• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <algorithm>
26 
27 #include "aco_ir.h"
28 #include <stack>
29 #include <functional>
30 
31 #include <time.h>
32 
33 namespace aco {
34 namespace {
35 
36 struct NOP_ctx_gfx6 {
joinaco::__anon8f9862bb0111::NOP_ctx_gfx637    void join(const NOP_ctx_gfx6 &other) {
38       set_vskip_mode_then_vector = MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector);
39       valu_wr_vcc_then_vccz = MAX2(valu_wr_vcc_then_vccz, other.valu_wr_vcc_then_vccz);
40       valu_wr_exec_then_execz = MAX2(valu_wr_exec_then_execz, other.valu_wr_exec_then_execz);
41       valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas);
42       salu_wr_m0_then_gds_msg_ttrace = MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace);
43       valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp);
44       salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds);
45       salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel);
46       setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg);
47       vmem_store_then_wr_data |= other.vmem_store_then_wr_data;
48       smem_clause |= other.smem_clause;
49       smem_write |= other.smem_write;
50       for (unsigned i = 0; i < BITSET_WORDS(128); i++) {
51          smem_clause_read_write[i] |= other.smem_clause_read_write[i];
52          smem_clause_write[i] |= other.smem_clause_write[i];
53       }
54    }
55 
operator ==aco::__anon8f9862bb0111::NOP_ctx_gfx656    bool operator==(const NOP_ctx_gfx6 &other)
57    {
58       return
59          set_vskip_mode_then_vector == other.set_vskip_mode_then_vector &&
60          valu_wr_vcc_then_vccz == other.valu_wr_vcc_then_vccz &&
61          valu_wr_exec_then_execz == other.valu_wr_exec_then_execz &&
62          valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas &&
63          vmem_store_then_wr_data == other.vmem_store_then_wr_data &&
64          salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace &&
65          valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp &&
66          salu_wr_m0_then_lds == other.salu_wr_m0_then_lds &&
67          salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel &&
68          setreg_then_getsetreg == other.setreg_then_getsetreg &&
69          smem_clause == other.smem_clause &&
70          smem_write == other.smem_write &&
71          BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) &&
72          BITSET_EQUAL(smem_clause_write, other.smem_clause_write);
73    }
74 
add_wait_statesaco::__anon8f9862bb0111::NOP_ctx_gfx675    void add_wait_states(unsigned amount)
76    {
77       if ((set_vskip_mode_then_vector -= amount) < 0)
78          set_vskip_mode_then_vector = 0;
79 
80       if ((valu_wr_vcc_then_vccz -= amount) < 0)
81          valu_wr_vcc_then_vccz = 0;
82 
83       if ((valu_wr_exec_then_execz -= amount) < 0)
84          valu_wr_exec_then_execz = 0;
85 
86       if ((valu_wr_vcc_then_div_fmas -= amount) < 0)
87          valu_wr_vcc_then_div_fmas = 0;
88 
89       if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0)
90          salu_wr_m0_then_gds_msg_ttrace = 0;
91 
92       if ((valu_wr_exec_then_dpp -= amount) < 0)
93          valu_wr_exec_then_dpp = 0;
94 
95       if ((salu_wr_m0_then_lds -= amount) < 0)
96          salu_wr_m0_then_lds = 0;
97 
98       if ((salu_wr_m0_then_moverel -= amount) < 0)
99          salu_wr_m0_then_moverel = 0;
100 
101       if ((setreg_then_getsetreg -= amount) < 0)
102          setreg_then_getsetreg = 0;
103 
104       vmem_store_then_wr_data.reset();
105    }
106 
