer 63 // (HAL) as possible. 64 // 65 // On the server-side, the reverse stream will normally not be used, with 66 // processing occurring on each incoming stream. 67 // 68 // Component interfaces follow a similar pattern and are accessed through 69 // corresponding getters in APM. All components are disabled at create-time, 70 // with default settings that are recommended for most situations. New settings 71 // can be applied without enabling a component. Enabling a component triggers 72 // memory allocation and initialization to allow it to start processing the 73 // streams. 74 // 75 // Thread safety is provided with the following assumptions to reduce locking 76 // overhead: 77 // 1. The stream getters and setters are called from the same thread as 78 // ProcessStream(). More precisely, stream functions are never called 79 // concurrently with ProcessStream(). 80 // 2. Parameter getters are never called concurrently with the corresponding 81 // setter. 82 // 83 // APM accepts only linear PCM audio data in chunks of ~10 ms (see 84 // AudioProcessing::GetFrameSize() for details) and sample rates ranging from 85 // 8000 Hz to 384000 Hz. The int16 interfaces use interleaved data, while the 86 // float interfaces use deinterleaved data. 87 // 88 // Usage example, omitting error checking: 89 // rtc::scoped_refptr<AudioProcessing> apm = AudioProcessingBuilder().Create(); 90 // 91 // AudioProcessing::Config config; 92 // config.echo_canceller.enabled = true; 93 // config.echo_canceller.mobile_mode = false; 94 // 95 // config.gain_controller1.enabled = true; 96 // config.gain_controller1.mode = 97 // AudioProcessing::Config::GainController1::kAdaptiveAnalog; 98 // config.gain_controller1.analog_level_minimum = 0; 99 // config.gain_controller1.analog_level_maximum = 255; 100 // 101 // config.gain_controller2.enabled = true; 102 // 103 // config.high_pass_filter.enabled = true; 104 // 105 // apm->ApplyConfig(config) 106 // 107 // // Start a voice call... 108 // 109 // // ... Render frame arrives bound for the audio HAL ... 110 // apm->ProcessReverseStream(render_frame); 111 // 112 // // ... Capture frame arrives from the audio HAL ... 113 // // Call required set_stream_ functions. 114 // apm->set_stream_delay_ms(delay_ms); 115 // apm->set_stream_analog_level(analog_level); 116 // 117 // apm->ProcessStream(capture_frame); 118 // 119 // // Call required stream_ functions. 120 // analog_level = apm->recommended_stream_analog_level(); 121 // has_voice = apm->stream_has_voice(); 122 // 123 // // Repeat render and capture processing for the duration of the call... 124 // // Start a new call... 125 // apm->Initialize(); 126 // 127 // // Close the application... 128 // apm.reset(); 129 // 130 class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface { 131 public: 132 // The struct below constitutes the new parameter scheme for the audio 133 // processing. It is being introduced gradually and until it is fully 134 // introduced, it is prone to change. 135 // TODO(peah): Remove this comment once the new config scheme is fully rolled 136 // out. 137 // 138 // The parameters and behavior of the audio processing module are controlled 139 // by changing the default values in the AudioProcessing::Config struct. 140 // The config is applied by passing the struct to the ApplyConfig method. 141 // 142 // This config is intended to be used during setup, and to enable/disable 143 // top-level processing effects. Use during processing may cause undesired 144 // submodule resets, affecting the audio quality. Use the RuntimeSetting 145 // construct for runtime configuration. 146 struct RTC_EXPORT Config { 147 // Sets the properties of the audio processing pipeline. 148 struct RTC_EXPORT Pipeline { 149 // Ways to downmix a multi-channel track to mono. 150 enum class DownmixMethod { 151 kAverageChannels, // Average across channels. 152 kUseFirstChannel // Use the first channel. 153 }; 154 155 // Maximum allowed processing rate used internally. May only be set to 156 // 32000 or 48000 and any differing values will be treated as 48000. 157 int maximum_internal_processing_rate = 48000; 158 // Allow multi-channel processing of render audio. 159 bool multi_channel_render = false; 160 // Allow multi-channel processing of capture audio when AEC3 is active 161 // or a custom AEC is injected.. 162 bool multi_channel_capture = false; 163 // Indicates how to downmix multi-channel capture audio to mono (when 164 // needed). 165 DownmixMethod capture_downmix_method = DownmixMethod::kAverageChannels; 166 } pipeline; 167 168 // Enabled the pre-amplifier. It amplifies the capture signal 169 // before any other processing is done. 170 // TODO(webrtc:5298): Deprecate and use the pre-gain functionality in 171 // capture_level_adjustment instead. 