1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. A natural loop 11 // has exactly one entry-point, which is called the header. Note that natural 12 // loops may actually be several loops that share the same header node. 13 // 14 // This analysis calculates the nesting structure of loops in a function. For 15 // each natural loop identified, this analysis identifies natural loops 16 // contained entirely within the loop and the basic blocks the make up the loop. 17 // 18 // It can calculate on the fly various bits of information, for example: 19 // 20 // * whether there is a preheader for the loop 21 // * the number of back edges to the header 22 // * whether or not a particular block branches out of the loop 23 // * the successor blocks of the loop 24 // * the loop depth 25 // * etc... 26 // 27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs 28 // in the CFG. There can be strongly connected components in the CFG which 29 // this analysis will not recognize and that will not be represented by a Loop 30 // instance. In particular, a Loop might be inside such a non-loop SCC, or a 31 // non-loop SCC might contain a sub-SCC which is a Loop. 32 // 33 // For an overview of terminology used in this API (and thus all of our loop 34 // analyses or transforms), see docs/LoopTerminology.rst. 35 // 36 //===----------------------------------------------------------------------===// 37 38 #ifndef LLVM_ANALYSIS_LOOPINFO_H 39 #define LLVM_ANALYSIS_LOOPINFO_H 40 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/DenseSet.h" 43 #include "llvm/ADT/GraphTraits.h" 44 #include "llvm/ADT/SmallPtrSet.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Allocator.h" 52 #include <algorithm> 53 #include <utility> 54 55 namespace llvm { 56 57 class DominatorTree; 58 class LoopInfo; 59 class Loop; 60 class InductionDescriptor; 61 class MDNode; 62 class MemorySSAUpdater; 63 class PHINode; 64 class ScalarEvolution; 65 class raw_ostream; 66 template <class N, bool IsPostDom> class DominatorTreeBase; 67 template <class N, class M> class LoopInfoBase; 68 template <class N, class M> class LoopBase; 69 70 //===----------------------------------------------------------------------===// 71 /// Instances of this class are used to represent loops that are detected in the 72 /// flow graph. 73 /// 74 template <class BlockT, class LoopT> class LoopBase { 75 LoopT *ParentLoop; 76 // Loops contained entirely within this one. 77 std::vector<LoopT *> SubLoops; 78 79 // The list of blocks in this loop. First entry is the header node. 80 std::vector<BlockT *> Blocks; 81 82 SmallPtrSet<const BlockT *, 8> DenseBlockSet; 83 84 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 85 /// Indicator that this loop is no longer a valid loop. 86 bool IsInvalid = false; 87 #endif 88 89 LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 90 const LoopBase<BlockT, LoopT> & 91 operator=(const LoopBase<BlockT, LoopT> &) = delete; 92 93 public: 94 /// Return the nesting level of this loop. An outer-most loop has depth 1, 95 /// for consistency with loop depth values used for basic blocks, where depth 96 /// 0 is used for blocks not inside any loops. getLoopDepth()97 unsigned getLoopDepth() const { 98 assert(!isInvalid() && "Loop not in a valid state!"); 99 unsigned D = 1; 100 for (const LoopT *CurLoop = ParentLoop; CurLoop; 101 CurLoop = CurLoop->ParentLoop) 102 ++D; 103 return D; 104 } getHeader()105 BlockT *getHeader() const { return getBlocks().front(); } getParentLoop()106 LoopT *getParentLoop() const { return ParentLoop; } 107 108 /// This is a raw interface for bypassing addChildLoop. setParentLoop(LoopT * L)109 void setParentLoop(LoopT *L) { 110 assert(!isInvalid() && "Loop not in a valid state!"); 111 ParentLoop = L; 112 } 113 114 /// Return true if the specified loop is contained within in this loop. contains(const LoopT * L)115 bool contains(const LoopT *L) const { 116 assert(!isInvalid() && "Loop not in a valid state!"); 117 if (L == this) 118 return true; 119 if (!L) 120 return false; 121 return contains(L->getParentLoop()); 122 } 123 124 /// Return true if the specified basic block is in this loop. contains(const BlockT * BB)125 bool contains(const BlockT *BB) const { 126 assert(!isInvalid() && "Loop not in a valid state!"); 127 return DenseBlockSet.count(BB); 128 } 129 130 /// Return true if the specified instruction is in this loop. contains(const InstT * Inst)131 template <class InstT> bool contains(const InstT *Inst) const { 132 return contains(Inst->getParent()); 133 } 134 135 /// Return the loops contained entirely within this loop. getSubLoops()136 const std::vector<LoopT *> &getSubLoops() const { 137 assert(!isInvalid() && "Loop not in a valid state!"); 138 return SubLoops; 139 } getSubLoopsVector()140 std::vector<LoopT *> &getSubLoopsVector() { 141 assert(!isInvalid() && "Loop not in a valid state!"); 142 return SubLoops; 143 } 144 typedef typename std::vector<LoopT *>::const_iterator iterator; 145 typedef 146 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()147 iterator begin() const { return getSubLoops().begin(); } end()148 iterator end() const { return getSubLoops().end(); } rbegin()149 reverse_iterator rbegin() const { return getSubLoops().rbegin(); } rend()150 reverse_iterator rend() const { return getSubLoops().rend(); } empty()151 bool empty() const { return getSubLoops().empty(); } 152 153 /// Get a list of the basic blocks which make up this loop. getBlocks()154 ArrayRef<BlockT *> getBlocks() const { 155 assert(!isInvalid() && "Loop not in a valid state!"); 156 return Blocks; 157 } 158 typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; block_begin()159 block_iterator block_begin() const { return getBlocks().begin(); } block_end()160 block_iterator block_end() const { return getBlocks().end(); } blocks()161 inline iterator_range<block_iterator> blocks() const { 162 assert(!isInvalid() && "Loop not in a valid state!"); 163 return make_range(block_begin(), block_end()); 164 } 165 166 /// Get the number of blocks in this loop in constant time. 167 /// Invalidate the loop, indicating that it is no longer a loop. getNumBlocks()168 unsigned getNumBlocks() const { 169 assert(!isInvalid() && "Loop not in a valid state!"); 170 return Blocks.size(); 171 } 172 173 /// Return a direct, mutable handle to the blocks vector so that we