107    /* setting MODE.vskip and then any vector op requires 2 wait states */
108    int8_t set_vskip_mode_then_vector = 0;
109 
110    /* VALU writing VCC/EXEC and then a VALU reading VCCZ/EXECZ requires 5 wait states */
111    int8_t valu_wr_vcc_then_vccz = 0;
112    int8_t valu_wr_exec_then_execz = 0;
113 
114    /* VALU writing VCC followed by v_div_fmas require 4 wait states */
115    int8_t valu_wr_vcc_then_div_fmas = 0;
116 
117    /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */
118    int8_t salu_wr_m0_then_gds_msg_ttrace = 0;
119 
120    /* VALU writing EXEC followed by DPP requires 5 wait states */
121    int8_t valu_wr_exec_then_dpp = 0;
122 
123    /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */
124    int8_t salu_wr_m0_then_lds = 0;
125 
126    /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */
127    int8_t salu_wr_m0_then_moverel = 0;
128 
129    /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states
130     * currently we don't look at the actual register */
131    int8_t setreg_then_getsetreg = 0;
132 
133    /* some memory instructions writing >64bit followed by a instructions
134     * writing the VGPRs holding the writedata requires 1 wait state */
135    std::bitset<256> vmem_store_then_wr_data;
136 
137    /* we break up SMEM clauses that contain stores or overwrite an
138     * operand/definition of another instruction in the clause */
139    bool smem_clause = false;
140    bool smem_write = false;
141    BITSET_DECLARE(smem_clause_read_write, 128) = {0};
142    BITSET_DECLARE(smem_clause_write, 128) = {0};
143 };
144 
145 struct NOP_ctx_gfx10 {
146    bool has_VOPC = false;
147    bool has_nonVALU_exec_read = false;
148    bool has_VMEM = false;
149    bool has_branch_after_VMEM = false;
150    bool has_DS = false;
151    bool has_branch_after_DS = false;
152    std::bitset<128> sgprs_read_by_VMEM;
153    std::bitset<128> sgprs_read_by_SMEM;
154 
joinaco::__anon8f9862bb0111::NOP_ctx_gfx10155    void join(const NOP_ctx_gfx10 &other) {
156       has_VOPC |= other.has_VOPC;
157       has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
158       has_VMEM |= other.has_VMEM;
159       has_branch_after_VMEM |= other.has_branch_after_VMEM;
160       has_DS |= other.has_DS;
161       has_branch_after_DS |= other.has_branch_after_DS;
162       sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
163       sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
164    }
165 
operator ==aco::__anon8f9862bb0111::NOP_ctx_gfx10166    bool operator==(const NOP_ctx_gfx10 &other)
167    {
168       return
169          has_VOPC == other.has_VOPC &&
170          has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
171          has_VMEM == other.has_VMEM &&
172          has_branch_after_VMEM == other.has_branch_after_VMEM &&
173          has_DS == other.has_DS &&
174          has_branch_after_DS == other.has_branch_after_DS &&
175          sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
176          sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
177    }
178 };
179 
get_wait_states(aco_ptr<Instruction> & instr)180 int get_wait_states(aco_ptr<Instruction>& instr)
181 {
182    if (instr->opcode == aco_opcode::s_nop)
183       return static_cast<SOPP_instruction*>(instr.get())->imm + 1;
184    else if (instr->opcode == aco_opcode::p_constaddr)
185       return 3; /* lowered to 3 instructions in the assembler */
186    else
187       return 1;
188 }
189 
regs_intersect(PhysReg a_reg,unsigned a_size,PhysReg b_reg,unsigned b_size)190 bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
191 {
192    return a_reg > b_reg ?
