• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Utilities for Rust numbers.
2 
3 #![doc(hidden)]
4 
5 #[cfg(all(not(feature = "std"), feature = "compact"))]
6 use crate::libm::{powd, powf};
7 #[cfg(not(feature = "compact"))]
8 use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5};
9 #[cfg(not(feature = "compact"))]
10 use core::hint;
11 use core::ops;
12 
13 /// Generic floating-point type, to be used in generic code for parsing.
14 ///
15 /// Although the trait is part of the public API, the trait provides methods
16 /// and constants that are effectively non-public: they may be removed
17 /// at any time without any breaking changes.
18 pub trait Float:
19     Sized
20     + Copy
21     + PartialEq
22     + PartialOrd
23     + Send
24     + Sync
25     + ops::Add<Output = Self>
26     + ops::AddAssign
27     + ops::Div<Output = Self>
28     + ops::DivAssign
29     + ops::Mul<Output = Self>
30     + ops::MulAssign
31     + ops::Rem<Output = Self>
32     + ops::RemAssign
33     + ops::Sub<Output = Self>
34     + ops::SubAssign
35     + ops::Neg<Output = Self>
36 {
37     /// Maximum number of digits that can contribute in the mantissa.
38     ///
39     /// We can exactly represent a float in radix `b` from radix 2 if
40     /// `b` is divisible by 2. This function calculates the exact number of
41     /// digits required to exactly represent that float.
42     ///
43     /// According to the "Handbook of Floating Point Arithmetic",
44     /// for IEEE754, with emin being the min exponent, p2 being the
45     /// precision, and b being the radix, the number of digits follows as:
46     ///
47     /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
48     ///
49     /// For f32, this follows as:
50     ///     emin = -126
51     ///     p2 = 24
52     ///
53     /// For f64, this follows as:
54     ///     emin = -1022
55     ///     p2 = 53
56     ///
57     /// In Python:
58     ///     `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
59     ///
60     /// This was used to calculate the maximum number of digits for [2, 36].
61     const MAX_DIGITS: usize;
62 
63     // MASKS
64 
65     /// Bitmask for the sign bit.
66     const SIGN_MASK: u64;
67     /// Bitmask for the exponent, including the hidden bit.
68     const EXPONENT_MASK: u64;
69     /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
70     const HIDDEN_BIT_MASK: u64;
71     /// Bitmask for the mantissa (fraction), excluding the hidden bit.
72     const MANTISSA_MASK: u64;
73 
74     // PROPERTIES
75 
76     /// Size of the significand (mantissa) without hidden bit.
77     const MANTISSA_SIZE: i32;
78     /// Bias of the exponet
79     const EXPONENT_BIAS: i32;
80     /// Exponent portion of a denormal float.
81     const DENORMAL_EXPONENT: i32;
82     /// Maximum exponent value in float.
83     const MAX_EXPONENT: i32;
84 
85     // ROUNDING
86 
87     /// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
88     const CARRY_MASK: u64;
89 
90     /// Bias for marking an invalid extended float.
91     // Value is `i16::MIN`, using hard-coded constants for older Rustc versions.
92     const INVALID_FP: i32 = -0x8000;
93 
94     // Maximum mantissa for the fast-path (`1 << 53` for f64).
95     const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE;
96 
97     // Largest exponent value `(1 << EXP_BITS) - 1`.
98     const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS;
99 
100     // Round-to-even only happens for negative values of q
101     // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
102     // the 32-bitcase.
103     //
104     // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
105     // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
106     // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
107     //
108     // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
109     // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
110     // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
111     // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
112     // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
113     //
114     // Thus we have that we only need to round ties to even when
115     // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
116     // (in the 32-bit case). In both cases,the power of five(5^|q|)
117     // fits in a 64-bit word.
118     const MIN_EXPONENT_ROUND_TO_EVEN: i32;
119     const MAX_EXPONENT_ROUND_TO_EVEN: i32;
120 
121     /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`.
122     const MINIMUM_EXPONENT: i32;
123 
124     /// Smallest decimal exponent for a non-zero value.
125     const SMALLEST_POWER_OF_TEN: i32;
126 
127     /// Largest decimal exponent for a non-infinite value.
128     const LARGEST_POWER_OF_TEN: i32;
129 
130     /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋`
131     const MIN_EXPONENT_FAST_PATH: i32;
132 
133     /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋`
134     const MAX_EXPONENT_FAST_PATH: i32;
135 
136     /// Maximum exponent that can be represented for a disguised-fast path case.
137     /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋`
138     const MAX_EXPONENT_DISGUISED_FAST_PATH: i32;
139 
140     /// Convert 64-bit integer to float.
from_u64(u: u64) -> Self141     fn from_u64(u: u64) -> Self;
142 
143     // Re-exported methods from std.
from_bits(u: u64) -> Self144     fn from_bits(u: u64) -> Self;
to_bits(self) -> u64145     fn to_bits(self) -> u64;
146 
147     /// Get a small power-of-radix for fast-path multiplication.
148     ///
149     /// # Safety
150     ///
151     /// Safe as long as the exponent is smaller than the table size.
pow_fast_path(exponent: usize) -> Self152     unsafe fn pow_fast_path(exponent: usize) -> Self;
153 
154     /// Get a small, integral power-of-radix for fast-path multiplication.
155     ///
156     /// # Safety
157     ///
158     /// Safe as long as the exponent is smaller than the table size.