can 174 /// mutate it efficiently with techniques like `std::remove`. getBlocksVector()175 std::vector<BlockT *> &getBlocksVector() { 176 assert(!isInvalid() && "Loop not in a valid state!"); 177 return Blocks; 178 } 179 /// Return a direct, mutable handle to the blocks set so that we can 180 /// mutate it efficiently. getBlocksSet()181 SmallPtrSetImpl<const BlockT *> &getBlocksSet() { 182 assert(!isInvalid() && "Loop not in a valid state!"); 183 return DenseBlockSet; 184 } 185 186 /// Return a direct, immutable handle to the blocks set. getBlocksSet()187 const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { 188 assert(!isInvalid() && "Loop not in a valid state!"); 189 return DenseBlockSet; 190 } 191 192 /// Return true if this loop is no longer valid. The only valid use of this 193 /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to 194 /// true by the destructor. In other words, if this accessor returns true, 195 /// the caller has already triggered UB by calling this accessor; and so it 196 /// can only be called in a context where a return value of true indicates a 197 /// programmer error. isInvalid()198 bool isInvalid() const { 199 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 200 return IsInvalid; 201 #else 202 return false; 203 #endif 204 } 205 206 /// True if terminator in the block can branch to another block that is 207 /// outside of the current loop. \p BB must be inside the loop. isLoopExiting(const BlockT * BB)208 bool isLoopExiting(const BlockT *BB) const { 209 assert(!isInvalid() && "Loop not in a valid state!"); 210 assert(contains(BB) && "Exiting block must be part of the loop"); 211 for (const auto *Succ : children<const BlockT *>(BB)) { 212 if (!contains(Succ)) 213 return true; 214 } 215 return false; 216 } 217 218 /// Returns true if \p BB is a loop-latch. 219 /// A latch block is a block that contains a branch back to the header. 220 /// This function is useful when there are multiple latches in a loop 221 /// because \fn getLoopLatch will return nullptr in that case. isLoopLatch(const BlockT * BB)222 bool isLoopLatch(const BlockT *BB) const { 223 assert(!isInvalid() && "Loop not in a valid state!"); 224 assert(contains(BB) && "block does not belong to the loop"); 225 226 BlockT *Header = getHeader(); 227 auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); 228 auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); 229 return std::find(PredBegin, PredEnd, BB) != PredEnd; 230 } 231 232 /// Calculate the number of back edges to the loop header. getNumBackEdges()233 unsigned getNumBackEdges() const { 234 assert(!isInvalid() && "Loop not in a valid state!"); 235 unsigned NumBackEdges = 0; 236 BlockT *H = getHeader(); 237 238 for (const auto Pred : children<Inverse<BlockT *>>(H)) 239 if (contains(Pred)) 240 ++NumBackEdges; 241 242 return NumBackEdges; 243 } 244 245 //===--------------------------------------------------------------------===// 246 // APIs for simple analysis of the loop. 247 // 248 // Note that all of these methods can fail on general loops (ie, there may not 249 // be a preheader, etc). For best success, the loop simplification and 250 // induction variable canonicalization pass should be used to normalize loops 251 // for easy analysis. These methods assume canonical loops. 252 253 /// Return all blocks inside the loop that have successors outside of the 254 /// loop. These are the blocks _inside of the current loop_ which branch out. 255 /// The returned list is always unique. 256 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 257 258 /// If getExitingBlocks would return exactly one block, return that block. 259 /// Otherwise return null. 260 BlockT *getExitingBlock() const; 261 262 /// Return all of the successor blocks of this loop. These are the blocks 263 /// _outside of the current loop_ which are branched to. 264 void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 265 266 /// If getExitBlocks would return exactly one block, return that block. 267 /// Otherwise return null. 268 BlockT *getExitBlock() const; 269 270 /// Return true if no exit block for the loop has a predecessor that is 271 /// outside the loop. 272 bool hasDedicatedExits() const; 273 274 /// Return all unique successor blocks of this loop. 275 /// These are the blocks _outside of the current loop_ which are branched to. 276 void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 277 278 /// Return all unique successor blocks of this loop except successors from 279 /// Latch block are not considered. If the exit comes from Latch has also 280 /// non Latch predecessor in a loop it will be added to ExitBlocks. 281 /// These are the blocks _outside of the current loop_ which are branched to. 282 void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 283 284 /// If getUniqueExitBlocks would return exactly one block, return that block. 285 /// Otherwise return null. 286 BlockT *getUniqueExitBlock() const; 287 288 /// Edge type. 289 typedef std::pair<BlockT *, BlockT *> Edge; 290 291 /// Return all pairs of (_inside_block_,_outside_block_). 292 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 293 294 /// If there is a preheader for this loop, return it. A loop has a preheader 295 /// if there is only one edge to the header of the loop from outside of the 296 /// loop. If this is the case, the block branching to the header of the loop 297 /// is the preheader node. 298 /// 299 /// This method returns null if there is no preheader for the loop. 300 BlockT *getLoopPreheader() const; 301 302 /// If the given loop's header has exactly one unique predecessor outside the 303 /// loop, return it. Otherwise return null. 304 /// This is less strict that the loop "preheader" concept, which requires 305 /// the predecessor to have exactly one successor. 306 BlockT *getLoopPredecessor() const; 307 308 /// If there is a single latch block for this loop, return it. 309 /// A latch block is a block that contains a branch back to the header. 310 BlockT *getLoopLatch() const; 311 312 /// Return all loop latch blocks of this loop. A latch block is a block that 313 /// contains a branch back to the header. getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)314 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 315 assert(!isInvalid() && "Loop not in a valid state!"); 316 BlockT *H = getHeader(); 317 for (const auto Pred : children<Inverse<BlockT *>>(H)) 318 if (contains(Pred)) 319 LoopLatches.push_back(Pred); 320 } 321 322 /// Return all inner loops in the loop nest rooted by the loop in preorder, 323 /// with siblings in forward program order. 