193           (a_reg - b_reg < b_size) :
194           (b_reg - a_reg < a_size);
195 }
196 
197 template <bool Valu, bool Vintrp, bool Salu>
handle_raw_hazard_internal(Program * program,Block * block,int nops_needed,PhysReg reg,uint32_t mask)198 int handle_raw_hazard_internal(Program *program, Block *block,
199                                int nops_needed, PhysReg reg, uint32_t mask)
200 {
201    unsigned mask_size = util_last_bit(mask);
202    for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) {
203       aco_ptr<Instruction>& pred = block->instructions[pred_idx];
204 
205       uint32_t writemask = 0;
206       for (Definition& def : pred->definitions) {
207          if (regs_intersect(reg, mask_size, def.physReg(), def.size())) {
208             unsigned start = def.physReg() > reg ? def.physReg() - reg : 0;
209             unsigned end = MIN2(mask_size, start + def.size());
210             writemask |= u_bit_consecutive(start, end - start);
211          }
212       }
213 
214       bool is_hazard = writemask != 0 &&
215                        ((pred->isVALU() && Valu) ||
216                         (pred->format == Format::VINTRP && Vintrp) ||
217                         (pred->isSALU() && Salu));
218       if (is_hazard)
219          return nops_needed;
220 
221       mask &= ~writemask;
222       nops_needed -= get_wait_states(pred);
223 
224       if (nops_needed <= 0 || mask == 0)
225          return 0;
226    }
227 
228    int res = 0;
229 
230    /* Loops require branch instructions, which count towards the wait
231     * states. So even with loops this should finish unless nops_needed is some
232     * huge value. */
233    for (unsigned lin_pred : block->linear_preds) {
234       res = std::max(res, handle_raw_hazard_internal<Valu, Vintrp, Salu>(
235          program, &program->blocks[lin_pred], nops_needed, reg, mask));
236    }
237    return res;
238 }
239 
240 template <bool Valu, bool Vintrp, bool Salu>
handle_raw_hazard(Program * program,Block * cur_block,int * NOPs,int min_states,Operand op)241 void handle_raw_hazard(Program *program, Block *cur_block, int *NOPs, int min_states, Operand op)
242 {
243    if (*NOPs >= min_states)
244       return;
245    int res = handle_raw_hazard_internal<Valu, Vintrp, Salu>(program, cur_block, min_states, op.physReg(), u_bit_consecutive(0, op.size()));
246    *NOPs = MAX2(*NOPs, res);
247 }
248 
249 static auto handle_valu_then_read_hazard = handle_raw_hazard<true, true, false>;
250 static auto handle_vintrp_then_read_hazard = handle_raw_hazard<false, true, false>;
251 static auto handle_valu_salu_then_read_hazard = handle_raw_hazard<true, true, true>;
252 
set_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)253 void set_bitset_range(BITSET_WORD *words, unsigned start, unsigned size) {
254    unsigned end = start + size - 1;
255    unsigned start_mod = start % BITSET_WORDBITS;
256    if (start_mod + size <= BITSET_WORDBITS) {
257       BITSET_SET_RANGE(words, start, end);
258    } else {
259       unsigned first_size = BITSET_WORDBITS - start_mod;
260       set_bitset_range(words, start, BITSET_WORDBITS - start_mod);
261       set_bitset_range(words, start + first_size, size - first_size);
262    }
263 }
264 
test_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)265 bool test_bitset_range(BITSET_WORD *words, unsigned start, unsigned size) {
266    unsigned end = start + size - 1;
267    unsigned start_mod = start % BITSET_WORDBITS;
268    if (start_mod + size <= BITSET_WORDBITS) {
269       return BITSET_TEST_RANGE(words, start, end);
270    } else {
271       unsigned first_size = BITSET_WORDBITS - start_mod;
272       return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) ||
273              test_bitset_range(words, start + first_size, size - first_size);
274    }
275 }
276 
277 /* A SMEM clause is any group of consecutive SMEM instructions. The
278  * instructions in this group may return out of order and/or may be replayed.
279  *
280  * To fix this potential hazard correctly, we have to make sure that when a
281  * clause has more than one instruction, no instruction in the clause writes
282  * to a register that is read by another instruction in the clause (including
283  * itself). In this case, we have to break the SMEM clause by inserting non
284  * SMEM instructions.
285  *
286  * SMEM clauses are only present on GFX8+, and only matter when XNACK is set.