172 struct PreAmplifier { 173 bool enabled = false; 174 float fixed_gain_factor = 1.0f; 175 } pre_amplifier; 176 177 // Functionality for general level adjustment in the capture pipeline. This 178 // should not be used together with the legacy PreAmplifier functionality. 179 struct CaptureLevelAdjustment { 180 bool operator==(const CaptureLevelAdjustment& rhs) const; 181 bool operator!=(const CaptureLevelAdjustment& rhs) const { 182 return !(*this == rhs); 183 } 184 bool enabled = false; 185 // The `pre_gain_factor` scales the signal before any processing is done. 186 float pre_gain_factor = 1.0f; 187 // The `post_gain_factor` scales the signal after all processing is done. 188 float post_gain_factor = 1.0f; 189 struct AnalogMicGainEmulation { 190 bool operator==(const AnalogMicGainEmulation& rhs) const; 191 bool operator!=(const AnalogMicGainEmulation& rhs) const { 192 return !(*this == rhs); 193 } 194 bool enabled = false; 195 // Initial analog gain level to use for the emulated analog gain. Must 196 // be in the range [0...255]. 197 int initial_level = 255; 198 } analog_mic_gain_emulation; 199 } capture_level_adjustment; 200 201 struct HighPassFilter { 202 bool enabled = false; 203 bool apply_in_full_band = true; 204 } high_pass_filter; 205 206 struct EchoCanceller { 207 bool enabled = false; 208 bool mobile_mode = false; 209 bool export_linear_aec_output = false; 210 // Enforce the highpass filter to be on (has no effect for the mobile 211 // mode). 212 bool enforce_high_pass_filtering = true; 213 } echo_canceller; 214 215 // Enables background noise suppression. 216 struct NoiseSuppression { 217 bool enabled = false; 218 enum Level { kLow, kModerate, kHigh, kVeryHigh }; 219 Level level = kModerate; 220 bool analyze_linear_aec_output_when_available = false; 221 } noise_suppression; 222 223 // Enables transient suppression. 224 struct TransientSuppression { 225 bool enabled = false; 226 } transient_suppression; 227 228 // Enables automatic gain control (AGC) functionality. 229 // The automatic gain control (AGC) component brings the signal to an 230 // appropriate range. This is done by applying a digital gain directly and, 231 // in the analog mode, prescribing an analog gain to be applied at the audio 232 // HAL. 233 // Recommended to be enabled on the client-side. 234 struct RTC_EXPORT GainController1 { 235 bool operator==(const GainController1& rhs) const; 236 bool operator!=(const GainController1& rhs) const { 237 return !(*this == rhs); 238 } 239 240 bool enabled = false; 241 enum Mode { 242 // Adaptive mode intended for use if an analog volume control is 243 // available on the capture device. It will require the user to provide 244 // coupling between the OS mixer controls and AGC through the 245 // stream_analog_level() functions. 246 // It consists of an analog gain prescription for the audio device and a 247 // digital compression stage. 248 kAdaptiveAnalog, 249 // Adaptive mode intended for situations in which an analog volume 250 // control is unavailable. It operates in a similar fashion to the 251 // adaptive analog mode, but with scaling instead applied in the digital 252 // domain. As with the analog mode, it additionally uses a digital 253 // compression stage. 254 kAdaptiveDigital, 255 // Fixed mode which enables only the digital compression stage also used 256 // by the two adaptive modes. 257 // It is distinguished from the adaptive modes by considering only a 258 // short time-window of the input signal. It applies a fixed gain 259 // through most of the input level range, and compresses (gradually 260 // reduces gain with increasing level) the input signal at higher 261 // levels. This mode is preferred on embedded devices where the capture 262 // signal level is predictable, so that a known gain can be applied. 263 kFixedDigital 264 }; 265 Mode mode = kAdaptiveAnalog; 266 // Sets the target peak level (or envelope) of the AGC in dBFs (decibels 267 // from digital full-scale). The convention is to use positive values. For 268 // instance, passing in a value of 3 corresponds to -3 dBFs, or a target 269 // level 3 dB below full-scale. Limited to [0, 31]. 270 int target_level_dbfs = 3; 271 // Sets the maximum gain the digital compression stage may apply, in dB. A 272 // higher number corresponds to greater compression, while a value of 0 273 // will leave the signal uncompressed. Limited to [0, 90]. 274 // For updates after APM setup, use a RuntimeSetting instead. 275 int compression_gain_db = 9; 276 // When enabled, the compression stage will hard limit the signal to the 277 // target level. Otherwise, the signal will be compressed but not limited 278 // above the target level. 