324 template <class Type> getInnerLoopsInPreorder(const LoopT & L,SmallVectorImpl<Type> & PreOrderLoops)325 static void getInnerLoopsInPreorder(const LoopT &L, 326 SmallVectorImpl<Type> &PreOrderLoops) { 327 SmallVector<LoopT *, 4> PreOrderWorklist; 328 PreOrderWorklist.append(L.rbegin(), L.rend()); 329 330 while (!PreOrderWorklist.empty()) { 331 LoopT *L = PreOrderWorklist.pop_back_val(); 332 // Sub-loops are stored in forward program order, but will process the 333 // worklist backwards so append them in reverse order. 334 PreOrderWorklist.append(L->rbegin(), L->rend()); 335 PreOrderLoops.push_back(L); 336 } 337 } 338 339 /// Return all loops in the loop nest rooted by the loop in preorder, with 340 /// siblings in forward program order. getLoopsInPreorder()341 SmallVector<const LoopT *, 4> getLoopsInPreorder() const { 342 SmallVector<const LoopT *, 4> PreOrderLoops; 343 const LoopT *CurLoop = static_cast<const LoopT *>(this); 344 PreOrderLoops.push_back(CurLoop); 345 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 346 return PreOrderLoops; 347 } getLoopsInPreorder()348 SmallVector<LoopT *, 4> getLoopsInPreorder() { 349 SmallVector<LoopT *, 4> PreOrderLoops; 350 LoopT *CurLoop = static_cast<LoopT *>(this); 351 PreOrderLoops.push_back(CurLoop); 352 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 353 return PreOrderLoops; 354 } 355 356 //===--------------------------------------------------------------------===// 357 // APIs for updating loop information after changing the CFG 358 // 359 360 /// This method is used by other analyses to update loop information. 361 /// NewBB is set to be a new member of the current loop. 362 /// Because of this, it is added as a member of all parent loops, and is added 363 /// to the specified LoopInfo object as being in the current basic block. It 364 /// is not valid to replace the loop header with this method. 365 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 366 367 /// This is used when splitting loops up. It replaces the OldChild entry in 368 /// our children list with NewChild, and updates the parent pointer of 369 /// OldChild to be null and the NewChild to be this loop. 370 /// This updates the loop depth of the new child. 371 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 372 373 /// Add the specified loop to be a child of this loop. 374 /// This updates the loop depth of the new child. addChildLoop(LoopT * NewChild)375 void addChildLoop(LoopT *NewChild) { 376 assert(!isInvalid() && "Loop not in a valid state!"); 377 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 378 NewChild->ParentLoop = static_cast<LoopT *>(this); 379 SubLoops.push_back(NewChild); 380 } 381 382 /// This removes the specified child from being a subloop of this loop. The 383 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(iterator I)384 LoopT *removeChildLoop(iterator I) { 385 assert(!isInvalid() && "Loop not in a valid state!"); 386 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 387 LoopT *Child = *I; 388 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 389 SubLoops.erase(SubLoops.begin() + (I - begin())); 390 Child->ParentLoop = nullptr; 391 return Child; 392 } 393 394 /// This removes the specified child from being a subloop of this loop. The 395 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(LoopT * Child)396 LoopT *removeChildLoop(LoopT *Child) { 397 return removeChildLoop(llvm::find(*this, Child)); 398 } 399 400 /// This adds a basic block directly to the basic block list. 401 /// This should only be used by transformations that create new loops. Other 402 /// transformations should use addBasicBlockToLoop. addBlockEntry(BlockT * BB)403 void addBlockEntry(BlockT *BB) { 404 assert(!isInvalid() && "Loop not in a valid state!"); 405 Blocks.push_back(BB); 406 DenseBlockSet.insert(BB); 407 } 408 409 /// interface to reverse Blocks[from, end of loop] in this loop reverseBlock(unsigned from)410 void reverseBlock(unsigned from) { 411 assert(!isInvalid() && "Loop not in a valid state!"); 412 std::reverse(Blocks.begin() + from, Blocks.end()); 413 } 414 415 /// interface to do reserve() for Blocks reserveBlocks(unsigned size)416 void reserveBlocks(unsigned size) { 417 assert(!isInvalid() && "Loop not in a valid state!"); 418 Blocks.reserve(size); 419 } 420 421 /// This method is used to move BB (which must be part of this loop) to be the 422 /// loop header of the loop (the block that dominates all others). moveToHeader(BlockT * BB)423 void moveToHeader(BlockT *BB) { 424 assert(!isInvalid() && "Loop not in a valid state!"); 425 if (Blocks[0] == BB) 426 return; 427 for (unsigned i = 0;; ++i) { 428 assert(i != Blocks.size() && "Loop does not contain BB!"); 429 if (Blocks[i] == BB) { 430 Blocks[i] = Blocks[0]; 431 Blocks[0] = BB; 432 return; 433 } 434 } 435 } 436 437 /// This removes the specified basic block from the current loop, updating the 438 /// Blocks as appropriate. This does not update the mapping in the LoopInfo 439 /// class. removeBlockFromLoop(BlockT * BB)440 void removeBlockFromLoop(BlockT *BB) { 441 assert(!isInvalid() && "Loop not in a valid state!"); 442 auto I = find(Blocks, BB); 443 assert(I != Blocks.end() && "N is not in this list!"); 444 Blocks.erase(I); 445 446 DenseBlockSet.erase(BB); 447 } 448 449 /// Verify loop structure 450 void verifyLoop() const; 451 452 /// Verify loop structure of this loop and all nested loops. 453 void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; 454 455 /// Returns true if the loop is annotated parallel. 456 /// 457 /// Derived classes can override this method using static template 458 /// polymorphism. isAnnotatedParallel()459 bool isAnnotatedParallel() const { return false; } 460 461 /// Print loop with all the BBs inside it. 462 void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const; 463 464 protected: 465 friend class LoopInfoBase<BlockT, LoopT>; 466 467 /// This creates an empty loop. LoopBase()468 LoopBase() : ParentLoop(nullptr) {} 469 LoopBase(BlockT * BB)470 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 471 Blocks.push_back(BB); 472 DenseBlockSet.insert(BB); 473 } 474 475 // Since loop passes like SCEV are allowed to key analysis results off of 476 // `Loop` pointers, we cannot re-use pointers within a loop pass manager. 