287  */
handle_smem_clause_hazards(Program * program,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,int * NOPs)288 void handle_smem_clause_hazards(Program *program, NOP_ctx_gfx6 &ctx,
289                                 aco_ptr<Instruction>& instr, int *NOPs)
290 {
291    /* break off from previous SMEM clause if needed */
292    if (!*NOPs & (ctx.smem_clause || ctx.smem_write)) {
293       /* Don't allow clauses with store instructions since the clause's
294        * instructions may use the same address. */
295       if (ctx.smem_write || instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
296          *NOPs = 1;
297       } else if (program->xnack_enabled) {
298          for (Operand op : instr->operands) {
299             if (!op.isConstant() && test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) {
300                *NOPs = 1;
301                break;
302             }
303          }
304 
305          Definition def = instr->definitions[0];
306          if (!*NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()))
307             *NOPs = 1;
308       }
309    }
310 }
311 
312 /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */
handle_instruction_gfx6(Program * program,Block * cur_block,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)313 void handle_instruction_gfx6(Program *program, Block *cur_block, NOP_ctx_gfx6 &ctx,
314                              aco_ptr<Instruction>& instr, std::vector<aco_ptr<Instruction>>& new_instructions)
315 {
316    /* check hazards */
317    int NOPs = 0;
318 
319    if (instr->format == Format::SMEM) {
320       if (program->chip_class == GFX6) {
321          /* A read of an SGPR by SMRD instruction requires 4 wait states
322           * when the SGPR was written by a VALU instruction. According to LLVM,
323           * there is also an undocumented hardware behavior when the buffer
324           * descriptor is written by a SALU instruction */
325          for (unsigned i = 0; i < instr->operands.size(); i++) {
326             Operand op = instr->operands[i];
327             if (op.isConstant())
328                continue;
329 
330             bool is_buffer_desc = i == 0 && op.size() > 2;
331             if (is_buffer_desc)
332                handle_valu_salu_then_read_hazard(program, cur_block, &NOPs, 4, op);
333             else
334                handle_valu_then_read_hazard(program, cur_block, &NOPs, 4, op);
335          }
336       }
337 
338       handle_smem_clause_hazards(program, ctx, instr, &NOPs);
339    } else if (instr->isSALU()) {
340       if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32 ||
341           instr->opcode == aco_opcode::s_getreg_b32) {
342          NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
343       }
344 
345       if (program->chip_class == GFX9) {
346          if (instr->opcode == aco_opcode::s_movrels_b32 || instr->opcode == aco_opcode::s_movrels_b64 ||
347              instr->opcode == aco_opcode::s_movreld_b32 || instr->opcode == aco_opcode::s_movreld_b64) {
348             NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
349          }
350       }
351 
352       if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata)
353          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
354    } else if (instr->format == Format::DS && static_cast<DS_instruction *>(instr.get())->gds) {
355       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
356    } else if (instr->isVALU() || instr->format == Format::VINTRP) {
357       for (Operand op : instr->operands) {
358          if (op.physReg() == vccz)
359             NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_vccz);
360          if (op.physReg() == execz)
361             NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_execz);
362       }
363 
364       if (instr->isDPP()) {
365          NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
366          handle_valu_then_read_hazard(program, cur_block, &NOPs, 2, instr->operands[0]);
367       }
368 
369       for (Definition def : instr->definitions) {
370          if (def.regClass().type() != RegType::sgpr) {
371             for (unsigned i = 0; i < def.size(); i++)
372                NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]);
373          }
374       }
375 
376       if ((instr->opcode == aco_opcode::v_readlane_b32 ||
377            instr->opcode == aco_opcode::v_readlane_b32_e64 ||
378            instr->opcode == aco_opcode::v_writelane_b32 ||
379            instr->opcode == aco_opcode::v_writelane_b32_e64) &&
380           !instr->operands[1].isConstant()) {
381          handle_valu_then_read_hazard(program, cur_block, &NOPs, 4, instr->operands[1]);
382       }
383 
384       /* It's required to insert 1 wait state if the dst VGPR of any v_interp_*
385        * is followed by a read with v_readfirstlane or v_readlane to fix GPU
386        * hangs on GFX6. Note that v_writelane_* is apparently not affected.
387        * This hazard isn't documented anywhere but AMD confirmed that hazard.