279 bool enable_limiter = true; 280 281 // Enables the analog gain controller functionality. 282 struct AnalogGainController { 283 bool enabled = true; 284 // TODO(bugs.webrtc.org/7494): Deprecated. Stop using and remove. 285 int startup_min_volume = 0; 286 // Lowest analog microphone level that will be applied in response to 287 // clipping. 288 int clipped_level_min = 70; 289 // If true, an adaptive digital gain is applied. 290 bool enable_digital_adaptive = true; 291 // Amount the microphone level is lowered with every clipping event. 292 // Limited to (0, 255]. 293 int clipped_level_step = 15; 294 // Proportion of clipped samples required to declare a clipping event. 295 // Limited to (0.f, 1.f). 296 float clipped_ratio_threshold = 0.1f; 297 // Time in frames to wait after a clipping event before checking again. 298 // Limited to values higher than 0. 299 int clipped_wait_frames = 300; 300 301 // Enables clipping prediction functionality. 302 struct ClippingPredictor { 303 bool enabled = false; 304 enum Mode { 305 // Clipping event prediction mode with fixed step estimation. 306 kClippingEventPrediction, 307 // Clipped peak estimation mode with adaptive step estimation. 308 kAdaptiveStepClippingPeakPrediction, 309 // Clipped peak estimation mode with fixed step estimation. 310 kFixedStepClippingPeakPrediction, 311 }; 312 Mode mode = kClippingEventPrediction; 313 // Number of frames in the sliding analysis window. 314 int window_length = 5; 315 // Number of frames in the sliding reference window. 316 int reference_window_length = 5; 317 // Reference window delay (unit: number of frames). 318 int reference_window_delay = 5; 319 // Clipping prediction threshold (dBFS). 320 float clipping_threshold = -1.0f; 321 // Crest factor drop threshold (dB). 322 float crest_factor_margin = 3.0f; 323 // If true, the recommended clipped level step is used to modify the 324 // analog gain. Otherwise, the predictor runs without affecting the 325 // analog gain. 326 bool use_predicted_step = true; 327 } clipping_predictor; 328 } analog_gain_controller; 329 } gain_controller1; 330 331 // Parameters for AGC2, an Automatic Gain Control (AGC) sub-module which 332 // replaces the AGC sub-module parametrized by `gain_controller1`. 333 // AGC2 brings the captured audio signal to the desired level by combining 334 // three different controllers (namely, input volume controller, adapative 335 // digital controller and fixed digital controller) and a limiter. 336 // TODO(bugs.webrtc.org:7494): Name `GainController` when AGC1 removed. 337 struct RTC_EXPORT GainController2 { 338 bool operator==(const GainController2& rhs) const; 339 bool operator!=(const GainController2& rhs) const { 340 return !(*this == rhs); 341 } 342 343 // AGC2 must be created if and only if `enabled` is true. 344 bool enabled = false; 345 346 // Parameters for the input volume controller, which adjusts the input 347 // volume applied when the audio is captured (e.g., microphone volume on 348 // a soundcard, input volume on HAL). 349 struct InputVolumeController { 350 bool operator==(const InputVolumeController& rhs) const; 351 bool operator!=(const InputVolumeController& rhs) const { 352 return !(*this == rhs); 353 } 354 bool enabled = false; 355 } input_volume_controller; 356 357 // Parameters for the adaptive digital controller, which adjusts and 358 // applies a digital gain after echo cancellation and after noise 359 // suppression. 360 struct RTC_EXPORT AdaptiveDigital { 361 bool operator==(const AdaptiveDigital& rhs) const; 362 bool operator!=(const AdaptiveDigital& rhs) const { 363 return !(*this == rhs); 364 } 365 366 bool enabled = false; 367 // TODO(bugs.webrtc.org/7494): Remove `dry_run`. 368 // When true, the adaptive digital controller runs but the signal is not 369 // modified. 370 bool dry_run = false; 371 float headroom_db = 6.0f; 372 // TODO(bugs.webrtc.org/7494): Consider removing and inferring from 373 // `max_output_noise_level_dbfs`. 374 float max_gain_db = 30.0f; 375 float initial_gain_db = 8.0f; 376 // TODO(bugs.webrtc.org/7494): Hard-code and remove parameter below. 377 int vad_reset_period_ms = 1500; 378 // TODO(bugs.webrtc.org/7494): Hard-code and remove parameter below. 379 int adjacent_speech_frames_threshold = 12; 380 float max_gain_change_db_per_second = 3.0f; 381 float max_output_noise_level_dbfs = -50.0f; 382 } adaptive_digital; 383 384 // Parameters for the fixed digital controller, which applies a fixed 385 // digital gain after the adaptive digital controller and before the 386 // limiter. 