477 // This means loop passes should not be `delete` ing `Loop` objects directly 478 // (and risk a later `Loop` allocation re-using the address of a previous one) 479 // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` 480 // pointer till the end of the lifetime of the `LoopInfo` object. 481 // 482 // To make it easier to follow this rule, we mark the destructor as 483 // non-public. ~LoopBase()484 ~LoopBase() { 485 for (auto *SubLoop : SubLoops) 486 SubLoop->~LoopT(); 487 488 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 489 IsInvalid = true; 490 #endif 491 SubLoops.clear(); 492 Blocks.clear(); 493 DenseBlockSet.clear(); 494 ParentLoop = nullptr; 495 } 496 }; 497 498 template <class BlockT, class LoopT> 499 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 500 Loop.print(OS); 501 return OS; 502 } 503 504 // Implementation in LoopInfoImpl.h 505 extern template class LoopBase<BasicBlock, Loop>; 506 507 /// Represents a single loop in the control flow graph. Note that not all SCCs 508 /// in the CFG are necessarily loops. 509 class Loop : public LoopBase<BasicBlock, Loop> { 510 public: 511 /// A range representing the start and end location of a loop. 512 class LocRange { 513 DebugLoc Start; 514 DebugLoc End; 515 516 public: LocRange()517 LocRange() {} LocRange(DebugLoc Start)518 LocRange(DebugLoc Start) : Start(Start), End(Start) {} LocRange(DebugLoc Start,DebugLoc End)519 LocRange(DebugLoc Start, DebugLoc End) 520 : Start(std::move(Start)), End(std::move(End)) {} 521 getStart()522 const DebugLoc &getStart() const { return Start; } getEnd()523 const DebugLoc &getEnd() const { return End; } 524 525 /// Check for null. 526 /// 527 explicit operator bool() const { return Start && End; } 528 }; 529 530 /// Return true if the specified value is loop invariant. 531 bool isLoopInvariant(const Value *V) const; 532 533 /// Return true if all the operands of the specified instruction are loop 534 /// invariant. 535 bool hasLoopInvariantOperands(const Instruction *I) const; 536 537 /// If the given value is an instruction inside of the loop and it can be 538 /// hoisted, do so to make it trivially loop-invariant. 539 /// Return true if the value after any hoisting is loop invariant. This 540 /// function can be used as a slightly more aggressive replacement for 541 /// isLoopInvariant. 542 /// 543 /// If InsertPt is specified, it is the point to hoist instructions to. 544 /// If null, the terminator of the loop preheader is used. 545 bool makeLoopInvariant(Value *V, bool &Changed, 546 Instruction *InsertPt = nullptr, 547 MemorySSAUpdater *MSSAU = nullptr) const; 548 549 /// If the given instruction is inside of the loop and it can be hoisted, do 550 /// so to make it trivially loop-invariant. 551 /// Return true if the instruction after any hoisting is loop invariant. This 552 /// function can be used as a slightly more aggressive replacement for 553 /// isLoopInvariant. 554 /// 555 /// If InsertPt is specified, it is the point to hoist instructions to. 556 /// If null, the terminator of the loop preheader is used. 557 /// 558 bool makeLoopInvariant(Instruction *I, bool &Changed, 559 Instruction *InsertPt = nullptr, 560 MemorySSAUpdater *MSSAU = nullptr) const; 561 562 /// Check to see if the loop has a canonical induction variable: an integer 563 /// recurrence that starts at 0 and increments by one each time through the 564 /// loop. If so, return the phi node that corresponds to it. 565 /// 566 /// The IndVarSimplify pass transforms loops to have a canonical induction 567 /// variable. 568 /// 569 PHINode *getCanonicalInductionVariable() const; 570 571 /// Obtain the unique incoming and back edge. Return false if they are 572 /// non-unique or the loop is dead; otherwise, return true. 573 bool getIncomingAndBackEdge(BasicBlock *&Incoming, 574 BasicBlock *&Backedge) const; 575 576 /// Below are some utilities to get the loop guard, loop bounds and induction 577 /// variable, and to check if a given phinode is an auxiliary induction 578 /// variable, if the loop is guarded, and if the loop is canonical. 579 /// 580 /// Here is an example: 581 /// \code 582 /// for (int i = lb; i < ub; i+=step) 583 /// <loop body> 584 /// --- pseudo LLVMIR --- 585 /// beforeloop: 586 /// guardcmp = (lb < ub) 587 /// if (guardcmp) goto preheader; else goto afterloop 588 /// preheader: 589 /// loop: 590 /// i_1 = phi[{lb, preheader}, {i_2, latch}] 591 /// <loop body> 592 /// i_2 = i_1 + step 593 /// latch: 594 /// cmp = (i_2 < ub) 595 /// if (cmp) goto loop 596 /// exit: 597 /// afterloop: 598 /// \endcode 599 /// 600 /// - getBounds 601 /// - getInitialIVValue --> lb 602 /// - getStepInst --> i_2 = i_1 + step 603 /// - getStepValue --> step 604 /// - getFinalIVValue --> ub 605 /// - getCanonicalPredicate --> '<' 606 /// - getDirection --> Increasing 607 /// 608 /// - getInductionVariable --> i_1 609 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 610 /// - getLoopGuardBranch() 611 /// --> `if (guardcmp) goto preheader; else goto afterloop` 612 /// - isGuarded() --> true 613 /// - isCanonical --> false 614 struct LoopBounds { 615 /// Return the LoopBounds object if 616 /// - the given \p IndVar is an induction variable 617 /// - the initial value of the induction variable can be found 618 /// - the step instruction of the induction variable can be found 619 /// - the final value of the induction variable can be found 620 /// 621 /// Else None. 622 static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar, 623 ScalarEvolution &SE); 624 625 /// Get the initial value of the loop induction variable. getInitialIVValueLoopBounds626 Value &getInitialIVValue() const { return InitialIVValue; } 627 628 /// Get the instruction that updates the loop induction variable. getStepInstLoopBounds629 Instruction &getStepInst() const { return StepInst; } 630 631 /// Get the step that the loop induction variable gets updated by in each 632 /// loop iteration. Return nullptr if not found. getStepValueLoopBounds633 Value *getStepValue() const { return StepValue; } 634 635 /// Get the final value of the loop induction variable. getFinalIVValueLoopBounds636 Value &getFinalIVValue() const { return FinalIVValue; } 637 638 /// Return the canonical predicate for the latch compare instruction, if 639 /// able to be calcuated. Else BAD_ICMP_PREDICATE. 