388        */
389       if (program->chip_class == GFX6 &&
390           (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */
391            instr->opcode == aco_opcode::v_readfirstlane_b32)) {
392          handle_vintrp_then_read_hazard(program, cur_block, &NOPs, 1, instr->operands[0]);
393       }
394 
395       if (instr->opcode == aco_opcode::v_div_fmas_f32 || instr->opcode == aco_opcode::v_div_fmas_f64)
396          NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
397    } else if (instr->isVMEM() || instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) {
398       /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
399       for (Operand op : instr->operands) {
400          if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr)
401             handle_valu_then_read_hazard(program, cur_block, &NOPs, 5, op);
402       }
403    }
404 
405    if (!instr->isSALU() && instr->format != Format::SMEM)
406       NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
407 
408    if (program->chip_class == GFX9) {
409       bool lds_scratch_global = (instr->format == Format::SCRATCH || instr->format == Format::GLOBAL) &&
410                                 static_cast<FLAT_instruction *>(instr.get())->lds;
411       if (instr->format == Format::VINTRP ||
412           instr->opcode == aco_opcode::ds_read_addtid_b32 ||
413           instr->opcode == aco_opcode::ds_write_addtid_b32 ||
414           instr->opcode == aco_opcode::buffer_store_lds_dword ||
415           lds_scratch_global) {
416          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
417       }
418    }
419 
420    ctx.add_wait_states(NOPs + get_wait_states(instr));
421 
422    // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
423    if (NOPs) {
424       /* create NOP */
425       aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
426       nop->imm = NOPs - 1;
427       nop->block = -1;
428       new_instructions.emplace_back(std::move(nop));
429    }
430 
431    /* update information to check for later hazards */
432    if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) {
433       ctx.smem_clause = false;
434       ctx.smem_write = false;
435 
436       if (program->xnack_enabled) {
437          BITSET_ZERO(ctx.smem_clause_read_write);
438          BITSET_ZERO(ctx.smem_clause_write);
439       }
440    }
441 
442    if (instr->format == Format::SMEM) {
443       if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
444          ctx.smem_write = true;
445       } else {
446          ctx.smem_clause = true;
447 
448          if (program->xnack_enabled) {
449             for (Operand op : instr->operands) {
450                if (!op.isConstant()) {
451                   set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size());
452                }
453             }
454 
455             Definition def = instr->definitions[0];
456             set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size());
457             set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size());
458          }
459       }
460    } else if (instr->isVALU()) {
461       for (Definition def : instr->definitions) {
462          if (def.regClass().type() == RegType::sgpr) {
463             if (def.physReg() == vcc || def.physReg() == vcc_hi) {
464                ctx.valu_wr_vcc_then_vccz = 5;
465                ctx.valu_wr_vcc_then_div_fmas = 4;
466             }
467             if (def.physReg() == exec || def.physReg() == exec_hi) {
468                ctx.valu_wr_exec_then_execz = 5;
469                ctx.valu_wr_exec_then_dpp = 5;
470             }
471          }
472       }
473    } else if (instr->isSALU() && !instr->definitions.empty()) {
474       if (!instr->definitions.empty()) {
475          /* all other definitions should be SCC */
476          Definition def = instr->definitions[0];
477          if (def.physReg() == m0) {
478             ctx.salu_wr_m0_then_gds_msg_ttrace = 1;
479             ctx.salu_wr_m0_then_lds = 1;
480             ctx.salu_wr_m0_then_moverel = 1;
481          }
482       } else if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32) {
483          SOPK_instruction *sopk = static_cast<SOPK_instruction *>(instr.get());
484          unsigned offset = (sopk->imm >> 6) & 0x1f;
485          unsigned size = ((sopk->imm >> 11) & 0x1f) + 1;
486          unsigned reg = sopk->imm & 0x3f;
487          ctx.setreg_then_getsetreg = 2;
488 
489          if (reg == 1 && offset >= 28 && size > (28 - offset))
490             ctx.set_vskip_mode_then_vector = 2;
491       }
492    } else if (instr->isVMEM() || instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) {
493       /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */
494       bool consider_buf = (instr->format == Format::MUBUF || instr->format == Format::MTBUF) &&
495                           instr->operands.size() == 4 &&