387 struct FixedDigital { 388 // By setting `gain_db` to a value greater than zero, the limiter can be 389 // turned into a compressor that first applies a fixed gain. 390 float gain_db = 0.0f; 391 } fixed_digital; 392 } gain_controller2; 393 394 std::string ToString() const; 395 }; 396 397 // Specifies the properties of a setting to be passed to AudioProcessing at 398 // runtime. 399 class RuntimeSetting { 400 public: 401 enum class Type { 402 kNotSpecified, 403 kCapturePreGain, 404 kCaptureCompressionGain, 405 kCaptureFixedPostGain, 406 kPlayoutVolumeChange, 407 kCustomRenderProcessingRuntimeSetting, 408 kPlayoutAudioDeviceChange, 409 kCapturePostGain, 410 kCaptureOutputUsed 411 }; 412 413 // Play-out audio device properties. 414 struct PlayoutAudioDeviceInfo { 415 int id; // Identifies the audio device. 416 int max_volume; // Maximum play-out volume. 417 }; 418 RuntimeSetting()419 RuntimeSetting() : type_(Type::kNotSpecified), value_(0.0f) {} 420 ~RuntimeSetting() = default; 421 CreateCapturePreGain(float gain)422 static RuntimeSetting CreateCapturePreGain(float gain) { 423 return {Type::kCapturePreGain, gain}; 424 } 425 CreateCapturePostGain(float gain)426 static RuntimeSetting CreateCapturePostGain(float gain) { 427 return {Type::kCapturePostGain, gain}; 428 } 429 430 // Corresponds to Config::GainController1::compression_gain_db, but for 431 // runtime configuration. CreateCompressionGainDb(int gain_db)432 static RuntimeSetting CreateCompressionGainDb(int gain_db) { 433 RTC_DCHECK_GE(gain_db, 0); 434 RTC_DCHECK_LE(gain_db, 90); 435 return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)}; 436 } 437 438 // Corresponds to Config::GainController2::fixed_digital::gain_db, but for 439 // runtime configuration. CreateCaptureFixedPostGain(float gain_db)440 static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) { 441 RTC_DCHECK_GE(gain_db, 0.0f); 442 RTC_DCHECK_LE(gain_db, 90.0f); 443 return {Type::kCaptureFixedPostGain, gain_db}; 444 } 445 446 // Creates a runtime setting to notify play-out (aka render) audio device 447 // changes. CreatePlayoutAudioDeviceChange(PlayoutAudioDeviceInfo audio_device)448 static RuntimeSetting CreatePlayoutAudioDeviceChange( 449 PlayoutAudioDeviceInfo audio_device) { 450 return {Type::kPlayoutAudioDeviceChange, audio_device}; 451 } 452 453 // Creates a runtime setting to notify play-out (aka render) volume changes. 454 // `volume` is the unnormalized volume, the maximum of which CreatePlayoutVolumeChange(int volume)455 static RuntimeSetting CreatePlayoutVolumeChange(int volume) { 456 return {Type::kPlayoutVolumeChange, volume}; 457 } 458 CreateCustomRenderSetting(float payload)459 static RuntimeSetting CreateCustomRenderSetting(float payload) { 460 return {Type::kCustomRenderProcessingRuntimeSetting, payload}; 461 } 462 CreateCaptureOutputUsedSetting(bool capture_output_used)463 static RuntimeSetting CreateCaptureOutputUsedSetting( 464 bool capture_output_used) { 465 return {Type::kCaptureOutputUsed, capture_output_used}; 466 } 467 type()468 Type type() const { return type_; } 469 // Getters do not return a value but instead modify the argument to protect 470 // from implicit casting. GetFloat(float * value)471 void GetFloat(float* value) const { 472 RTC_DCHECK(value); 473 *value = value_.float_value; 474 } GetInt(int * value)475 void GetInt(int* value) const { 476 RTC_DCHECK(value); 477 *value = value_.int_value; 478 } GetBool(bool * value)479 void GetBool(bool* value) const { 480 RTC_DCHECK(value); 481 *value = value_.bool_value; 482 } GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo * value)483 void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const { 484 RTC_DCHECK(value); 485 *value = value_.playout_audio_device_info; 486 } 487 488 private: RuntimeSetting(Type id,float value)489 RuntimeSetting(Type id, float value) : type_(id), value_(value) {} RuntimeSetting(Type id,int value)490 RuntimeSetting(Type id, int value) : type_(id), value_(value) {} RuntimeSetting(Type id,PlayoutAudioDeviceInfo value)491 RuntimeSetting(Type id, PlayoutAudioDeviceInfo value) 492 : type_(id), value_(value) {} 493 Type type_; 494 union U { U()495 U() {} U(int value)496 U(int value) : int_value(value) {} U(float value)497 U(float value) : float_value(value) {} U(PlayoutAudioDeviceInfo value)498 U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {} 499 float float_value; 500 int int_value; 501 bool bool_value; 502 PlayoutAudioDeviceInfo playout_audio_device_info; 503 } value_; 504 }; 505 ~AudioProcessing()506 ~AudioProcessing() override {} 507 508 // Initializes internal states, while retaining all user settings. This 509 // should be called before beginning to process a new audio stream. However, 510 // it is not necessary to call before processing the first stream after 511 // creation. 