640 /// 641 /// A predicate is considered as canonical if requirements below are all 642 /// satisfied: 643 /// 1. The first successor of the latch branch is the loop header 644 /// If not, inverse the predicate. 645 /// 2. One of the operands of the latch comparison is StepInst 646 /// If not, and 647 /// - if the current calcuated predicate is not ne or eq, flip the 648 /// predicate. 649 /// - else if the loop is increasing, return slt 650 /// (notice that it is safe to change from ne or eq to sign compare) 651 /// - else if the loop is decreasing, return sgt 652 /// (notice that it is safe to change from ne or eq to sign compare) 653 /// 654 /// Here is an example when both (1) and (2) are not satisfied: 655 /// \code 656 /// loop.header: 657 /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] 658 /// %inc = add %iv, %step 659 /// %cmp = slt %iv, %finaliv 660 /// br %cmp, %loop.exit, %loop.header 661 /// loop.exit: 662 /// \endcode 663 /// - The second successor of the latch branch is the loop header instead 664 /// of the first successor (slt -> sge) 665 /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) 666 /// instead of the StepInst (%inc) (sge -> sgt) 667 /// 668 /// The predicate would be sgt if both (1) and (2) are satisfied. 669 /// getCanonicalPredicate() returns sgt for this example. 670 /// Note: The IR is not changed. 671 ICmpInst::Predicate getCanonicalPredicate() const; 672 673 /// An enum for the direction of the loop 674 /// - for (int i = 0; i < ub; ++i) --> Increasing 675 /// - for (int i = ub; i > 0; --i) --> Descresing 676 /// - for (int i = x; i != y; i+=z) --> Unknown 677 enum class Direction { Increasing, Decreasing, Unknown }; 678 679 /// Get the direction of the loop. 680 Direction getDirection() const; 681 682 private: LoopBoundsLoopBounds683 LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, 684 ScalarEvolution &SE) 685 : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), 686 FinalIVValue(F), SE(SE) {} 687 688 const Loop &L; 689 690 // The initial value of the loop induction variable 691 Value &InitialIVValue; 692 693 // The instruction that updates the loop induction variable 694 Instruction &StepInst; 695 696 // The value that the loop induction variable gets updated by in each loop 697 // iteration 698 Value *StepValue; 699 700 // The final value of the loop induction variable 701 Value &FinalIVValue; 702 703 ScalarEvolution &SE; 704 }; 705 706 /// Return the struct LoopBounds collected if all struct members are found, 707 /// else None. 708 Optional<LoopBounds> getBounds(ScalarEvolution &SE) const; 709 710 /// Return the loop induction variable if found, else return nullptr. 711 /// An instruction is considered as the loop induction variable if 712 /// - it is an induction variable of the loop; and 713 /// - it is used to determine the condition of the branch in the loop latch 714 /// 715 /// Note: the induction variable doesn't need to be canonical, i.e. starts at 716 /// zero and increments by one each time through the loop (but it can be). 717 PHINode *getInductionVariable(ScalarEvolution &SE) const; 718 719 /// Get the loop induction descriptor for the loop induction variable. Return 720 /// true if the loop induction variable is found. 721 bool getInductionDescriptor(ScalarEvolution &SE, 722 InductionDescriptor &IndDesc) const; 723 724 /// Return true if the given PHINode \p AuxIndVar is 725 /// - in the loop header 726 /// - not used outside of the loop 727 /// - incremented by a loop invariant step for each loop iteration 728 /// - step instruction opcode should be add or sub 729 /// Note: auxiliary induction variable is not required to be used in the 730 /// conditional branch in the loop latch. (but it can be) 731 bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, 732 ScalarEvolution &SE) const; 733 734 /// Return the loop guard branch, if it exists. 735 /// 736 /// This currently only works on simplified loop, as it requires a preheader 737 /// and a latch to identify the guard. It will work on loops of the form: 738 /// \code 739 /// GuardBB: 740 /// br cond1, Preheader, ExitSucc <== GuardBranch 741 /// Preheader: 742 /// br Header 743 /// Header: 744 /// ... 745 /// br Latch 746 /// Latch: 747 /// br cond2, Header, ExitBlock 748 /// ExitBlock: 749 /// br ExitSucc 750 /// ExitSucc: 751 /// \endcode 752 BranchInst *getLoopGuardBranch() const; 753 754 /// Return true iff the loop is 755 /// - in simplify rotated form, and 756 /// - guarded by a loop guard branch. isGuarded()757 bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } 758 759 /// Return true if the loop is in rotated form. 760 /// 761 /// This does not check if the loop was rotated by loop rotation, instead it 762 /// only checks if the loop is in rotated form (has a valid latch that exists 763 /// the loop). isRotatedForm()764 bool isRotatedForm() const { 765 assert(!isInvalid() && "Loop not in a valid state!"); 766 BasicBlock *Latch = getLoopLatch(); 767 return Latch && isLoopExiting(Latch); 768 } 769 770 /// Return true if the loop induction variable starts at zero and increments 771 /// by one each time through the loop. 772 bool isCanonical(ScalarEvolution &SE) const; 773 774 /// Return true if the Loop is in LCSSA form. 775 bool isLCSSAForm(DominatorTree &DT) const; 776 777 /// Return true if this Loop and all inner subloops are in LCSSA form. 778 bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const; 779 780 /// Return true if the Loop is in the form that the LoopSimplify form 781 /// transforms loops to, which is sometimes called normal form. 782 bool isLoopSimplifyForm() const; 783 784 /// Return true if the loop body is safe to clone in practice. 785 bool isSafeToClone() const; 786 787 /// Returns true if the loop is annotated parallel. 