159     #[inline(always)]
int_pow_fast_path(exponent: usize, radix: u32) -> u64160     unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 {
161         // SAFETY: safe as long as the exponent is smaller than the radix table.
162         #[cfg(not(feature = "compact"))]
163         return match radix {
164             5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) },
165             10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) },
166             _ => unsafe { hint::unreachable_unchecked() },
167         };
168 
169         #[cfg(feature = "compact")]
170         return (radix as u64).pow(exponent as u32);
171     }
172 
173     /// Returns true if the float is a denormal.
174     #[inline]
is_denormal(self) -> bool175     fn is_denormal(self) -> bool {
176         self.to_bits() & Self::EXPONENT_MASK == 0
177     }
178 
179     /// Get exponent component from the float.
180     #[inline]
exponent(self) -> i32181     fn exponent(self) -> i32 {
182         if self.is_denormal() {
183             return Self::DENORMAL_EXPONENT;
184         }
185 
186         let bits = self.to_bits();
187         let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32;
188         biased_e - Self::EXPONENT_BIAS
189     }
190 
191     /// Get mantissa (significand) component from float.
192     #[inline]
mantissa(self) -> u64193     fn mantissa(self) -> u64 {
194         let bits = self.to_bits();
195         let s = bits & Self::MANTISSA_MASK;
196         if !self.is_denormal() {
197             s + Self::HIDDEN_BIT_MASK
198         } else {
199             s
200         }
201     }
202 }
203 
204 impl Float for f32 {
205     const MAX_DIGITS: usize = 114;
206     const SIGN_MASK: u64 = 0x80000000;
207     const EXPONENT_MASK: u64 = 0x7F800000;
208     const HIDDEN_BIT_MASK: u64 = 0x00800000;
209     const MANTISSA_MASK: u64 = 0x007FFFFF;
210     const MANTISSA_SIZE: i32 = 23;
211     const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
212     const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
213     const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
214     const CARRY_MASK: u64 = 0x1000000;
215     const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
216     const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
217     const MINIMUM_EXPONENT: i32 = -127;
218     const SMALLEST_POWER_OF_TEN: i32 = -65;
219     const LARGEST_POWER_OF_TEN: i32 = 38;
220     const MIN_EXPONENT_FAST_PATH: i32 = -10;
221     const MAX_EXPONENT_FAST_PATH: i32 = 10;
222     const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17;
223 
224     #[inline(always)]
pow_fast_path(exponent: usize) -> Self225     unsafe fn pow_fast_path(exponent: usize) -> Self {
226         // SAFETY: safe as long as the exponent is smaller than the radix table.
227         #[cfg(not(feature = "compact"))]
228         return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) };
229 
230         #[cfg(feature = "compact")]
231         return powf(10.0f32, exponent as f32);
232     }
233 
234     #[inline]
from_u64(u: u64) -> f32235     fn from_u64(u: u64) -> f32 {
236         u as _
237     }
238 
239     #[inline]
from_bits(u: u64) -> f32240     fn from_bits(u: u64) -> f32 {
241         // Constant is `u32::MAX` for older Rustc versions.
242         debug_assert!(u <= 0xffff_ffff);
243         f32::from_bits(u as u32)
244     }
245 
246     #[inline]
to_bits(self) -> u64247     fn to_bits(self) -> u64 {
248         f32::to_bits(self) as u64
249     }
250 }
251 
252 impl Float for f64 {
253     const MAX_DIGITS: usize = 769;
254     const SIGN_MASK: u64 = 0x8000000000000000;
255     const EXPONENT_MASK: u64 = 0x7FF0000000000000;
256     const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
257     const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
258     const MANTISSA_SIZE: i32 = 52;
259     const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
260     const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
261     const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
262     const CARRY_MASK: u64 = 0x20000000000000;
263     const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
264     const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
265     const MINIMUM_EXPONENT: i32 = -1023;
266     const SMALLEST_POWER_OF_TEN: i32 = -342;
267     const LARGEST_POWER_OF_TEN: i32 = 308;
268     const MIN_EXPONENT_FAST_PATH: i32 = -22;
269     const MAX_EXPONENT_FAST_PATH: i32 = 22;
270     const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37;
271 
272     #[inline(always)]
pow_fast_path(exponent: usize) -> Self273     unsafe fn pow_fast_path(exponent: usize) -> Self {
274         // SAFETY: safe as long as the exponent is smaller than the radix table.
275         #[cfg(not(feature = "compact"))]
276         return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) };
277 
278         #[cfg(feature = "compact")]
279         return powd(10.0f64, exponent as f64);
280     }
281 
282     #[inline]
from_u64(u: u64) -> f64283     fn from_u64(u: u64) -> f64 {
284         u as _
285     }
286 
287     #[inline]
from_bits(u: u64) -> f64288     fn from_bits(u: u64) -> f64 {
289         f64::from_bits(u)
290     }
291 
292     #[inline]
to_bits(self) -> u64293     fn to_bits(self) -> u64 {
294         f64::to_bits(self)
295     }
296 }
297 
298 #[inline(always)]
299 #[cfg(all(feature = "std", feature = "compact"))]
powf(x: f32, y: f32) -> f32300 pub fn powf(x: f32, y: f32) -> f32 {
301     x.powf(y)
302 }
303 
304 #[inline(always)]
305 #[cfg(all(feature = "std", feature = "compact"))]
powd(x: f64, y: f64) -> f64306 pub fn powd(x: f64, y: f64) -> f64 {
307     x.powf(y)
308 }
309