512 // 513 // It is also not necessary to call if the audio parameters (sample 514 // rate and number of channels) have changed. Passing updated parameters 515 // directly to `ProcessStream()` and `ProcessReverseStream()` is permissible. 516 // If the parameters are known at init-time though, they may be provided. 517 // TODO(webrtc:5298): Change to return void. 518 virtual int Initialize() = 0; 519 520 // The int16 interfaces require: 521 // - only `NativeRate`s be used 522 // - that the input, output and reverse rates must match 523 // - that `processing_config.output_stream()` matches 524 // `processing_config.input_stream()`. 525 // 526 // The float interfaces accept arbitrary rates and support differing input and 527 // output layouts, but the output must have either one channel or the same 528 // number of channels as the input. 529 virtual int Initialize(const ProcessingConfig& processing_config) = 0; 530 531 // TODO(peah): This method is a temporary solution used to take control 532 // over the parameters in the audio processing module and is likely to change. 533 virtual void ApplyConfig(const Config& config) = 0; 534 535 // TODO(ajm): Only intended for internal use. Make private and friend the 536 // necessary classes? 537 virtual int proc_sample_rate_hz() const = 0; 538 virtual int proc_split_sample_rate_hz() const = 0; 539 virtual size_t num_input_channels() const = 0; 540 virtual size_t num_proc_channels() const = 0; 541 virtual size_t num_output_channels() const = 0; 542 virtual size_t num_reverse_channels() const = 0; 543 544 // Set to true when the output of AudioProcessing will be muted or in some 545 // other way not used. Ideally, the captured audio would still be processed, 546 // but some components may change behavior based on this information. 547 // Default false. This method takes a lock. To achieve this in a lock-less 548 // manner the PostRuntimeSetting can instead be used. 549 virtual void set_output_will_be_muted(bool muted) = 0; 550 551 // Enqueues a runtime setting. 552 virtual void SetRuntimeSetting(RuntimeSetting setting) = 0; 553 554 // Enqueues a runtime setting. Returns a bool indicating whether the 555 // enqueueing was successfull. 556 virtual bool PostRuntimeSetting(RuntimeSetting setting) = 0; 557 558 // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio as 559 // specified in `input_config` and `output_config`. `src` and `dest` may use 560 // the same memory, if desired. 561 virtual int ProcessStream(const int16_t* const src, 562 const StreamConfig& input_config, 563 const StreamConfig& output_config, 564 int16_t* const dest) = 0; 565 566 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 567 // `src` points to a channel buffer, arranged according to `input_stream`. At 568 // output, the channels will be arranged according to `output_stream` in 569 // `dest`. 570 // 571 // The output must have one channel or as many channels as the input. `src` 572 // and `dest` may use the same memory, if desired. 573 virtual int ProcessStream(const float* const* src, 574 const StreamConfig& input_config, 575 const StreamConfig& output_config, 576 float* const* dest) = 0; 577 578 // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio for 579 // the reverse direction audio stream as specified in `input_config` and 580 // `output_config`. `src` and `dest` may use the same memory, if desired. 581 virtual int ProcessReverseStream(const int16_t* const src, 582 const StreamConfig& input_config, 583 const StreamConfig& output_config, 584 int16_t* const dest) = 0; 585 586 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 587 // `data` points to a channel buffer, arranged according to `reverse_config`. 588 virtual int ProcessReverseStream(const float* const* src, 589 const StreamConfig& input_config, 590 const StreamConfig& output_config, 591 float* const* dest) = 0; 592 593 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 594 // of `data` points to a channel buffer, arranged according to 595 // `reverse_config`. 596 virtual int AnalyzeReverseStream(const float* const* data, 597 const StreamConfig& reverse_config) = 0; 598 599 // Returns the most recently produced ~10 ms of the linear AEC output at a 600 // rate of 16 kHz. If there is more than one capture channel, a mono 601 // representation of the input is returned. Returns true/false to indicate 602 // whether an output returned. 603 virtual bool GetLinearAecOutput( 604 rtc::ArrayView<std::array<float, 160>> linear_output) const = 0; 605 606 // This must be called prior to ProcessStream() if and only if adaptive analog 607 // gain control is enabled, to pass the current analog level from the audio 608 // HAL. Must be within the range [0, 255]. 