788 /// 789 /// A parallel loop can be assumed to not contain any dependencies between 790 /// iterations by the compiler. That is, any loop-carried dependency checking 791 /// can be skipped completely when parallelizing the loop on the target 792 /// machine. Thus, if the parallel loop information originates from the 793 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 794 /// programmer's responsibility to ensure there are no loop-carried 795 /// dependencies. The final execution order of the instructions across 796 /// iterations is not guaranteed, thus, the end result might or might not 797 /// implement actual concurrent execution of instructions across multiple 798 /// iterations. 799 bool isAnnotatedParallel() const; 800 801 /// Return the llvm.loop loop id metadata node for this loop if it is present. 802 /// 803 /// If this loop contains the same llvm.loop metadata on each branch to the 804 /// header then the node is returned. If any latch instruction does not 805 /// contain llvm.loop or if multiple latches contain different nodes then 806 /// 0 is returned. 807 MDNode *getLoopID() const; 808 /// Set the llvm.loop loop id metadata for this loop. 809 /// 810 /// The LoopID metadata node will be added to each terminator instruction in 811 /// the loop that branches to the loop header. 812 /// 813 /// The LoopID metadata node should have one or more operands and the first 814 /// operand should be the node itself. 815 void setLoopID(MDNode *LoopID) const; 816 817 /// Add llvm.loop.unroll.disable to this loop's loop id metadata. 818 /// 819 /// Remove existing unroll metadata and add unroll disable metadata to 820 /// indicate the loop has already been unrolled. This prevents a loop 821 /// from being unrolled more than is directed by a pragma if the loop 822 /// unrolling pass is run more than once (which it generally is). 823 void setLoopAlreadyUnrolled(); 824 825 void dump() const; 826 void dumpVerbose() const; 827 828 /// Return the debug location of the start of this loop. 829 /// This looks for a BB terminating instruction with a known debug 830 /// location by looking at the preheader and header blocks. If it 831 /// cannot find a terminating instruction with location information, 832 /// it returns an unknown location. 833 DebugLoc getStartLoc() const; 834 835 /// Return the source code span of the loop. 836 LocRange getLocRange() const; 837 getName()838 StringRef getName() const { 839 if (BasicBlock *Header = getHeader()) 840 if (Header->hasName()) 841 return Header->getName(); 842 return "<unnamed loop>"; 843 } 844 845 private: 846 Loop() = default; 847 848 friend class LoopInfoBase<BasicBlock, Loop>; 849 friend class LoopBase<BasicBlock, Loop>; Loop(BasicBlock * BB)850 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 851 ~Loop() = default; 852 }; 853 854 //===----------------------------------------------------------------------===// 855 /// This class builds and contains all of the top-level loop 856 /// structures in the specified function. 857 /// 858 859 template <class BlockT, class LoopT> class LoopInfoBase { 860 // BBMap - Mapping of basic blocks to the inner most loop they occur in 861 DenseMap<const BlockT *, LoopT *> BBMap; 862 std::vector<LoopT *> TopLevelLoops; 863 BumpPtrAllocator LoopAllocator; 864 865 friend class LoopBase<BlockT, LoopT>; 866 friend class LoopInfo; 867 868 void operator=(const LoopInfoBase &) = delete; 869 LoopInfoBase(const LoopInfoBase &) = delete; 870 871 public: LoopInfoBase()872 LoopInfoBase() {} ~LoopInfoBase()873 ~LoopInfoBase() { releaseMemory(); } 874 LoopInfoBase(LoopInfoBase && Arg)875 LoopInfoBase(LoopInfoBase &&Arg) 876 : BBMap(std::move(Arg.BBMap)), 877 TopLevelLoops(std::move(Arg.TopLevelLoops)), 878 LoopAllocator(std::move(Arg.LoopAllocator)) { 879 // We have to clear the arguments top level loops as we've taken ownership. 880 Arg.TopLevelLoops.clear(); 881 } 882 LoopInfoBase &operator=(LoopInfoBase &&RHS) { 883 BBMap = std::move(RHS.BBMap); 884 885 for (auto *L : TopLevelLoops) 886 L->~LoopT(); 887 888 TopLevelLoops = std::move(RHS.TopLevelLoops); 889 LoopAllocator = std::move(RHS.LoopAllocator); 890 RHS.TopLevelLoops.clear(); 891 return *this; 892 } 893 releaseMemory()894 void releaseMemory() { 895 BBMap.clear(); 896 897 for (auto *L : TopLevelLoops) 898 L->~LoopT(); 899 TopLevelLoops.clear(); 900 LoopAllocator.Reset(); 901 } 902 AllocateLoop(ArgsTy &&...Args)903 template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { 904 LoopT *Storage = LoopAllocator.Allocate<LoopT>(); 905 return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); 906 } 907 908 /// iterator/begin/end - The interface to the top-level loops in the current 909 /// function. 910 /// 911 typedef typename std::vector<LoopT *>::const_iterator iterator; 912 typedef 913 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; begin()914 iterator begin() const { return TopLevelLoops.begin(); } end()915 iterator end() const { return TopLevelLoops.end(); } rbegin()916 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } rend()917 reverse_iterator rend() const { return TopLevelLoops.rend(); } empty()918 bool empty() const { return TopLevelLoops.empty(); } 919 920 /// Return all of the loops in the function in preorder across the loop 921 /// nests, with siblings in forward program order. 922 /// 923 /// Note that because loops form a forest of trees, preorder is equivalent to 924 /// reverse postorder. 925 SmallVector<LoopT *, 4> getLoopsInPreorder(); 926 927 /// Return all of the loops in the function in preorder across the loop 928 /// nests, with siblings in *reverse* program order. 929 /// 930 /// Note that because loops form a forest of trees, preorder is equivalent to 931 /// reverse postorder. 932 /// 933 /// Also note that this is *not* a reverse preorder. Only the siblings are in 934 /// reverse program order. 935 SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder(); 936 937 /// Return the inner most loop that BB lives in. If a basic block is in no 938 /// loop (for example the entry node), null is returned. getLoopFor(const BlockT * BB)939 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 940 941 /// Same as getLoopFor. 942 const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } 943 944 /// Return the loop nesting level of the specified block. A depth of 0 means 945 /// the block is not inside any loop. getLoopDepth(const BlockT * BB)946 unsigned getLoopDepth(const BlockT *BB) const { 947 const LoopT *L = getLoopFor(BB); 948 return L ? L->getLoopDepth() : 0; 949 } 950 951 // True if the block is a loop header node isLoopHeader(const BlockT * BB)952 bool isLoopHeader(const BlockT *BB) const { 953 const LoopT *L = getLoopFor(BB); 954 return L && L->getHeader() == BB; 955 } 956 957 /// This removes the specified top-level loop from this loop info object. 