496                           instr->operands[3].size() > 2 &&
497                           instr->operands[2].physReg() >= 128;
498       /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit store) */
499       bool consider_mimg = instr->format == Format::MIMG &&
500                            instr->operands[1].regClass().type() == RegType::vgpr &&
501                            instr->operands[1].size() > 2 &&
502                            instr->operands[0].size() == 4;
503       /* FLAT/GLOBAL/SCRATCH store with >64-bit data */
504       bool consider_flat = (instr->isFlatOrGlobal() || instr->format == Format::SCRATCH) &&
505                             instr->operands.size() == 3 &&
506                             instr->operands[2].size() > 2;
507       if (consider_buf || consider_mimg || consider_flat) {
508          PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg();
509          unsigned size = instr->operands[consider_flat ? 2 : 3].size();
510          for (unsigned i = 0; i < size; i++)
511             ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1;
512       }
513    }
514 }
515 
516 template <std::size_t N>
check_written_regs(const aco_ptr<Instruction> & instr,const std::bitset<N> & check_regs)517 bool check_written_regs(const aco_ptr<Instruction> &instr, const std::bitset<N> &check_regs)
518 {
519    return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition &def) -> bool {
520       bool writes_any = false;
521       for (unsigned i = 0; i < def.size(); i++) {
522          unsigned def_reg = def.physReg() + i;
523          writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
524       }
525       return writes_any;
526    });
527 }
528 
529 template <std::size_t N>
mark_read_regs(const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)530 void mark_read_regs(const aco_ptr<Instruction> &instr, std::bitset<N> &reg_reads)
531 {
532    for (const Operand &op : instr->operands) {
533       for (unsigned i = 0; i < op.size(); i++) {
534          unsigned reg = op.physReg() + i;
535          if (reg < reg_reads.size())
536             reg_reads.set(reg);
537       }
538    }
539 }
540 
VALU_writes_sgpr(aco_ptr<Instruction> & instr)541 bool VALU_writes_sgpr(aco_ptr<Instruction>& instr)
542 {
543    if ((uint32_t) instr->format & (uint32_t) Format::VOPC)
544       return true;
545    if (instr->isVOP3() && instr->definitions.size() == 2)
546       return true;
547    if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
548        instr->opcode == aco_opcode::v_readlane_b32 ||
549        instr->opcode == aco_opcode::v_readlane_b32_e64)
550       return true;
551    return false;
552 }
553 
instr_writes_exec(const aco_ptr<Instruction> & instr)554 bool instr_writes_exec(const aco_ptr<Instruction>& instr)
555 {
556    return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
557       return def.physReg() == exec_lo || def.physReg() == exec_hi;
558    });
559 }
560 
instr_writes_sgpr(const aco_ptr<Instruction> & instr)561 bool instr_writes_sgpr(const aco_ptr<Instruction>& instr)
562 {
563    return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
564       return def.getTemp().type() == RegType::sgpr;
565    });
566 }
567 
instr_is_branch(const aco_ptr<Instruction> & instr)568 inline bool instr_is_branch(const aco_ptr<Instruction>& instr)
569 {
570    return instr->opcode == aco_opcode::s_branch ||
571           instr->opcode == aco_opcode::s_cbranch_scc0 ||
572           instr->opcode == aco_opcode::s_cbranch_scc1 ||
573           instr->opcode == aco_opcode::s_cbranch_vccz ||
574           instr->opcode == aco_opcode::s_cbranch_vccnz ||
575           instr->opcode == aco_opcode::s_cbranch_execz ||
576           instr->opcode == aco_opcode::s_cbranch_execnz ||
577           instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
578           instr->opcode == aco_opcode::s_cbranch_cdbguser ||
579           instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
580           instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
581           instr->opcode == aco_opcode::s_subvector_loop_begin ||
582           instr->opcode == aco_opcode::s_subvector_loop_end ||
583           instr->opcode == aco_opcode::s_setpc_b64 ||
584           instr->opcode == aco_opcode::s_swappc_b64 ||
585           instr->opcode == aco_opcode::s_getpc_b64 ||
586           instr->opcode == aco_opcode::s_call_b64;
587 }
588 
handle_instruction_gfx10(Program * program,Block * cur_block,NOP_ctx_gfx10 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)589 void handle_instruction_gfx10(Program *program, Block *cur_block, NOP_ctx_gfx10 &ctx,
590                               aco_ptr<Instruction>& instr, std::vector<aco_ptr<Instruction>>& new_instructions)
591 {
592    //TODO: s_dcache_inv needs to be in it's own group on GFX10
593 
594    /* VMEMtoScalarWriteHazard
595     * Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between.