609 virtual void set_stream_analog_level(int level) = 0; 610 611 // When an analog mode is set, this should be called after 612 // `set_stream_analog_level()` and `ProcessStream()` to obtain the recommended 613 // new analog level for the audio HAL. It is the user's responsibility to 614 // apply this level. 615 virtual int recommended_stream_analog_level() const = 0; 616 617 // This must be called if and only if echo processing is enabled. 618 // 619 // Sets the `delay` in ms between ProcessReverseStream() receiving a far-end 620 // frame and ProcessStream() receiving a near-end frame containing the 621 // corresponding echo. On the client-side this can be expressed as 622 // delay = (t_render - t_analyze) + (t_process - t_capture) 623 // where, 624 // - t_analyze is the time a frame is passed to ProcessReverseStream() and 625 // t_render is the time the first sample of the same frame is rendered by 626 // the audio hardware. 627 // - t_capture is the time the first sample of a frame is captured by the 628 // audio hardware and t_process is the time the same frame is passed to 629 // ProcessStream(). 630 virtual int set_stream_delay_ms(int delay) = 0; 631 virtual int stream_delay_ms() const = 0; 632 633 // Call to signal that a key press occurred (true) or did not occur (false) 634 // with this chunk of audio. 635 virtual void set_stream_key_pressed(bool key_pressed) = 0; 636 637 // Creates and attaches an webrtc::AecDump for recording debugging 638 // information. 639 // The `worker_queue` may not be null and must outlive the created 640 // AecDump instance. |max_log_size_bytes == -1| means the log size 641 // will be unlimited. `handle` may not be null. The AecDump takes 642 // responsibility for `handle` and closes it in the destructor. A 643 // return value of true indicates that the file has been 644 // sucessfully opened, while a value of false indicates that 645 // opening the file failed. 646 virtual bool CreateAndAttachAecDump(absl::string_view file_name, 647 int64_t max_log_size_bytes, 648 rtc::TaskQueue* worker_queue) = 0; 649 virtual bool CreateAndAttachAecDump(FILE* handle, 650 int64_t max_log_size_bytes, 651 rtc::TaskQueue* worker_queue) = 0; 652 653 // TODO(webrtc:5298) Deprecated variant. 654 // Attaches provided webrtc::AecDump for recording debugging 655 // information. Log file and maximum file size logic is supposed to 656 // be handled by implementing instance of AecDump. Calling this 657 // method when another AecDump is attached resets the active AecDump 658 // with a new one. This causes the d-tor of the earlier AecDump to 659 // be called. The d-tor call may block until all pending logging 660 // tasks are completed. 661 virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0; 662 663 // If no AecDump is attached, this has no effect. If an AecDump is 664 // attached, it's destructor is called. The d-tor may block until 665 // all pending logging tasks are completed. 666 virtual void DetachAecDump() = 0; 667 668 // Get audio processing statistics. 669 virtual AudioProcessingStats GetStatistics() = 0; 670 // TODO(webrtc:5298) Deprecated variant. The `has_remote_tracks` argument 671 // should be set if there are active remote tracks (this would usually be true 672 // during a call). If there are no remote tracks some of the stats will not be 673 // set by AudioProcessing, because they only make sense if there is at least 674 // one remote track. 675 virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0; 676 677 // Returns the last applied configuration. 678 virtual AudioProcessing::Config GetConfig() const = 0; 679 680 enum Error { 681 // Fatal errors. 682 kNoError = 0, 683 kUnspecifiedError = -1, 684 kCreationFailedError = -2, 685 kUnsupportedComponentError = -3, 686 kUnsupportedFunctionError = -4, 687 kNullPointerError = -5, 688 kBadParameterError = -6, 689 kBadSampleRateError = -7, 690 kBadDataLengthError = -8, 691 kBadNumberChannelsError = -9, 692 kFileError = -10, 693 kStreamParameterNotSetError = -11, 694 kNotEnabledError = -12, 695 696 // Warnings are non-fatal. 697 // This results when a set_stream_ parameter is out of range. Processing 698 // will continue, but the parameter may have been truncated. 699 kBadStreamParameterWarning = -13 700 }; 701 702 // Native rates supported by the integer interfaces. 703 enum NativeRate { 704 kSampleRate8kHz = 8000, 705 kSampleRate16kHz = 16000, 706 kSampleRate32kHz = 32000, 707 kSampleRate48kHz = 48000 708 }; 709 710 // TODO(kwiberg): We currently need to support a compiler (Visual C++) that 711 // complains if we don't explicitly state the size of the array here. Remove 712 // the size when that's no longer the case. 713 static constexpr int kNativeSampleRatesHz[4] = { 714 kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz}; 715 static constexpr size_t kNumNativeSampleRates = 716 arraysize(kNativeSampleRatesHz); 717 static constexpr int kMaxNativeSampleRateHz = 718 kNativeSampleRatesHz[kNumNativeSampleRates - 1]; 719 720 // APM processes audio in chunks of about 10 ms. See GetFrameSize() for 721 // details. 