958 /// The loop is not deleted, as it will presumably be inserted into 959 /// another loop. removeLoop(iterator I)960 LoopT *removeLoop(iterator I) { 961 assert(I != end() && "Cannot remove end iterator!"); 962 LoopT *L = *I; 963 assert(!L->getParentLoop() && "Not a top-level loop!"); 964 TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); 965 return L; 966 } 967 968 /// Change the top-level loop that contains BB to the specified loop. 969 /// This should be used by transformations that restructure the loop hierarchy 970 /// tree. changeLoopFor(BlockT * BB,LoopT * L)971 void changeLoopFor(BlockT *BB, LoopT *L) { 972 if (!L) { 973 BBMap.erase(BB); 974 return; 975 } 976 BBMap[BB] = L; 977 } 978 979 /// Replace the specified loop in the top-level loops list with the indicated 980 /// loop. changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)981 void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { 982 auto I = find(TopLevelLoops, OldLoop); 983 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 984 *I = NewLoop; 985 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 986 "Loops already embedded into a subloop!"); 987 } 988 989 /// This adds the specified loop to the collection of top-level loops. addTopLevelLoop(LoopT * New)990 void addTopLevelLoop(LoopT *New) { 991 assert(!New->getParentLoop() && "Loop already in subloop!"); 992 TopLevelLoops.push_back(New); 993 } 994 995 /// This method completely removes BB from all data structures, 996 /// including all of the Loop objects it is nested in and our mapping from 997 /// BasicBlocks to loops. removeBlock(BlockT * BB)998 void removeBlock(BlockT *BB) { 999 auto I = BBMap.find(BB); 1000 if (I != BBMap.end()) { 1001 for (LoopT *L = I->second; L; L = L->getParentLoop()) 1002 L->removeBlockFromLoop(BB); 1003 1004 BBMap.erase(I); 1005 } 1006 } 1007 1008 // Internals 1009 isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)1010 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 1011 const LoopT *ParentLoop) { 1012 if (!SubLoop) 1013 return true; 1014 if (SubLoop == ParentLoop) 1015 return false; 1016 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 1017 } 1018 1019 /// Create the loop forest using a stable algorithm. 1020 void analyze(const DominatorTreeBase<BlockT, false> &DomTree); 1021 1022 // Debugging 1023 void print(raw_ostream &OS) const; 1024 1025 void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; 1026 1027 /// Destroy a loop that has been removed from the `LoopInfo` nest. 1028 /// 1029 /// This runs the destructor of the loop object making it invalid to 1030 /// reference afterward. The memory is retained so that the *pointer* to the 1031 /// loop remains valid. 1032 /// 1033 /// The caller is responsible for removing this loop from the loop nest and 1034 /// otherwise disconnecting it from the broader `LoopInfo` data structures. 1035 /// Callers that don't naturally handle this themselves should probably call 1036 /// `erase' instead. destroy(LoopT * L)1037 void destroy(LoopT *L) { 1038 L->~LoopT(); 1039 1040 // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons 1041 // \c L, but the pointer remains valid for non-dereferencing uses. 1042 LoopAllocator.Deallocate(L); 1043 } 1044 }; 1045 1046 // Implementation in LoopInfoImpl.h 1047 extern template class LoopInfoBase<BasicBlock, Loop>; 1048 1049 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 1050 typedef LoopInfoBase<BasicBlock, Loop> BaseT; 1051 1052 friend class LoopBase<BasicBlock, Loop>; 1053 1054 void operator=(const LoopInfo &) = delete; 1055 LoopInfo(const LoopInfo &) = delete; 1056 1057 public: LoopInfo()1058 LoopInfo() {} 1059 explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); 1060 LoopInfo(LoopInfo && Arg)1061 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 1062 LoopInfo &operator=(LoopInfo &&RHS) { 1063 BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 1064 return *this; 1065 } 1066 1067 /// Handle invalidation explicitly. 1068 bool invalidate(Function &F, const PreservedAnalyses &PA, 1069 FunctionAnalysisManager::Invalidator &); 1070 1071 // Most of the public interface is provided via LoopInfoBase. 1072 1073 /// Update LoopInfo after removing the last backedge from a loop. This updates 1074 /// the loop forest and parent loops for each block so that \c L is no longer 1075 /// referenced, but does not actually delete \c L immediately. The pointer 1076 /// will remain valid until this LoopInfo's memory is released. 1077 void erase(Loop *L); 1078 1079 /// Returns true if replacing From with To everywhere is guaranteed to 1080 /// preserve LCSSA form. replacementPreservesLCSSAForm(Instruction * From,Value * To)1081 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 1082 // Preserving LCSSA form is only problematic if the replacing value is an 1083 // instruction. 1084 Instruction *I = dyn_cast<Instruction>(To); 1085 if (!I) 1086 return true; 1087 // If both instructions are defined in the same basic block then replacement 1088 // cannot break LCSSA form. 1089 if (I->getParent() == From->getParent()) 1090 return true; 1091 // If the instruction is not defined in a loop then it can safely replace 1092 // anything. 1093 Loop *ToLoop = getLoopFor(I->getParent()); 1094 if (!ToLoop) 1095 return true; 1096 // If the replacing instruction is defined in the same loop as the original 1097 // instruction, or in a loop that contains it as an inner loop, then using 1098 // it as a replacement will not break LCSSA form. 1099 return ToLoop->contains(getLoopFor(From->getParent())); 1100 } 1101 1102 /// Checks if moving a specific instruction can break LCSSA in any loop. 1103 /// 1104 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 1105 /// assuming that the function containing \p Inst and \p NewLoc is currently 1106 /// in LCSSA form. movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)1107 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 1108 assert(Inst->getFunction() == NewLoc->getFunction() && 1109 "Can't reason about IPO!"); 1110 1111 auto *OldBB = Inst->getParent(); 1112 auto *NewBB = NewLoc->getParent(); 1113 1114 // Movement within the same loop does not break LCSSA (the equality check is 1115 // to avoid doing a hashtable lookup in case of intra-block movement). 