596     */
597    if (instr->isVMEM() || instr->format == Format::FLAT || instr->format == Format::GLOBAL ||
598        instr->format == Format::SCRATCH || instr->format == Format::DS) {
599       /* Remember all SGPRs that are read by the VMEM instruction */
600       mark_read_regs(instr, ctx.sgprs_read_by_VMEM);
601       ctx.sgprs_read_by_VMEM.set(exec);
602       if (program->wave_size == 64)
603          ctx.sgprs_read_by_VMEM.set(exec_hi);
604    } else if (instr->isSALU() || instr->format == Format::SMEM) {
605       if (instr->opcode == aco_opcode::s_waitcnt) {
606          /* Hazard is mitigated by "s_waitcnt vmcnt(0)" */
607          uint16_t imm = static_cast<SOPP_instruction*>(instr.get())->imm;
608          unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
609          if (vmcnt == 0)
610             ctx.sgprs_read_by_VMEM.reset();
611       } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
612          /* Hazard is mitigated by a s_waitcnt_depctr with a magic imm */
613          const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
614          if (sopp->imm == 0xffe3)
615             ctx.sgprs_read_by_VMEM.reset();
616       }
617 
618       /* Check if SALU writes an SGPR that was previously read by the VALU */
619       if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) {
620          ctx.sgprs_read_by_VMEM.reset();
621 
622          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
623          aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
624          depctr->imm = 0xffe3;
625          depctr->block = -1;
626          new_instructions.emplace_back(std::move(depctr));
627       }
628    } else if (instr->isVALU()) {
629       /* Hazard is mitigated by any VALU instruction */
630       ctx.sgprs_read_by_VMEM.reset();
631    }
632 
633    /* VcmpxPermlaneHazard
634     * Handle any permlane following a VOPC instruction, insert v_mov between them.
635     */
636    if (instr->format == Format::VOPC) {
637       ctx.has_VOPC = true;
638    } else if (ctx.has_VOPC &&
639               (instr->opcode == aco_opcode::v_permlane16_b32 ||
640                instr->opcode == aco_opcode::v_permlanex16_b32)) {
641       ctx.has_VOPC = false;
642 
643       /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
644       aco_ptr<VOP1_instruction> v_mov{create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
645       v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
646       v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
647       new_instructions.emplace_back(std::move(v_mov));
648    } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
649       ctx.has_VOPC = false;
650    }
651 
652    /* VcmpxExecWARHazard
653     * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
654     */
655    if (!instr->isVALU() && instr->reads_exec()) {
656       ctx.has_nonVALU_exec_read = true;
657    } else if (instr->isVALU()) {
658       if (instr_writes_exec(instr)) {
659          ctx.has_nonVALU_exec_read = false;
660 
661          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
662          aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
663          depctr->imm = 0xfffe;
664          depctr->block = -1;
665          new_instructions.emplace_back(std::move(depctr));
666       } else if (instr_writes_sgpr(instr)) {
667          /* Any VALU instruction that writes an SGPR mitigates the problem */
668          ctx.has_nonVALU_exec_read = false;
669       }
670    } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
671       /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
672       const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
673       if ((sopp->imm & 0xfffe) == 0xfffe)
674          ctx.has_nonVALU_exec_read = false;
675    }
676 
677    /* SMEMtoVectorWriteHazard
678     * Handle any VALU instruction writing an SGPR after an SMEM reads it.
679     */
680    if (instr->format == Format::SMEM) {
681       /* Remember all SGPRs that are read by the SMEM instruction */
682       mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
683    } else if (VALU_writes_sgpr(instr)) {
684       /* Check if VALU writes an SGPR that was previously read by SMEM */
685       if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
686          ctx.sgprs_read_by_SMEM.reset();
687 
688          /* Insert s_mov to mitigate the problem */
689          aco_ptr<SOP1_instruction> s_mov{create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
690          s_mov->definitions[0] = Definition(sgpr_null, s1);
691          s_mov->operands[0] = Operand(0u);
692          new_instructions.emplace_back(std::move(s_mov));
693       }
694    } else if (instr->isSALU()) {
695       if (instr->format != Format::SOPP) {
696          /* SALU can mitigate the hazard */
697          ctx.sgprs_read_by_SMEM.reset();
698       } else {