722 static constexpr int kChunkSizeMs = 10; 723 724 // Returns floor(sample_rate_hz/100): the number of samples per channel used 725 // as input and output to the audio processing module in calls to 726 // ProcessStream, ProcessReverseStream, AnalyzeReverseStream, and 727 // GetLinearAecOutput. 728 // 729 // This is exactly 10 ms for sample rates divisible by 100. For example: 730 // - 48000 Hz (480 samples per channel), 731 // - 44100 Hz (441 samples per channel), 732 // - 16000 Hz (160 samples per channel). 733 // 734 // Sample rates not divisible by 100 are received/produced in frames of 735 // approximately 10 ms. For example: 736 // - 22050 Hz (220 samples per channel, or ~9.98 ms per frame), 737 // - 11025 Hz (110 samples per channel, or ~9.98 ms per frame). 738 // These nondivisible sample rates yield lower audio quality compared to 739 // multiples of 100. Internal resampling to 10 ms frames causes a simulated 740 // clock drift effect which impacts the performance of (for example) echo 741 // cancellation. GetFrameSize(int sample_rate_hz)742 static int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; } 743 }; 744 745 class RTC_EXPORT AudioProcessingBuilder { 746 public: 747 AudioProcessingBuilder(); 748 AudioProcessingBuilder(const AudioProcessingBuilder&) = delete; 749 AudioProcessingBuilder& operator=(const AudioProcessingBuilder&) = delete; 750 ~AudioProcessingBuilder(); 751 752 // Sets the APM configuration. SetConfig(const AudioProcessing::Config & config)753 AudioProcessingBuilder& SetConfig(const AudioProcessing::Config& config) { 754 config_ = config; 755 return *this; 756 } 757 758 // Sets the echo controller factory to inject when APM is created. SetEchoControlFactory(std::unique_ptr<EchoControlFactory> echo_control_factory)759 AudioProcessingBuilder& SetEchoControlFactory( 760 std::unique_ptr<EchoControlFactory> echo_control_factory) { 761 echo_control_factory_ = std::move(echo_control_factory); 762 return *this; 763 } 764 765 // Sets the capture post-processing sub-module to inject when APM is created. SetCapturePostProcessing(std::unique_ptr<CustomProcessing> capture_post_processing)766 AudioProcessingBuilder& SetCapturePostProcessing( 767 std::unique_ptr<CustomProcessing> capture_post_processing) { 768 capture_post_processing_ = std::move(capture_post_processing); 769 return *this; 770 } 771 772 // Sets the render pre-processing sub-module to inject when APM is created. SetRenderPreProcessing(std::unique_ptr<CustomProcessing> render_pre_processing)773 AudioProcessingBuilder& SetRenderPreProcessing( 774 std::unique_ptr<CustomProcessing> render_pre_processing) { 775 render_pre_processing_ = std::move(render_pre_processing); 776 return *this; 777 } 778 779 // Sets the echo detector to inject when APM is created. SetEchoDetector(rtc::scoped_refptr<EchoDetector> echo_detector)780 AudioProcessingBuilder& SetEchoDetector( 781 rtc::scoped_refptr<EchoDetector> echo_detector) { 782 echo_detector_ = std::move(echo_detector); 783 return *this; 784 } 785 786 // Sets the capture analyzer sub-module to inject when APM is created. SetCaptureAnalyzer(std::unique_ptr<CustomAudioAnalyzer> capture_analyzer)787 AudioProcessingBuilder& SetCaptureAnalyzer( 788 std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) { 789 capture_analyzer_ = std::move(capture_analyzer); 790 return *this; 791 } 792 793 // Creates an APM instance with the specified config or the default one if 794 // unspecified. Injects the specified components transferring the ownership 795 // to the newly created APM instance - i.e., except for the config, the 796 // builder is reset to its initial state. 797 rtc::scoped_refptr<AudioProcessing> Create(); 798 799 private: 800 AudioProcessing::Config config_; 801 std::unique_ptr<EchoControlFactory> echo_control_factory_; 802 std::unique_ptr<CustomProcessing> capture_post_processing_; 803 std::unique_ptr<CustomProcessing> render_pre_processing_; 804 rtc::scoped_refptr<EchoDetector> echo_detector_; 805 std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_; 806 }; 807 808 class StreamConfig { 809 public: 810 // sample_rate_hz: The sampling rate of the stream. 811 // num_channels: The number of audio channels in the stream. 