1116 if (OldBB == NewBB) 1117 return true; 1118 1119 auto *OldLoop = getLoopFor(OldBB); 1120 auto *NewLoop = getLoopFor(NewBB); 1121 1122 if (OldLoop == NewLoop) 1123 return true; 1124 1125 // Check if Outer contains Inner; with the null loop counting as the 1126 // "outermost" loop. 1127 auto Contains = [](const Loop *Outer, const Loop *Inner) { 1128 return !Outer || Outer->contains(Inner); 1129 }; 1130 1131 // To check that the movement of Inst to before NewLoc does not break LCSSA, 1132 // we need to check two sets of uses for possible LCSSA violations at 1133 // NewLoc: the users of NewInst, and the operands of NewInst. 1134 1135 // If we know we're hoisting Inst out of an inner loop to an outer loop, 1136 // then the uses *of* Inst don't need to be checked. 1137 1138 if (!Contains(NewLoop, OldLoop)) { 1139 for (Use &U : Inst->uses()) { 1140 auto *UI = cast<Instruction>(U.getUser()); 1141 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 1142 : UI->getParent(); 1143 if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 1144 return false; 1145 } 1146 } 1147 1148 // If we know we're sinking Inst from an outer loop into an inner loop, then 1149 // the *operands* of Inst don't need to be checked. 1150 1151 if (!Contains(OldLoop, NewLoop)) { 1152 // See below on why we can't handle phi nodes here. 1153 if (isa<PHINode>(Inst)) 1154 return false; 1155 1156 for (Use &U : Inst->operands()) { 1157 auto *DefI = dyn_cast<Instruction>(U.get()); 1158 if (!DefI) 1159 return false; 1160 1161 // This would need adjustment if we allow Inst to be a phi node -- the 1162 // new use block won't simply be NewBB. 1163 1164 auto *DefBlock = DefI->getParent(); 1165 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 1166 return false; 1167 } 1168 } 1169 1170 return true; 1171 } 1172 }; 1173 1174 // Allow clients to walk the list of nested loops... 1175 template <> struct GraphTraits<const Loop *> { 1176 typedef const Loop *NodeRef; 1177 typedef LoopInfo::iterator ChildIteratorType; 1178 1179 static NodeRef getEntryNode(const Loop *L) { return L; } 1180 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1181 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1182 }; 1183 1184 template <> struct GraphTraits<Loop *> { 1185 typedef Loop *NodeRef; 1186 typedef LoopInfo::iterator ChildIteratorType; 1187 1188 static NodeRef getEntryNode(Loop *L) { return L; } 1189 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 1190 static ChildIteratorType child_end(NodeRef N) { return N->end(); } 1191 }; 1192 1193 /// Analysis pass that exposes the \c LoopInfo for a function. 1194 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { 1195 friend AnalysisInfoMixin<LoopAnalysis>; 1196 static AnalysisKey Key; 1197 1198 public: 1199 typedef LoopInfo Result; 1200 1201 LoopInfo run(Function &F, FunctionAnalysisManager &AM); 1202 }; 1203 1204 /// Printer pass for the \c LoopAnalysis results. 1205 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { 1206 raw_ostream &OS; 1207 1208 public: 1209 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 1210 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1211 }; 1212 1213 /// Verifier pass for the \c LoopAnalysis results. 1214 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { 1215 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 1216 }; 1217 1218 /// The legacy pass manager's analysis pass to compute loop information. 1219 class LoopInfoWrapperPass : public FunctionPass { 1220 LoopInfo LI; 1221 1222 public: 1223 static char ID; // Pass identification, replacement for typeid 1224 1225 LoopInfoWrapperPass(); 1226 1227 LoopInfo &getLoopInfo() { return LI; } 1228 const LoopInfo &getLoopInfo() const { return LI; } 1229 1230 /// Calculate the natural loop information for a given function. 1231 bool runOnFunction(Function &F) override; 1232 1233 void verifyAnalysis() const override; 1234 1235 void releaseMemory() override { LI.releaseMemory(); } 1236 1237 void print(raw_ostream &O, const Module *M = nullptr) const override; 1238 1239 void getAnalysisUsage(AnalysisUsage &AU) const override; 1240 }; 1241 1242 /// Function to print a loop's contents as LLVM's text IR assembly. 1243 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); 1244 1245 /// Find and return the loop attribute node for the attribute @p Name in 1246 /// @p LoopID. Return nullptr if there is no such attribute. 1247 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); 1248 1249 /// Find string metadata for a loop. 1250 /// 1251 /// Returns the MDNode where the first operand is the metadata's name. The 1252 /// following operands are the metadata's values. If no metadata with @p Name is 1253 /// found, return nullptr. 1254 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); 1255 1256 /// Return whether an MDNode might represent an access group. 1257 /// 1258 /// Access group metadata nodes have to be distinct and empty. Being 1259 /// always-empty ensures that it never needs to be changed (which -- because 1260 /// MDNodes are designed immutable -- would require creating a new MDNode). Note 1261 /// that this is not a sufficient condition: not every distinct and empty NDNode 1262 /// is representing an access group. 1263 bool isValidAsAccessGroup(MDNode *AccGroup); 1264 1265 /// Create a new LoopID after the loop has been transformed. 1266 /// 1267 /// This can be used when no follow-up loop attributes are defined 1268 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be 1269 /// applied again. 1270 /// 1271 /// @param Context The LLVMContext in which to create the new LoopID. 1272 /// @param OrigLoopID The original LoopID; can be nullptr if the original 1273 /// loop has no LoopID. 1274 /// @param RemovePrefixes Remove all loop attributes that have these prefixes. 1275 /// Use to remove metadata of the transformation that has 1276 /// been applied. 1277 /// @param AddAttrs Add these loop attributes to the new LoopID. 1278 /// 1279 /// @return A new LoopID that can be applied using Loop::setLoopID(). 1280 llvm::MDNode * 1281 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, 1282 llvm::ArrayRef<llvm::StringRef> RemovePrefixes, 1283 llvm::ArrayRef<llvm::MDNode *> AddAttrs); 1284 1285 } // End llvm namespace 1286 1287 #endif 1288