699          /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
700          const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
701          if (sopp->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
702             if (sopp->imm == 0 && sopp->definitions[0].physReg() == sgpr_null)
703                ctx.sgprs_read_by_SMEM.reset();
704          } else if (sopp->opcode == aco_opcode::s_waitcnt) {
705             unsigned lgkm = (sopp->imm >> 8) & 0x3f;
706             if (lgkm == 0)
707                ctx.sgprs_read_by_SMEM.reset();
708          }
709       }
710    }
711 
712    /* LdsBranchVmemWARHazard
713     * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
714     */
715    if (instr->isVMEM() || instr->format == Format::GLOBAL || instr->format == Format::SCRATCH) {
716       ctx.has_VMEM = true;
717       ctx.has_branch_after_VMEM = false;
718       /* Mitigation for DS is needed only if there was already a branch after */
719       ctx.has_DS = ctx.has_branch_after_DS;
720    } else if (instr->format == Format::DS) {
721       ctx.has_DS = true;
722       ctx.has_branch_after_DS = false;
723       /* Mitigation for VMEM is needed only if there was already a branch after */
724       ctx.has_VMEM = ctx.has_branch_after_VMEM;
725    } else if (instr_is_branch(instr)) {
726       ctx.has_branch_after_VMEM = ctx.has_VMEM;
727       ctx.has_branch_after_DS = ctx.has_DS;
728    } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
729       /* Only s_waitcnt_vscnt can mitigate the hazard */
730       const SOPK_instruction *sopk = static_cast<const SOPK_instruction *>(instr.get());
731       if (sopk->definitions[0].physReg() == sgpr_null && sopk->imm == 0)
732          ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
733    }
734    if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
735       ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
736 
737       /* Insert s_waitcnt_vscnt to mitigate the problem */
738       aco_ptr<SOPK_instruction> wait{create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
739       wait->definitions[0] = Definition(sgpr_null, s1);
740       wait->imm = 0;
741       new_instructions.emplace_back(std::move(wait));
742    }
743 }
744 
745 template <typename Ctx>
746 using HandleInstr = void (*)(Program *, Block *block, Ctx&, aco_ptr<Instruction>&,
747                              std::vector<aco_ptr<Instruction>>&);
748 
749 template <typename Ctx, HandleInstr<Ctx> Handle>
handle_block(Program * program,Ctx & ctx,Block & block)750 void handle_block(Program *program, Ctx& ctx, Block& block)
751 {
752    if (block.instructions.empty())
753       return;
754 
755    std::vector<aco_ptr<Instruction>> old_instructions = std::move(block.instructions);
756 
757    block.instructions.reserve(block.instructions.size());
758 
759    for (aco_ptr<Instruction>& instr : old_instructions) {
760       Handle(program, &block, ctx, instr, block.instructions);
761       block.instructions.emplace_back(std::move(instr));
762    }
763 }
764 
765 template <typename Ctx, HandleInstr<Ctx> Handle>
mitigate_hazards(Program * program)766 void mitigate_hazards(Program *program)
767 {
768    std::vector<Ctx> all_ctx(program->blocks.size());
769    std::stack<unsigned> loop_header_indices;
770 
771    for (unsigned i = 0; i < program->blocks.size(); i++) {
772       Block& block = program->blocks[i];
773       Ctx &ctx = all_ctx[i];
774 
775       if (block.kind & block_kind_loop_header) {
776          loop_header_indices.push(i);
777       } else if (block.kind & block_kind_loop_exit) {
778          /* Go through the whole loop again */
779          for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
780             Ctx loop_block_ctx;
781             for (unsigned b : program->blocks[idx].linear_preds)
782                loop_block_ctx.join(all_ctx[b]);
783 
784             handle_block<Ctx, Handle>(program, loop_block_ctx, program->blocks[idx]);
785 
786             /* We only need to continue if the loop header context changed */
787             if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
788                break;
789 
790             all_ctx[idx] = loop_block_ctx;
791          }
792 
793          loop_header_indices.pop();
794       }
795 
796       for (unsigned b : block.linear_preds)
797          ctx.join(all_ctx[b]);
798 
799       handle_block<Ctx, Handle>(program, ctx, block);
800    }
801 }
802 
803 } /* end namespace */
804 
insert_NOPs(Program * program)805 void insert_NOPs(Program* program)
806 {
807    if (program->chip_class >= GFX10_3)
808       ; /* no hazards/bugs to mitigate */
809    else if (program->chip_class >= GFX10)
810       mitigate_hazards<NOP_ctx_gfx10, handle_instruction_gfx10>(program);
811    else
812       mitigate_hazards<NOP_ctx_gfx6, handle_instruction_gfx6>(program);
813 }
814 
815 }
816