812 StreamConfig(int sample_rate_hz = 0, size_t num_channels = 0) sample_rate_hz_(sample_rate_hz)813 : sample_rate_hz_(sample_rate_hz), 814 num_channels_(num_channels), 815 num_frames_(calculate_frames(sample_rate_hz)) {} 816 set_sample_rate_hz(int value)817 void set_sample_rate_hz(int value) { 818 sample_rate_hz_ = value; 819 num_frames_ = calculate_frames(value); 820 } set_num_channels(size_t value)821 void set_num_channels(size_t value) { num_channels_ = value; } 822 sample_rate_hz()823 int sample_rate_hz() const { return sample_rate_hz_; } 824 825 // The number of channels in the stream. num_channels()826 size_t num_channels() const { return num_channels_; } 827 num_frames()828 size_t num_frames() const { return num_frames_; } num_samples()829 size_t num_samples() const { return num_channels_ * num_frames_; } 830 831 bool operator==(const StreamConfig& other) const { 832 return sample_rate_hz_ == other.sample_rate_hz_ && 833 num_channels_ == other.num_channels_; 834 } 835 836 bool operator!=(const StreamConfig& other) const { return !(*this == other); } 837 838 private: calculate_frames(int sample_rate_hz)839 static size_t calculate_frames(int sample_rate_hz) { 840 return static_cast<size_t>(AudioProcessing::GetFrameSize(sample_rate_hz)); 841 } 842 843 int sample_rate_hz_; 844 size_t num_channels_; 845 size_t num_frames_; 846 }; 847 848 class ProcessingConfig { 849 public: 850 enum StreamName { 851 kInputStream, 852 kOutputStream, 853 kReverseInputStream, 854 kReverseOutputStream, 855 kNumStreamNames, 856 }; 857 input_stream()858 const StreamConfig& input_stream() const { 859 return streams[StreamName::kInputStream]; 860 } output_stream()861 const StreamConfig& output_stream() const { 862 return streams[StreamName::kOutputStream]; 863 } reverse_input_stream()864 const StreamConfig& reverse_input_stream() const { 865 return streams[StreamName::kReverseInputStream]; 866 } reverse_output_stream()867 const StreamConfig& reverse_output_stream() const { 868 return streams[StreamName::kReverseOutputStream]; 869 } 870 input_stream()871 StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } output_stream()872 StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } reverse_input_stream()873 StreamConfig& reverse_input_stream() { 874 return streams[StreamName::kReverseInputStream]; 875 } reverse_output_stream()876 StreamConfig& reverse_output_stream() { 877 return streams[StreamName::kReverseOutputStream]; 878 } 879 880 bool operator==(const ProcessingConfig& other) const { 881 for (int i = 0; i < StreamName::kNumStreamNames; ++i) { 882 if (this->streams[i] != other.streams[i]) { 883 return false; 884 } 885 } 886 return true; 887 } 888 889 bool operator!=(const ProcessingConfig& other) const { 890 return !(*this == other); 891 } 892 893 StreamConfig streams[StreamName::kNumStreamNames]; 894 }; 895 896 // Experimental interface for a custom analysis submodule. 897 class CustomAudioAnalyzer { 898 public: 899 // (Re-) Initializes the submodule. 900 virtual void Initialize(int sample_rate_hz, int num_channels) = 0; 901 // Analyzes the given capture or render signal. 902 virtual void Analyze(const AudioBuffer* audio) = 0; 903 // Returns a string representation of the module state. 904 virtual std::string ToString() const = 0; 905 ~CustomAudioAnalyzer()906 virtual ~CustomAudioAnalyzer() {} 907 }; 908 909 // Interface for a custom processing submodule. 910 class CustomProcessing { 911 public: 912 // (Re-)Initializes the submodule. 913 virtual void Initialize(int sample_rate_hz, int num_channels) = 0; 914 // Processes the given capture or render signal. 915 virtual void Process(AudioBuffer* audio) = 0; 916 // Returns a string representation of the module state. 917 virtual std::string ToString() const = 0; 918 // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual 919 // after updating dependencies. 920 virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting); 921 ~CustomProcessing()922 virtual ~CustomProcessing() {} 923 }; 924 925 // Interface for an echo detector submodule. 926 class EchoDetector : public rtc::RefCountInterface { 927 public: 928 // (Re-)Initializes the submodule. 929 virtual void Initialize(int capture_sample_rate_hz, 930 int num_capture_channels, 931 int render_sample_rate_hz, 932 int num_render_channels) = 0; 933 934 // Analysis (not changing) of the first channel of the render signal. 935 virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0; 936 937 // Analysis (not changing) of the capture signal. 938 virtual void AnalyzeCaptureAudio( 939 rtc::ArrayView<const float> capture_audio) = 0; 940 941 struct Metrics { 942 absl::optional<double> echo_likelihood; 943 absl::optional<double> echo_likelihood_recent_max; 944 }; 945 946 // Collect current metrics from the echo detector. 947 virtual Metrics GetMetrics() const = 0; 948 }; 949 950 } // namespace webrtc 951 952 #endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 953